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optimize their production (Mullai et al., 2010). 

Microorganisms are the most common source of 
industrial enzymes due to their broad biochemical diversity 
and feasibility of large scale production. Xylanases have 
been reported mainly from bacteria (Anuradha et al., 
2007; Dhiman et al., 2008), fungi (Nair et al., 2008), 
actinomycetes (Techapun et al., 2002; Ninawe et al., 
2006) and yeast (Passoth and Hahn-Hägerdal, 2000). 

Although several thermophilic micro-organisms have been 
isolated and exploited for enzymes production and 
characterization, there is still a need for novel strains 
capable of producing enhanced levels of enzyme in an 
economically feasible culture system.  

The fermentation performance of microorganism is 
significantly affected by culture conditions and medium 
constituents such as: carbon source, nitrogen source, 
inducer, inoculum size, pH of the media, incubation 
temperature and agitation rate (Kuhad et al., 1993). For 
the commercial realization and economic viability of 
xylanase production, it is necessary to optimize cultural 
conditions of microorganisms so that higher enzyme 
production could be obtained. The objectives of present 
work were to exploit Bacillus megaterium for hyper 
xylanase production from low cost carbon source such as 
fruit waste and to optimize the fermentation profile of 
xylanase producing strain.  
 
 
MATERIALS AND METHODS 
 
Microorganisms  
 
The bacterial strains were collected from Department of Microbiology, 
University of Baghdad, Baghdad, Iraq and the micro-organisms 
were grown under laboratory conditions. Escherichia coli, Bacillus 
subtilis, Bacillus megaterium and Bacillus cereus capable of 
xylanase production were used in this study. The microorganisms 
were maintained on nutrient agar medium containing glucose 20 
g/L, peptone 10 g/L and agar 20 g/L (Qureshi et al., 2012). 
 
 
Fermentation medium 
 
It was composed of (g/L) glucose 20, peptone 10, magnesium 
sulphate 2, ammonium nitrate 1 and sodium dihydrogen phosphate 
2. 50 ml of culture medium was taken in a 250 ml Erlenmeyer flask 
with an initial pH maintained at 6.0. Flasks were cotton plugged and 
autoclaved at 1.5 kg/cm2 for 20 min. 5.0 ml of Bacillus megaterium 
seed culture was inoculated in each flask. The flasks were incu-
bated at 37± 2°C. The samples were collected with regular interval 
for analyzing growth (OD), residual sugars and xylanase activity. 5 
g of fruit wastes were treated with 95 ml (1.0%) diluted H2SO4 and 
kept in autoclave at 115°C for 1 h. After 1 h supernatant was 
separated and used as source of fermentable sugars for microbial 
growth and enzyme production. 
 
 
Optimization of fermentation condition 
 
The parameters that strongly influence the xylanase production 
such as: incubation time; carbon and nitrogen sources, inducer, pH 
and temperature were optimized in the present study. Time course 

 
 
 
 
of fermentation (12-84 h), 5.0% different carbon sources (orange 
peel, banana peel mango peel, apple pulp, and oilcake were 
hydrolyzed with 1.0% H2SO4) instead of pure glucose,  several 
organic and inorganic compounds separately and in combination 
(tryptone, ammonium chloride, potassium nitrate, sodium nitrate, 
yeast extract and corn steep liquor) as nitrogen source in place of 
peptone, initial pH (4.5-10) and fermentation temperature (30 to 
65°C) were optimized in terms of maximum xylanase production. 
 
 
Assay of xylanase activity 
 
Xylanase activity was determined by mixing 0.5 ml sample (broth) 
with 0.5 ml of oat to xylan (Fluka, Germany) (1% w/v) in 50 mM 
citrate buffer (pH 5.3) at 60°C for 15 min (Bailey et al., 1992). 
Xylose standard curve was used to calculate the xylanase activity. 
In the assay, the release of reducing sugars was measured using 
the dinitrosalicylic acid reagent method (Miller, 1959).  

One international unit of enzyme activity was defined as the 
amount of enzyme, releasing 1 mol of reducing group per minute 
per mille. 
 
 
RESULTS 
 
In order to attain maximum xylanase production, fermen-
tation parameters such as nutritional (carbon and 
nitrogen source and inducer) and physiological (incu-
bation time, size of inoculum, pH, temperature) were 
optimized. The xylanase production by B. megaterium  
BRL-0101 was highest (2876 IU/mL) under the optimized 
conditions, that is, peptone 0.25%, yeast extract 0.50%, 
sodium nitrate 0.25%, mango peel 10.0%, pH 8.0, 
temperature 50°C, incubation time 48 h, agitation rate 
150 rpm and using 10.0% (v/v) inoculum. Figure 1 shows 
the xylanase production from different bacterial species 
such as B. subtilis, E. coli, B. cereus and B. megaterium. 
B. megaterium produced better xylanase titer among the 
tested organisms. The effect of different fruit waste such 
as banana peel, mango peel, orange peel and apple peel 
and oilcake as carbon source were observed on enzyme 
production. The B. megaterium BRL-0101 showed 167 
IU/mL xylanase activity with 10% mango peel as carbon 
source. The enzyme titer in the presence of other carbon 
sources such as; banana peel, mango peel, apple peel 
and oilcake was much lower as compared to mango peel 
(Figure 2). Xylanase production was found to vary with 
change in the concentration of mango peel as sole 
carbon source. The enzyme activity was measured in the 
presence of 1-10.0% (v/v) mango peel. Xylanase produc-
tion was found to be highest with 10.0% (w/v) mango 
peel for B. megaterium BRL-0101 (Figure 3).  

Figure 4 shows the time profile of xylanase production, 
bacterial growth and residual sugars. The highest 
xylanase activity of B. megaterium BRL-0101 (532 IU/mL) 
was observed after 48 h of incubation but decreased 
thereafter (Figure 4). The xylanase production show 
strong correlation with growth, the maximum growth was 
observed at 24 h and enzyme titer after 48 h. Effect of 
inoculum size (1-10%) on xylanase activity of B. 
megaterium  was  tested.  Xylanase production increased  
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Figure 1. Xylanase production from different bacterial species using glucose as 
carbon source after 24 h incubation at 37°C, initial pH 6.0. 

 
 
 

 
 
Figure 2. Effect of the carbon source (50 g/L initial concentration) on biomass 
concentration, xylanase activity and residual reducing sugar level at 24 h of 
fermentation (37°C, initial pH of 6.0).  

 
 
 
with the increasing inoculum size. The highest xylanase 
activity was noted by using 10% inoculum (743 IU/ml), 
results are demonstrated in Figure 5. The effects of initial 
pH of fermentation on enzyme production and microbial 
growth are shown in Figure 6. The fermentations in 
Figure 6 were conducted for 48 h in a mineral medium 
that contained mango peel (10% initial concentration) 
yeast extract (5 g/L initial concentration) and peptone (2.5 
g/L initial concentration). Clearly, the optimal initial pH for 
xylanase production and growth of B. megaterium was at 
pH 8.0 (Figure 6).  

The effect of fermentation temperature on production of 
biomass and xylanase activity is shown in Figure 7. 

Clearly, 50°C was the best fermentation temperature for 
xylanase activity whereas maximum growth was observed 
at 45°C, further increase in temperature decreased the 
xylanase activity and growth which might be due to 
denaturation of enzyme at high temperature. Temperature 
is one of the important factors, which affects normal 
functioning of microorganism and enzyme production. 

The B. megaterium BRL-0101 is a commercially available 
substrates like oat spelt xylan (1887 IU/mL induced 
xylanase production; Figure 8). Xylan induced enzyme 
production at large extent, it is well known that xylan from 
various sources, are excellent inductors for xylanase 
production. Xylanase production was measured in the 
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Figure 5. Effect of inoculum size on xylanase production, growth and 
residual reducing sugar level at 48 h of fermentation (37°C, initial pH of 6.0) 
in a mango peel (10% initial concentration) mineral medium. 

 
 
 

 
 
Figure 6. Effect of initial pH on xylanase production, biomass growth and 
residual sugar concentration at 48 h of fermentation (37°C) in a mineral 
medium containing mango peel and at initial concentration of 10%.  

 
 
 
waste materials as carbon source. Agricultural wastes 
are abundant, cheap and inexhaustible substrates for 
value added products formation (Nagar et al., 2012). 
Carbon source is one of the essential constituents of the 
microbial growth and fermentation medium which signi-
ficantly affects the overall cellular growth and meta-
bolism. Mango peel, inexpensive agricultural residue; 
would affect the cost of the enzyme production directly. 

The use of pure sugars is uneconomical for xylanase 
production at large scale, while agricultural wastes are 
cost effective substrate for xylanase production (Ninawe 
and Kuhad, 2005). Xylanase activity increased with the 
passage of time to certain extent and prolonged incubation 
decreased xylanase titer. The reduction in the xylanase 
activity with the time of incubation might be due to 
reduction  of  nutrients,  proteolysis and  or change of pH  
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Figure 7. Effect of fermentation temperature on xylanase production, biomass 
concentration and residual sugar concentration at 48 h. The medium initially 
contained 10% mango peel. The initial pH was 8.0.  

 
 
 

 
 
Figure 8. Effect of xylan as inducer on xylanase activity.  

 
 
 
because of organic acids formation (Flores et al., 1997). 
B. amyloliquefaciens produced maximum xylanase activity 
in the culture broth after 48 h of incubation (Lincoln, 
1960). Streptomyces Sp RCK-2010 secreted highest 
xylanase activity after 48 h by using wheat bran as 
carbon source (Kumar et al., 2012). Bacillus SSP-34 
produced maximum xylanase activity (380 IU/mL) when 
grown for 96 h (Subramaniyan and Prema, 2000). In 
contrast to bacteria, fungi take more time such as 
Trichoderma reesei SAF3 produced maximum xylanase 
after 72 h of growth at 30°C under submerged conditions 
(Kar et al., 2006). Many researchers have reported hyper 
xylanases production from 1.0-5.0% (v/v) inoculum 
(Nagar et al., 2010; Battan et al., 2007; Kar et al., 2006). 

Low inoculum size is preferred for the synthesis of micro-
bial products at commercial scale due to economical 
concerns (Lincoln, 1960). Higher inoculum size may 
increase moisture content and lead to decrease in growth 
and enzyme production, in the case of reduced inoculum 
size, desired production will take longer time (Baysal et 
al., 2003; Kashyap et al., 2002; Farga et al., 2009) an 
appropriate inoculum and nutrients could produce 
maximum product. In addition to this, the use of 10 % 
inoculum size for maximum xylanase production by 
Bacillus sp NCIM 59 has been reported (Kulkarni and 
Rao, 1996).  

The genes involved in the production of certain 
enzymes  in  at  least some microorganisms are known to  
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