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The pre-symbiosis of arbuscular mycorrhizal fungi (AMF) is induced by the production of specific plant 
root exudates. Mycorrhizal fungi symbiotic relationships have many benefits to the plants. These 
benefits include, improved plant growth and developments, and enhanced plant tolerance to several 
diseases. Over the pre-symbiotic phase, the root releases essential metabolites necessary for fungal 
growth and root colonization. Root exudates compounds were reported and identified by several 
researchers. Root exudates have sugar, amino acids, proteins, carbon, some lipophilic compounds, 
flavonoids, and other bio-molecules. These compounds were presented as a critical and fundamental 
signal in plant, fungal and microbe bio-communications in the soil. Root-microbe interactions are 
continuous occurrences in the biological active soil zone. Mycorrhizal fungi bio-interaction can be 
classified as positive (symbiotic) to the host or could be negative to the plant. Root exudates may act 
as messengers that communicate and initiate biological and physical interactions between soil 
organisms and roots. The current review will illustrate the role of root exudates in mycorrhizal fungi 
association, the major components of root exudates and more focus on the disease control by root 
exudates derived from plants mycorrhizosphere.  
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INTRODUCTION 
 
Arbuscular mycorrhizal fungi (AMF) are the major 
component of soil and land plant (Smith and Read, 
2008). Arbuscular mycorrhizal symbiosis is the most 
widespread type of mycorrhizal association. It is 
estimated in about 250,000 of plants species, including 
many crops, vegetables, herbs and trees (Smith and 
Read., 1997; Koide and Dickie, 2002). More than 80% of 
the world’s plant species are myorrhizas, ranging from 
flowering to non flowering plants, while only a few plant 
families do not form this association (Schenck, 1981; 
Schreiner and Bethlenfalvay, 1995; Harrier, 2001). 
Arbuscular mycorrhizal fungi are the key of soil 
microorganism components, which affect plant 
development and minerals uptake strongly (Tahat et al., 
2008b). Plant roots influence the physical, chemical, and 
biological conditions of the soil in the rhizosphere 
(Gregory, 2006; Smith and Read, 2008).  

Plant  root  exude  a lot  of   valuable   small   molecular  
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compounds into the mycorrhizosphere (Bais et al., 2005). 
Root derived chemicals are the major signal between 
plant root and other soil microbes (Bais et al., 2005). 
Root exudates produce chemical compounds which may 
deter some organisms while attracting another. The 
typical example for that are the flavonoes chemical 
signals produced by soybean which attract mutualist 
Bradyribizobium japonicum and Phytophthora sojae 
pathogen (Morris et al., 1998). Plant fungal bio-
communications and interactions are critical and 
essential tools for understanding the abundance and 
distribution of plant species (Bongard, 2012). The 
rhizosphere is the area for highly dynamic interactions 
and communications between plant roots system and the 
pathogens and other beneficial microbes (Hirsch et al., 
2003).  

The term, rhizosphere was induced initially by nutrients 
produced from host roots. The concept was expanded to 
mycorrhizosphere to describe the combination between 
micro-flora and mycorrhizae (Linderman, 1988). The 
combination of AMF and soil micro-flora in natural 
undisturbed  agro-ecosystem   would   contribute   to   the 
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effective growth and health of plants (Linderman, 2008). 
Chemicals secreted into the soil by roots are referred to 
as root exudates (Walker et al., 2003). Mycorrhizosphere 
composition included two sources, firstly; rhizosphere soil 
which is influenced by root exudates and secondly; 
mycorrhizosphere soil which is relative to mycorrhizae 
and impacted by exudates from the root tissues and 
hyphal fungi (Olsson et al., 1996; Andrade et al., 1997; 
Johansson et al., 2004).  

Root exudates play a significant role in the mobilization 
of moderately soluble nutrients in the rhizosphere 
(Carvalhais et al., 2001). The microbial populations are 
an essential part of the rhizosphere and they affect soil 
rhizosphere by their several activities such as nutrient 
uptake, biological transformations and exudation (Filion 
et al., 1999). The presence of root exudates may 
influence chemical reaction mobility within the soil 
environment and subsequently affect biological activities, 
such as biogeochemical processes within the soil, which 
is fundamental for developing bioremediation 
technologies of inorganic and organic contaminants 
(Marschner, 1998). Therefore, the aims of current review 
were to focus on the mycorrhzial fungi and root exudates 
relationship in the mycorrhizosphere and to understand 
the ability of root exudates to control soil borne diseases.  
 
 
ARBUSCULAR MYCORRHIZAL FUNGI AND ROOT 
EXUDATES 
 
There are a number of researches on AMF and root 
exudates (Naghashi and Doudes, 2003; Vierheilig and 
Bago, 2005; Basi, 2003, 2005; Yu et al., 2003; Harrison, 
2005). Root exudates play an important role in AMF 
establishment symbiosis (Vierheilig et al., 2003). The 
establishment of AMF symbiosis and infection structure 
can occur only in the presence of signals released by 
host roots (Smith and Read, 1997; Czarnota et al., 2003). 
AMF can find the presence of plant host through root 
exudates that is perceived as a signal from the plant 
(Naghashi and Douds, 2003). Plants colonized by AMF 
differ from non-mycorrhizal plant in rhizosphere microbial 
community and result in alterations in root respiration rate 
quality and quantity of the exudates (Marschner et al., 
2001). AM colonization has been shown to change the 
amount and quality of host root exudates (Azaizeh et al., 
1995) and the chemo tactic response of soil bacteria 
(Sood, 2003; Buee et al., 2000). Exudates from in vitro 
grown tomato roots colonized with Glomus intraradices 
were shown to modify the chemo tactic response of P. 
nicotianae zoospores (Lioussanne et al., 2008). 
Mycorrhizal fungi can alter root exudation quantitatively 
and qualitatively (Leyval and Berthelin, 1993). Specific 
relationships occur between mycorrhizosphere microbiota 
and mycorrhizal fungi, and there are several literatures 
attesting that mycorrhizal symbiosis is largely influenced 
by  soil  microbes  (Bowen,  1980;  Kosuta  et  al.,   2003; 

 
 
 
 
Garcia and Ocampon, 2002; De Oliveira and Garbaye, 
1989).  
 
 
Exudates and mycorrhizae bio-action against soil-
borne diseases 
 
Symbiotic interaction between plant root and microbes 
depends on secondary metabolites in the root exudates 
for beneficial association initiation and development (Vigo 
et al., 2000). The pathogenic interaction depends on 
understanding the chemical warfare mediated by plant 
secretion of phytoalexins, defense protein and other 
unknown chemical compounds (Flores et al., 1999; Bais 
et al., 2004, 2003). The protective effect of mycorrhizal 
symbioses against root pathogenic fungi has been tested 
by many researchers (Caron, 1989; St-Arnaud and 
Vujanovic, 2007; Oger et al., 2004). Disease decrease 
within plants colonized by mycorrhizal species is the 
result of the complex interactions between pathogens, 
AMF and plant (Harrier and Watson, 2004). Mycorrhizal 
symbiosis has been shown to lessen the damage caused 
by soil-borne pathogens (Azcon-Aguilar and Barea, 
1996). Phytophthora parasitica proliferation was greatly 
minimized when tomato root were colonized by Glomus 
mosseae and P. parasitica compared with non-
mycorrhizal tomato roots (Cordier et al., 1996).  

Several biotic and a biotic factors are very important for 
the determination of efficiency of AMF as a disease 
control agent such as soil moisture, soil contents, host 
genotype, mycorrhizal level inoculums, inoculation time of 
mycorrhiza, mycorrhizal fungi species virulence, 
inoculums potential of pathogen and soil microflora 
(Singh et al., 2000). The increasing nutrient uptake 
resulted in more vigorous plants; thus, the plant itself may 
be more resistant or tolerant to pathogen attack 
(Linderman, 1994). Improvements in plant growth 
followed by root colonization by AMF occurs as a result of 
enhancement of the mineral nutrient status of plants 
(Akhtar and Siddiqui, 2008). Phosphorus tolerant AMF 
reduced nematode effect under high-P conditions; 
therefore, non-P-mediated mechanisms are involved, 
probably physiological changes in the roots (Sharma et 
al., 2007). 

Root exudates from mycorrhizal strawberry plants 
suppressed the sporulation of P. fragariae in in vitro study 
(Norman and Hooker, 2000). Differential growth of 
Fusarium oxysporum f. sp chrysanthemi, Trichoderma 
harzianum, Clavibactor michiganesis and Pseudomonas 
chlororaphis was explained by substances released from 
G. intraradices under in vitro culture conditions (Filion et 
al., 1999). Grandmaison et al. (1993) suggested that 
phenolic compounds bound to cell wall could be indirectly 
responsible for the resistance of AMF roots to pathogenic 
fungi since they increased the resistance of cell wall to 
the action of digestive enzymes. 

Phytoalexins toxic components are not detected  during 
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the first stages of AMF formation but can be detected in 
the later stages of symbiosis (Morandi, 1996). P. 
parasitica development decreased in G. mosseae and 
non G. mosseae parts of tomato mycorrhizal root 
systems in association with plant cell defense responses 
and accumulation of phenolics. Cortical cells containing 
G. mosseae are immune to the pathogen and exhibit a 
localized resistance response (Cordier et al., 1998). 
Exudates from fungal mycelium were also shown to 
impact germination of other pathogens and soil microbes 
(Steinkellner et al., 2008). Extracts from G. intraradices 
mycelium stimulated the growth of Ps. chlororaphis and 
T. harzianum, had no effect on C. michiganens and 
reduced conidial germination of F. oxysporum f. sp. 
chrysanthemi (Filion et al., 1999). The use of natural 
products for the control of fungal diseases in plants is 
considered an interesting alternative to synthetic 
fungicide due to their less negative impact on the 
environment (Brunelli, 1995).  

Root exudates are considered as one of the 
mechanisms that explain the ability of AMF to suppress 
or increase the soil-borne diseases (Mukerji et al., 2002). 
Root exudates vary between different hosts, and the 
composition of the exudates changes in the same plant at 
different conditions (Marschner, 1995; Tahat et al., 2011). 
The current knowledge about the importance of exudates 
in AM fungus-host interactions was recently developed in 
in vitro culture technique and in situ compartmental 
systems. Although it is believed that root exudates play a 
major role in the infection and colonization of hosts by 
AMF, the actual role or mode of action of exudates was 
elucidated only recently (Nagahashi, 2000; Smith and 
Read, 2008).  

The germination of F. oxysporum f. sp Lycopersici was 
inhibited in the presence of root exudates from the 
tomato plant (Scheffknecht et al., 2006). Root exudates 
can have direct defensive qualities. Pathogen-activated 
plant defenses can result in root secretion of antimicrobial 
compounds. It was shown that root-derived anti-microbial 
metabolites from Arabidopsis confer resistance to a 
variety of P. syringae pathovars (Bais et al., 2005). In 
another study, it was also predicted that transgenic plants 
that produce antimicrobial proteins can influence 
rhizosphere microbial communities (Glandorf et al., 
1997). Sugars and amino acids in the root exudates 
stimulate the germination of chlamydospores and other 
fungi resting spores. The hyphal length of G. mosseae 
was greatly affected by the exudates of mycorrhizal 
tomato root exudates and mycorrhizal corn root 
exudates. The growth of Ralstonia solanacearum was 
suppressed due to G. mosseae spores germination 
(Tahat et al., 2010b). 

The effect of parasitic nematode in the rhizosphere root 
exudates was studied (Foster, 1986; Griffiths, 1989; 
Horiuch et al., 2005). Root feeding nematode could 
participate in the interaction with root and soil ‘S’ 
microorganisms (Bais et al.,  2006).  Most  information  of  
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microbe-nematode interaction in mycorrhizosphere and 
rhizosphere has been derived from rhizobi, mycorrhyza 
and plant pathogen researches (Khan, 1993). Horiuch et 
al. (2005) found that Caenorbabditis elegans may 
arrange interaction between plant roots and rhizobia in a 
positive way luminary to nodulation. In the same study, 
Horiuch et al. (2005) reported that C. elegan can transfer 
the Sinorbizobium meliloti (rhizobium species) to the root 
of Medicago truncatula in response to volatiles that 
released from plant root that attract nematode. 

The hairy root exudates of sweet basil (Ocimum 
basilicum) cultures of elicited by fungal cell wall were 
extracted from P. cinnamoni. Basil roots were induced to 
exude rosmarinic acid (RA) by fungal in situ challenge by 
Pythium ultimum, and RA demonstrated strong 
antimicrobial activity against soil-borne microorganisms 
such as P. aeruginosa (Bais et al., 2002b). Hairy roots of 
Lithospermum erythrorhizon cell specifically produced 
naphthoquinones pigment upon elicitation, and other 
biological activity against soil-borne bacteria and fungi. 
The observed antimicrobial activity of RA and 
naphthoquinones suggest the importance of root 
exudates in defending the rhizosphere against 
pathogenic microorganisms (Brigham et al., 1999). 
 
 
Root exudates components 
 
Root exudates are divided into two compound classes; 
firstly, low-molecular weight (amino acids, sugar, phenolic 
and organic acid), and secondly, high-molecular weight 
exudates (protein and polysaccharides) (Marschner, 
1995). The composition of root exudates can be complex 
and ranges from mucilage, root border cells, extracellular 
enzymes and sugars (complex and simple) (Shi et al., 
2011; Jones et al., 2004), phenolics (Marschner, 1995; 
Tsai et al., 1991), amino acids and organic acids (OAs) 
(acetic, butyric, citric, fumaric, lactic, malic, propionic, 
succini) (Shi et al., 2011), carbon (Bodelier et al., 1997), 
phenylpropanoids, flavonoids and isoflavonoids Tsai and  
Phillips 1991; Winkel-Shirley, 2001; Buee et al., 2000; 
Peters et al.,1986, proteins (Glandorf et al., 1997), 
vitamins, (thiamine, nicotinic acid, biotin), nitrogenous 
macro-molecules such as nucleosides and purines to 
inorganic or gaseous molecules such as HCO3

-
, OH

-
, H

+
, 

CO2 and H2 (Marschner, 1995; Uren and Reisennuer, 
1988; Nagahashi and Jr-Douds  2003). 

Enzymes (amylase, invertase, protease, phosphatase), 
organic substrates excreted into the rhizosphere, 
particularly amino acids, organic acids, proteins, 
carbohydrates and vitamins, promote microbial 
biosynthesis of ethylene (Arshad and Frankernberger, 
1990; Dakora and Phillips, 2002). Root exudates are the 
highest source of allelochemical input into the soil 
environment and it is a source of many growth factors 
phytohormones (choline, biotin, inositol, and pyridoxine) 
(Su   and    Cheng,    2008).    Root    exudates    are    an 
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important source of organic carbon to soil 
mycorrhizosphere (Foster, 1986). Different phytotoxins in 
root exudates were defined (Einhellig, 1995). The plant 
phytotoxins affect different plant aspects like 
photosynthesis, respiration, germination, root 
development shoot growth and cell mortality in target 
plant (Weir et al., 2004). 
 
 
Factors affecting exudates 
  
The nature and amount of chemical substances thus 
exuded are dependent on several factors such as soil 
type, soil microorganisms, nutrients availability, soil pH 
level, plant host species, plant age, temperature, organic, 
inorganic, light intercity and O2/CO2 level, but the most 
important factors are: 
 
 
Microorganisms  
 
Root exudates were found to increase microbial activities 
in the rhizosphere (Oger et al., 2004). In the rhizosphere, 
the roots must compete with the invading root systems of 
neighboring plant for water, space, nutrients and with 
soil-borne microorganisms, including fungi, bacteria, and 
insects feeding on an abundant source of organic 
material (Ryan and Delhaize, 2001; Burke et., 2002). 
Root exudates may act as messengers that initiate 
physical and biological interactions between roots and 
soil micro-organisms (Walker et al., 2003). Roots 
exudates regulate the soil microbial community in their 
immediate vicinity, through the exudation of a wide 
variety of compounds, encourage beneficial symbioses, 
change the chemical and physical properties of the soil, 
and inhibit the growth of competing plant species (Nardi 
et al., 2000; Sylvia et al., 2005). The exudates 
compounds can cause some nutrient elements to be 
relatively more available for uptake by plants. The 
exudation rate is increased by the presence of microbes 
in the rhizosphere (Gardner et al., 1983; Koo et al., 
2005). 
 
 
Soil pH and fertilizers  
 
Root exudates compound solutions stimulated soil 
dehydrogenase activity, and the addition of OAs 
increased soil pH (Shi et al., 2011). Acidification of the 
rhizosphere is an important nutritional effect that organic 
acids have in root exudates (Dinkelaker et al., 1989). 
High concentrations of anions organic acid in root 
exudation will lade to P deficiency (Hoffland et al., 1989) 
and this lowers rhizosphere pH, making P and Mn, Fe 
and Zn to be more available in calcareous soils (Haynes, 
1990; Jones and Darrah, 1994). The relationship 
between   organic    acid    exudation    and    rhizosphere  

 
 
 
 
acidification is not that simple as the extrusion of H

+
. 

Acidification below pH 5.5 can cause some major 
macronutrients to become limiting because 
micronutrients such as Mn, Fe and Al occur in high 
concentrations below pH (5.5) (Brady, 1990). Ammonium 
nutrition acidification does not result in increased 
phosphorus mobilization (Gahoonia et al., 1992). H

+
 

extrusion occurs during N fixation by symbiotic legumes 
(Raven et al., 1990). This can lead to rhizosphere 
acidification and increased availability of limiting elements 
nutrient like P, Mo and Fe (Gahoonia, 1993; Gillespie and 
Pope, 1990). There are many documents of enhanced 
H2

+
 extrusion under P deficiency and Fe deficiency, 

leading to acidification of localized areas around the root 
tips (Bienfait, 1988; Hoffland et al., 1989; Romheld and 
Marschner, 1986; Kania et al., 2003). Organic acids from 
root exudates can solubilize unavailable soil Ca, Fe and 
Al phosphates. Rooibos tea (Aspalathus linearis L.) can 
actively modify their mycorhizosphere pH by extruding 
OH

-
 and HCO3

-
 to facilitate growth in low pH soils (pH 3 

to 5) (Dakora and Phillips, 2002). Extracellular enzymes 
release P from organic compounds, and some types of 
molecules increase iron availability through chelation 
(Berg et al., 2002). 
 
 
Plant characteristics (species, age, nutrients, light) 
 
Different plant species inhabit variable microflora in the 
mycorrhizosphere region (Dakora and Phillips, 1996). 
The quantitative and qualitative differences are attributed 
to variations in the excretion products, rooting habits, and 
tissue composition (Mukerji et al., 2002). Plant age alters 
the rhizosphere microorganism and the stage of plant 
maturity controls the magnitude of rhizosphere effect and 
degree of response to specific microorganisms (Buée et 
al., 2009). Flowering is the most active period of plant 
metabolism and growth. The mycorrhizosphere 
microorganism increase in the highest number during this 
stage lead to increase exudates content (Walker et al., 
2003; Tahat et al., 2008a). Some microbes were found to 
be more effective at the time of flowering than in the 
seedling or full maturity stage (Bais et al., 2006). The 
effect of light on the production of pectin and 
polygalacturonase (PG) in the root exudates of Trifolium 
alexandrinum inoculated with an efficient strain of 
Rhizobium trifolii was investigated. The pectin methyl 
esterase PME and PG increased with an increase in the 
duration of light to which plants were exposed (Chhonkar, 
1978).  
 
 
CONCLUSION 
 
Mycorrhizal fungi associated with plant roots have existed 
for hundreds of millions of years. The role of mycorrhizal 
fungi in  improving  plant  nutrition  and  their  interactions  



 
 
 
 
with other soil biota have been investigated with 
reference to the host plant growth, but little is known 
about how these interactions affect soil structure. The 
combination of these organisms in natural, undisturbed 
ecosystems would seem to contribute to the successful 
growth and health of plants. Several factors influenced 
the production of root exudates such as plant type, age, 
light, soil microflora, soil fertilizer and soil pH. This view 
has attempted to characterize qualitative changes in 
populations of rhizobacteria associated with plants with 
mycorrhizae in what is called the “mycorrhizosphere”. 
Microbial populations in the mycorrhizosphere can 
change dynamically over time and are influenced by what 
microbes are present in the background soil or growth 
medium. The process of selective enrichment of specific 
functional groups of microbes from that medium is due to 
root and arbuscular mycorrhizal fungus, hyphal exudates.  
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