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Figure 3. The effect of carbon sources on glucanase enzyme induction. 

 
 
 
sources and properties (optimal pH and temperature) of 
EG must be  investigated (Naika et al., 2007).  
 
 
Glucanase enzyme production 
 
Trichoderma sp. previously isolated from the different 
states of Uttar Pradesh were cultivated on Czapek Dox 
Medium containing CMC and wood dust as sole carbon 
source (1%) (Figure 3). Cultures were incubated for 10-
14 days on orbital shaker at 150 rpm. At the end of the 
incubation time contents of conical flasks were filtered 
and the filtrate was centrifuged at 5000 rpm for 10 min. 
The clear supernatant was considered as the source of 
crude enzymes. The clear supernatant used as a source 
of crude enzyme was purified by the slow addition of 
Ammonium Persulfate with continuous stirring till 80% 
saturation. The obtained precipitate was dissolved in 
citrate phosphate buffer pH 5.0 and used for enzyme 
activity determination (Pandey et al., 2014). 
 
 
Chitinase enzyme 
 
Trichoderma are well known producer of chitinolytic 
enzymes and used commercially as a source of these 
proteins. Due to the importance of chitinolytic enzymes in 
insect, nematode, and fungal growth and development, 
they are receiving attention in regard to their deve-
lopment as biopesticides or chemical defense proteins in 
transgenic plants and microbial biocontrol agents. In this 
sense, biological control of some soil-borne fungal 
diseases has been correlated with chitinase production. 

Fungi and bacteria producing chitinases exhibit 
antagonism against fungi, and inhibition of fungal growth 
by plant chitinases has been demonstrated. Insect 
pathogenic fungi have considerable potential for the 
biological control of insect pests. 

Chitin, a homopolymer of β-(1, 4)-N-acetylglucosamine 
(GlcNAc) is the second most abundant source of 
nutrients and energy after cellulose (Agrawal and 
Kotasthane, 2012; Lorito et al., 2004; Tronsmo, 1991; 
Dincer and Telefoncu, 2006). It is widely distributed in the 
nature as the integuments of insects and crustaceans 
and as a component of fungi and algae (Baek et al., 
1999; Hjeljord and Tronsmo, 1998). Chitinases are a 
group of enzymes that decompose chitin into a variety of 
products that include the deacylated oligomer chitosan, 
the disaccharide chitobiose and the monomer N-acetyl 
glucosamine (Dincer and Telefoncu, 2006; Pandey et al., 
2014). The present study was aimed for screening the 
different Trichoderma species to select potent isolate, 
production and purification of chitinase followed by 
determination of its molecular weight (Saraswathi and 
Jaya, 2014). 

For the evaluation of chitinases activity, two different 
insoluble chitin sources (colloidal chitin derived from 
commercial chitin and Seashells) were used. Chitinase 
detection medium consisted of a basal medium 
comprising (per liter) 0.3 g of MgSO4.7H2O, 3.0 g of 
(NH4)2SO4, 2.0 g of KH2PO4, 1.0 g of citric acid 
monohydrate, 15 g of agar, 200 μl of Tween-80, 4.5 g of 
chitin source and 0.15 g of bromocresol purple; pH used 
was adjusted to 4.7. Lukewarm medium was poured in 
Petri plates and allowed to solidify. Fresh culture plugs of 
the isolates to be tested for  chitinase activity were inocu- 
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lated on the medium and incubated at 25±2°C and were 
observed for colored zone formation (Agrawal and 
Kotasthane, 2012). In our study, it was found that during 
the study the colloidal chitin derived from the commercial 
chitin was more potent in inducing chitinase enzyme 
activity as compared to the colloidal chitin derived from 
the sea- shells. 
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