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Chitosan and BTH selected as inducers of systemic resistance against Sphaceloma ampelinum, the 
causal agent of grapevine anthracnose, are presented for biological control of multiple pathogens 
causing either foliar or root diseases of various economic crops. In the present study, chitosan and 
BTH were investigated for their ability to induce some defense related chemicals that protect grapevine 
from S. ampelinum infection. Salicylic acid was found to accumulate in grapevine leaf tissue, treated 
with chitosan and BTH and challenged by S. ampelinum when plants were 60-day-old. The 
accumulation of salicylic acid (13.08 and 12.15 µg g

-1
 fresh weight) increased for seven days after fungal 

pathogen challenge inoculation and foliar treatment with chitosan and BTH. In pathogen inoculated 
plants of non-treated foliar, salicylic acid also accumulated for seven days with very low level of 2.90 µg 
g

-1
 fresh weight. Moreover, chitosan and BTH reduce anthracnose disease severity up to 75 and 60%, 

respectively. These results show the potential of using chitosan and BTH to induce resistance of 
grapevine, and as active-elicitors for plant diseases management. Furthermore, the use of chitosan and 
BTH may minimize the cost of control strategies and reduce the risk associated with the high use of 
chemical pesticides in commercial grapevine production in Thailand. 
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INTRODUCTION 
 
Anthracnose or scab disease of grapevine caused by 
Sphaceloma ampelinum is one of the most serious fungal 
diseases of grape in tropical area, especially Thailand 
(Pienpuck et al., 1993; Sompong et al., 2012). This 
disease appears every year and reduces the quality and 
quantity of grapes by weakening the vines, causing up to 
50% crop losses in many grapevine growing area. In 
Thailand, grapevine anthracnose disease is most 
damaging from  July  to  October;  it  is  characterized  by  
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small circular to irregular dark brown spots of about 1 to 5 
mm in-diameter which later turn gray in the center and 
dark brown at the margins. The central necrosis tissue 
often falls off, leaving a shot-hole appearance. Symptoms 
usually develop in late summer and fall. Optimal condition 
can defoliate the grape. On berries, the disease is 
characterized by a typical bird’s eye spot which is violet 
to grayish at the centre and dark brown at the margins of 
young infected fruit, which generally shrivels and dies 
throughout the season. On shoots and tendrils, small 
isolated light brown spot develops which elongates to 
form elliptical, slightly sunken lesions. Later, the central 
area of the lesion develops into ashy-gray color bordered 
by darker rim. The affected shoots  may  be  restricted  in  
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growth, and shedding of flower buds takes place due to 
infection (Pienpuck et al., 1993; Sompong et al., 2012).  

Anthracnose disease of grapevine in Thailand is 
normally controlled by fungicide application, but the 
emergence of new race of the pathogen diversity is 
reported (Sompong et al., 2012). Moreover, there are 
more restrictions on fungicide application to the fresh 
product due to the concern of the public about food safety 
on human health and environment (Buensanteai et al., 
2009). Therefore, the strategy to control the disease is to 
use induced resistance mechanism (Aziz et al., 2006; 
Aziz et al., 2007; Trouvelot et al., 2007; Slaughter et al., 
2008; Allégre et al., 2009; Godard et al., 2009; Dubreuil-
Maurizi et al., 2010; Verhagen et al., 2010; Archana et 
al., 2011; Iriti et al., 2011; Perazzoli et al., 2011; 
Verhagen et al., 2011; Hatem et al., 2012). 

Induced resistance is a biochemical and physiological 
state in which active- elicitors such as plant growth 
promoting rhizobacteria, synthetic chemical and natural 
products increase plant defense mechanism against 
various pathogenic infections. Induced resistance studies 
using chitosan and BTH on cotton, maize, cabbage, 
sunflower, grapevine and tobacco (Godard et al., 1999; 
Iriti et al., 2004; Omyma and Mahmoud, 2005; Aziz et al., 
2006; Cohen et al., 2011; Korosi et al., 2011; Dufour et 
al., 2012) revealed that these elicitors can trigger 
chemical and biochemical mechanisms in plant cell, 
leading to the resistance of the phenotype. The two most 
widely studied types of induced resistance are induced 
systemic resistance (ISR) and systemic acquired 
resistance (SAR). One is the salicylic acid (SA)-
dependent pathway, associated with systemic acquired 
resistance (SAR) that act on infection caused by many 
plant pathogens (Sricher et al., 1997; Buensanteai et al., 
2009). The second, referred to as the pathogen-induced 
jasmonic acid (JA)-dependent pathway, was first found to 
be induced by certain necrotizing plant pathogens via a 
separate pathway which is SA-independent and JA-
dependent (Vidal et al., 1997; Buensanteai et al., 2009). 
This pathway is distinguished from the SA-dependent 
pathway in that it leads to the expression of genes for 
defensin (PDF1.2) and a set of pathogenesis-related 
(PR) proteins, including a basic β-1,3-glucanase (PR-2) 
and a basic chitinase (PR-3); whereas the SA-dependent 
pathway leads to the expression of genes for a different 
set of PR proteins, most notably PR-1 (Vidal et al., 1997; 
Buensanteai et al., 2009) 

There is some information regarding traits expressed 
systemically in grapevine in response to induction by 
plant growth promoting rhizobacteria (PGPR) and active-
elicitors (Hamiduzzaman et al., 2005; Aziz et al., 2006; 
Aziz et al., 2007; Chong et al., 2008; Slaughter et al., 
2008; Trouvelot et al., 2008; Allégre et al., 2009; Godard 
et al., 2009; Dubreuil-Maurizi et al., 2010; Verhagen et 
al., 2010; Archana et al., 2011; Iriti et al., 2011; Legay et 
al., 2011; Perazzolli et al., 2011; Dufour et al., 2012; 
Hatem  et  al.,  2012).    Resistance-related   mechanisms  

 
 
 
 
expressed in grapevine induced by chitosan and BTH 
have not been well examined; only an association of 
anthracnose and other fungal diseases reduction by 
chitosan oligomers was mentioned (Sathiyabama and  
Balabramaian, 1995; Awadalla and Mahamoud, 2005; 
Aziz et al., 2006). Moreover, the acibenzolar-S-methyl or 
benzothiadiazole (BTH) has been reported to be effective 
against biotrophic pathogens such as Erysiphe necator 
and Plasmopara viticola, the causal agent of powdery 
and downy mildew of grapevine (Dufour et al., 2012).  

The aim of this study is to examine grapevine defense 
response to BTH and chitosan, with emphasis on salicylic 
acid accumulation, the biochemical marker of resistance, 
occurring in grapevine with challenge inoculation of S. 
ampelinum pathogen, the causal agent of grapevine 
anthracnose disease. 
 
 
MATERIALS AND METHODS 
 
Grapevine plantlets (Vitis vinifera cv. Black Queens) were planted 
at the bottom of individual pots containing water and mixed 
fertilizer. Grapevine was grown in a green house at 26 ± 2°C, with a 
photoperiod of 12 h of light and a relative humidity (RH) of 70 ± 
10% for 2 months. The plant had one shoots and 7 to 9 leaves. 
Grapevine plants were watered daily and supplemented with 
fertilizer every two day.  
 
 
Elicitor application  
 
Chitosan (low-viscous, Fluka, Germany) and BTH (Bion, 50 WG 
Syngenta Crop Protection, Basel, Switzerland) were used in 
different concentrations: 1000, 2500, 5000 ppm for chitosan and 50, 
100, 200 ppm for BTH. Two months after planting, all elicitors 
solutions were applied to upper and lower grapevine leaf surfaces 
using manual sprayer. Grapevine pots were arranged in RCBD in 
the greenhouse. The negative control treatment was sprayed only 
with sterile distilled water. 
 
 
Pathogen inoculum preparation  
 

S. ampelinum collected from an untreated vineyard in the 
Suranaree University Technology Farm was isolated on water agar 
(WA). Mycelia agar was transferred from 3-5 day old S. ampelinum 
grown on WA plates and inoculated onto potato dextrose agar 
(PDA) plate (potato 200 g/L, dextrose 15 g/L, agar 15 g/L). To 
obtain conidia, the culture was placed in the dark at 100% RH 
overnight (Sompong et al., 2012). Conidia were collected from the 
Petri dish using a loop and then suspended in distilled water. The 
concentration was adjusted to 10

6
 conidia per milliliter using a 

hemacytometer (Sompong et al., 2012). 

 
 
Pathogen inoculation and anthracnose disease assessment 
 

Seven days after elicitor treatment, leaves of treated and control 
grapevine seedling were challenge inoculated by spraying S. 
ampelinum conidia suspension onto the plant. Inoculated grapevine 
seedlings were kept overnight in the control chamber (Trouvelot et 
al., 2008; Sompong et al., 2012). Disease severity then was 
assessed by measuring the grapevine leaf area infection. In each 
experimental, six grapevine leaves were observed per treatment.  
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Figure 1. The grapevine anthracnose symptoms; (A) The 
symptom on leaves; (B) The symptom on berries.  

 
 
 

Fig. 2

 
 

Figure 2. Colony morphology of S. ampelinum most 
virulent strain GB4 on potato dextrose agar (PDA) 
medium. 

 
 
 
For disease severity score, Poolsawat (2008) method was applied: 
1 score = leaf area necrosis between 0 to 6%; 2 scores = leaf area 
necrosis less than 25%; 3 scores = leaf area necrosis between 26 
to 50%; 4 scores = leaf area necrosis between 51-75%; and 5 
scores = leaf area necrosis over 75% of all leaf area.  
 
 
Grapevine salicylic acid analysis 
 
To prove that treatment with chitosan and BTH were effective in 
inducing resistance in the plant experiment, grapevine in the 
remaining 3 plants per treatment was investigated for salicylic acid 
accumulation, the biochemical marker of plant resistance. In each 
plant, at the same development stage, different samples of 
grapevine leaves were taken: those treated with chitosan, BTH or 
distilled water. The first sample was collected prior to inoculation 
with each elicitor, the second sample collected just prior to 
inoculation with S. ampelinum and the other samples collected at 
the 7 day after S. ampelinum pathogen challenge inoculation. The 
samples were ground in buffer (90 ml methanol: 9 ml acetic acid, 1 
ml ddH2O) with a chilled mortar and pestle; and 0.5 ml of 90% 
methanol was added to 0.5 g of the obtained sample after being 
centrifuged at 15,000 xg for 15 min. Supernatant of 500 µl of 0.02 
ferric ammonium sulfate was added. The reaction mixtures were 
inoculated at room temperature for 5 min and absorbance reading 
at 530 nm. The level of salicylic acid in the grapevine sample was 
expressed in µg g

-1
fresh weight. The  partial  method  described  by  
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Fig. 3

 
 

Figure 3. S. ampelinum conidia isolated from 
grapevine cv. Black Queens cultured on potato 
dextrose agar (PDA) at 30 days (1200x 
magnification). 

 
 
 
Raskin et al. (1990) and Rasmussen et al. (1991) was slightly 
modified. 
 
 
Statistical analysis 
 
All experiment was arranged in randomized completely block 
design with three replicates of 3 plants per treatment and replicated 
twice per time. For level of SA, analysis of variance (ANOVA) was 
carried out, and the significance of difference among the treatments 
was determined according to Duncan’s Multiple Range Test at P < 
0.05 using SPSS version 14.  
 
 
RESULTS 
 
Sample collection and isolation of S. ampelinum 
 
Anthracnose symptoms can be found on all the parts of 
grapevine plant (Figure 1). In severe case, anthracnose 
can lead to the complete drying of grapevine leaves, as 
seen in Figure 1. 

The fungal mycelium colony appeared within 3 to 5 day 
after culture on WA and the colony color on PDA at 35 
days was dark brown-black with cotton and flocculent 
appearance (Figure 2). The virulent conidia were hyaline, 
single celled, having circular to oblong shape; often 
conidia are glued together in irregular chains (Figure 3).  
 
 
Grapevine anthracnose disease assessment 
 
In this experiment, treating grapevine cultivar (Black 
Queens) with chitosan and BTH reduced the severity of 
anthracnose in the foliage, confirming the occurrence of 
induction of systemic resistance. The results indicated 
that treatment with chitosan and BTH reduced the 
severity of anthracnose in leaves by 75 and 60%, 
respectively compared to the sterile distilled water, which 
is the negative control (Table 1; Figures 4 and 5). 
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Table 1. Effect of foliar treatment with chitosan and BTH on severity of anthracnose 
disease in grapevine cultivar, Black Queens. 
 

Treatment 
Disease severity

1
 

Disease score
2
 Disease symptom (days after inoculation) 

CHN 1,000 ppm 2.33ab
3/

 4 

CHN 2,500 ppm 2.33ab 4 

CHN 5,000 ppm 1.33a 5 

BTH 50 ppm 

BTH 100 ppm 

BTH 200 ppm 

Control  

2.33ab 

2.33ab 

3.00b 

4.89c 

5 

4 

5 

2 

F-test **  

CV (%)  17.89  
 
1
Grapevine leaves were challenged with S. ampelinum strain GB4 or sterile distilled water for 7 

days after foliar treatment with chitosan and BTH. 
2
The disease score included: 1 score = leaf 

area necrosis between 0 - 6%; 2 score = leaf area necrosis less than 25%; 3 score = leaf area 
necrosis between 26 - 50%; 4 score = leaf area necrosis between 51 - 75%; 5 score = leaf area 
necrosis over 75% of all leaf area.

3
Disease severity was evaluated 7 days after challenged with 

S. ampelinum strain GB4 or sterile distilled water. Each value represents a mean of three 
replicate plants with two leaves per plant. Mean in the column followed by the same letter is not 
significantly different according to the LSD test (α= 0.05). 
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Figure 4. The anthracnose disease symptoms in leaves of grapevine 
cultivars, Black Queens (A) without or with chitosan concentrations; (B) 
1,000 (C) 2,500 and (D) 5,000 ppm. 

 
 
 

The level of grapevine salicylic acid  
 
In this study, chitosan and BTH were tested for their 
ability to induce defense related chemicals to protect 
grapevine from S. ampelinum infection. Grapevine 
treatment with chitosan and BTH triggered increased 
accumulation of biochemical marker associated with 
induced resistance in the presence of S. ampelinum 
pathogen inoculation. In the Black Queens cultivar of 

grapevine treated with chitosan and BTH, salicylic acid 
accumulation level was 13.08 and 12.15 µg g

-1
 fresh 

weight, respectively, after pathogen inoculation, for 7 
days (Table 2). In contrast, salicylic acid accumulation in 
S. ampelinum pathogen-inoculated grapevine without 
chitosan and BTH treatment was considerably lower. We 
found that in pathogen inoculated plants without foliar 
treatment, salicylic acid level accumulated for 7 days was 
very lower (2.90 µg g

-1
 fresh weight). 
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Figure 5. The anthracnose disease symptoms in leaves of 
grapevine cultivars, Black Queens (A) without or with BTH 
concentration; (B) 50 (C) 100 and (D) 200 ppm. 

 
 
 

Table 2. Accumulation of salicylic acid in leaves of grapevine cultivars, Black Queens 
with or without chitosan and BTH foliar treatment and with challenge inoculation of S. 
ampelinum. 
 

Treatment 

Salicylic acid (µg g
-1

 fresh weight)
1
 

Time (day)
2
 

0 7 14 

CHN 1,000 ppm 0.78b
3
 3.57e 12.19b 

CHN 2,500 ppm 0.60a 3.99f 10.58b 

CHN 5,000 ppm 0.99c 2.98d 13.08b 

 BTH 50 ppm 0.79b 3.06ef 10.85b 

 BTH 100 ppm 1.04c 3.83ef 12.15b 

 BTH 200 ppm 1.46e 2.16c 11.54b 

Control  1.21d 0.19a 2.90a 

F-test ** ** ** 

CV(%) 8.63 12.87 18.17 
 
1
Salicylic acid accumulation was evaluated at 0 and 7 days after treatment with chitosan and 

BTH or sterile distilled water. And also salicylic acid was determined at 7 days after challenged 
with S. ampelinum strain GB4 or sterile distilled water (14 days). 

2
Grapevine leaves were 

treated with chitosan and BTH or sterile distilled water at 0 day, challenged with S. ampelinum 
strain GB4 or sterile distilled water at 7 days after foliar treatment with chitosan and BTH, and 
the induced resistance ability at 7 days after challenged with S. ampelinum strain GB4 or sterile 
distilled water was investigated. 

3
Each value represents a mean of three replicate plants with 

two leaves per plant. Mean in the column followed by the same letter is not significantly 
different according to the LSD test (α= 0.05). 

 
 
 
DISCUSSION 
 
In the present experiment, we found that the application  

of chitosan and BTH through foliar spray can induce 
resistance in grapevine against anthracnose pathogen, S. 
ampelinum.  Our  results   show   that   the   induction   of  
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resistance by chitosan and BTH in grapevine is due to 
the concentrations of each elicitor. The most efficient 
induction was obtained with concentrations of 5,000 ppm 
chitosan and 200 ppm BTH. Moreover, our study is the 
first experiment to determine grapevine response to 
active-elicitor with induced resistance against 
S.ampelinum using analysis of salicylic acid, which is a 
common plant biochemical response to pathogen. We 
found increase in salicylic acid accumulation in chitosan 
and BTH treated grapevine compared to the negative 
controls, with the elevation of salicylic acid being more 
pronounced in chitosan and BTH treated grapevine than 
that inoculated with S. ampelinum. The differential 
expression of the salicylic acid marker after pathogen 
challenge was similar to the induction of salicylic and 
jasmonic accumulation in grapevine by β-aminobutyric 
acid that was potentiated by exposure to a callose 
formation preparation from Plasmopara viticola, the 
causal agent of downy mildew (Hamiduzzaman et al., 
2005) and is indicative of priming as defined by Sticher et 
al. (1997) and Buensanteai et al. (2009).  

We found increases in SA levels in chitosan and BTH-
treated plants compared to the controls, with the 
elevation of these signaling compounds being more 
pronounced in chitosan and BTH -treated plants than that 
inoculated with S. ampelinum. These results support our 
conclusion that chitosan and BTH prime grapevine plants 
(Buensanteai et al., 2009). They are also evident that 
chitosan and BTH-induced resistance in grapevine 
involving JA- and SA- dependent pathways. The latter is 
likely to be the pathogen-induced SA-dependent pathway 
because this pathway requires salicylic acid production 
(Hamiduzzaman et al., 2005; Buensanteai et al., 2009), 
whereas the rhizobacteria-induced JA-dependent 
pathway is not associated with increased production of 
JA (Buensanteai et al., 2009). The pattern of differential 
accumulation of salicylic acid in S. ampelinum-inoculated 
and non-inoculated grapevine pretreated with chitosan 
and BTH further supports the occurrence of priming. 
Priming appeared to occur only in genotypes with intact 
SA or JA or ethylene sensitivity, thus indicating that 
induction of priming by chitosan and BTH required 
activation of a SA-dependent pathway in grape plant, and 
which is consistent with chitosan and BTH induced 
resistance to S. ampelinum. Salicylic acid production also 
was reported to be associated with priming induced by 
thiamine and BABA, but SA-dependent signaling was 
required (Malamy et al., 1990; Hamiduzzaman et al., 
2005; Eschen-Lippuld et al., 2010). In addition, the 
induction of biological maker as hydrogen peroxide as the 
intermediate of salicylic acid in barley using the chemical 
elicitor DCINA was SA independent. Therefore, the 
involvement of JA- and SA-dependent pathways in the 
induction of salicylic acid varies depending on the elicitor-
host plant interaction.  

Based on the response of grapevine to chitosan and 
BTH, we can surmise that chitosan  and  BTH  activate  a  

 
 
 
 
SA-dependent pathway in this crop. While this pathway 
can lead to enhanced resistance against broad spectrum 
of the pathogens, the resistance mechanisms may occur. 
In addition, SA signaling is also involved in induced 
resistance against herbivorous insects. Studies have 
shown that combinations of active-elicitors that induce 
complementary pathways can result in the induction of a 
higher level or broader range of resistance (Buensanteai 
et al., 2009; Mandal et al., 2009; Manjunatha et al., 
2009). The apparent activation of both pathways in 
grapevine by chitosan and BTH, coupled with the ability 
of the active-elicitor to induce plant defense against 
fungal pathogens via induced resistance mechanism 
(Friedrich et al., 1996; Eikemo et al., 2003; Buensanteai 
et al., 2009) suggest that application of this single elicitor 
to grapevine could potentially provide protection against a 
broad spectrum of plant pathogens and, perhaps, also 
insects. We demonstrated that treatment with chitosan 
and BTH results in priming of plants against pathogen 
infection. The significance of priming is that production of 
proteins important in defense is mostly held in check until 
needed, that is, upon pathogen infection; and thus, there 
is little cost in yield lost to the priming process in the 
absence of pathogens (Buensanteai et al., 2009; 
Perazzoli et al., 2008), as would be expected when 
treatment with an inducing elicitor leads directly to the 
expression of resistance mechanisms (Buensanteai et 
al., 2009).  

In conclusion, chitosan and BTH were found to be 
capable of inducing resistance in grapevine against 
anthracnose disease. During the induced resistance 
reactions, the accumulation of salicylic acid was 
increased. Moreover, activation of this biochemical 
marker as salicylic acid did correlate with the degree of 
anthracnose disease resistance and disease symptoms. 
The relationship of disease symptom and level of salicylic 
acid occurs when the elicitor treatment could change and 
increase level of salicylic acid because it is the important 
process of signaling that induces resistance process in 
plant. The finding from this study sheds new light on the 
interaction of grapevine with active-elicitor such as 
chitosan and BTH. Our findings do have important 
implications for the use of chitosan and BTH as active-
elicitors for the new strategy of controlling grapevine 
disease in Thailand. 
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