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This study aimed to assess antimicrobial susceptibility of members of the family Flavobacteriaceae 
isolated from Nile tilapia (Oreochromis niloticus). Antimicrobial susceptibility of 67 Flavobacteriaceae 
isolates originating mainly from ponds and Lake Victoria against 19 antimicrobial agents was 
determined by the broth micro dilution method. Overall, most isolates were susceptible to enrofloxacin 
(97%; MIC90 2 μg/ml) followed by novobiocin (85%, MIC90, 4 μg/ml) and the aminoglycoside streptomycin 
(85%; MIC90, 128 μg/ml). Some isolates were also susceptible towards trimethoprim/sulfamethoxazole 
(77.6%), neomycin and florfenicol both at 62.7%. Susceptibility levels were low for tylosin tartrate 
(32.8%), clindamycin and sulphathiazole both at (23.9%), ceftiofur (6%), spectinomycin (6%) and 
tetracyclines/oxtetracyclines (4.5%). In contrast, β-Lactams (amoxicillin, penicillin), gentamycin and 
erythromycin exhibited very poor activity against Flavobacteriaceae isolates. The extent of antimicrobial 
susceptibility did not vary significantly among isolates from farmed and wild fish isolates (P > 0.01). The 
highest Multiple Antimicrobial Resistance (MAR) index was observed in Chryseobacterium indologenes 
(0.89) and the lowest in Chaetoderma indicum isolates (0.32). Our results indicate that most of 
Flavobacteriaceae isolates are multidrug resistance, and this may be associated with intrinsic 
resistance mechanisms to a broad range of antimicrobial agents. However, the need remains to 
carryout in-depth study to understand better the underlying genetic mechanisms given that the 
magnitude and trend for susceptibility was comparable between isolates from aquaculture and 
fisheries. The findings from this study give us insight into appropriate choice of antimicrobial agents 
for effective treatment of infections caused by these isolates. 
 

Key words: Aquaculture, Fisheries, Intrinsic resistance, minimum inhibitory concentrations, ponds, Lake 
Victoria. 

 
 

INTRODUCTION 
 

The genera Flavobacterium and Chryseobacterium 
belong to the family Flavobacteriaceae and are widely 
distributed   in   various    environments,    including   soil, 

freshwater and saltwater ecosystems (Kumru et al., 2017; 
McBride, 2014). Several species within the 
Flavobacteriaceae    are     regarded     as    opportunistic  



 
 
 
 
pathogens, yet with potential to cause diseases in a wide 
variety of organisms, including plants, fish and humans 
(Bernardet and Bowman, 2011; Bernardet and Nakagawa, 
2006; Loch and Faisal, 2015). Typically, many of these 
bacteria cause diseases in fish when water temperatures 
are relatively high. Excessive organic matter in ponds 
and high stocking density are among other contributing 
factors to diseases that consequently lead to economic 
losses (Loch et al., 2013). In addition, these bacteria 
have also been associated with nosocomial infections 
and septicaemia in humans (Loch et al., 2013; 
Ratnamani, 2013). 

Fish farming has grown worldwide as a source of high 
quality protein and employment to skilled and unskilled 
workers. In Tanzania, aquaculture is dominated by pond 
culture of Nile tilapia (Oreochromis niloticus). As 
aquaculture has developed, a range of bacterial diseases 
have been encountered (Pathmalal et al., 2018). These 
diseases are considered as critical limiting factors in this 
industry, where studies have been conducted and efforts 
has been given to therapeutic and prophylactic use of 
antimicrobial agents as control measures of bacterial 
diseases (Cabello et al., 2006). Many European countries 
are governed by legislation and regulation on the use of 
antimicrobial agents in aquaculture (Cabello et al., 2013). 
However, guidelines for the correct and prudent use of 
antimicrobial agents in aquaculture have yet to be 
developed in most of the African countries. There is no 
list of licensed antimicrobials for use in aquaculture in 
Tanzania. Previous work has shown that extensive use of 
antimicrobials in aquaculture leads to resistance across 
the entire microbial water ecosystem (Schmidt et al., 
2000, Watts et al., 2017). In the family Flavobacteriaceae, 
some antimicrobial resistance has been associated with 
the presence of plasmids or mutations in specific 
resistance determinants (Izumi et al., 2004, Madsen et 
al., 2000). However, other studies have associated 
antimicrobial resistance in Flavobacteriaceae with intrinsic 
resistance to a wide range of antimicrobial agents 
through mechanisms like restricted outer membrane 
permeability, efflux systems that pump antimicrobials out 
of the cell and production of antimicrobial-inactivating 
enzymes such as β-lactamases (Clark et al., 2009; 
Henríquez-Núñez et al., 2012; Michel et al., 2005).  

The occurrence of resistant bacteria to one or more 
antimicrobials have been reported not only in pathogenic 
fish bacteria but also among opportunistic bacteria, even 
in the absence of selective antimicrobial pressure in the 
aquaculture environment (Gufe et al., 2019; Jensen et al., 
2008). In Tanzania, the nutritional benefits of fish 
consumption have a positive link to increased food 
security, and the aquaculture sector has  the  potential  to  
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play a significant role in this aspect. However, a 
sustainable fish production has to be secured, including 
the development of control measures to reduce the 
spread of resistant bacteria in the aquaculture 
environments. As very few data are currently available, 
the aim of this study was to assess the antimicrobial 
susceptibility of Flavobacteriaceae isolates from Nile 
tilapia sampled directly from fish farms as well as natural 
lacustrine environment in Tanzania. Findings from this 
study would contribute to our understanding of 
antimicrobial susceptibility in the Flavobacteriaceae; 
provide basic knowledge needed in implementation of 
biosecurity measures in fish farming and give a 
background to treatment of farmed fish if necessary. 
 
 

MATERIALS AND METHODS 
 
Bacterial isolates from Tanzania 
 
A total of 67 Flavobacteriaceae isolates previously recovered from 
40 Nile tilapia farmed in the Morogoro region, and from batch of 21 
wild Nile tilapia collected from natural environment in Lake Victoria 
in Mwanza region. Apparently healthy fish were sampled between 
November 2015 and May 2016, isolation and identification of the 
bacteria were performed as previously described in our earlier work 
(Mwega et al., 2018). Briefly, all isolates were grown on modified 
Anacker and Ordal agar - AOA (Pilarski et al., 2008). Identification 
of isolates based on colony morphology and biochemical testing, 
and was confirmed by 16S rRNA gene sequencing (Darwish et al., 
2004). All isolates used in this study were designated with the 
organism code based on sampling location as shown in Table 3. 
 
 
Antimicrobial susceptibility tests 
 

Antimicrobial susceptibility to 19 antimicrobials commonly used in 
veterinary medicine and aquaculture in most developed countries 
was assessed for all isolates using Trek Sensititre Avian 
susceptibility plates (Trek Diagnostic Systems, Cleveland, OH) as 
shown in Table 1. These test plates were 96-well, dry-form that 
contained twofold serial dilutions of the antimicrobial agents listed in 
Table 1. Briefly, ten microliters of the bacteria suspension were 
transferred into a tube containing 11 ml of Sensititre MH broth to 
give an inoculum of 1×105 CFU/ml. The broth was poured into a 
sterile seed trough and individual wells inoculated with 50 μl using a 
multi-channel pipette. Inoculated plates were sealed and incubated 
aerobically ATCC 25922 and Aeromonas salmonicida NCIMB 1102 
were also included in parallel in all testing. 
 
 
Data management and analysis 
 

In the absence of published resistance breakpoints for 
Flavobacteriaceae, quantitative interpretation of minimum inhibition 
concentration (MIC) results was based on CLSI guidelines (CLSI, 
2014) with the minor modifications as previously recommended 
(Akinbowale et al., 2006). Minimum inhibition concentration was 
recorded as  the  lowest concentration of antimicrobial that inhibited 
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Table 1. Antimicrobial susceptibility of Flavobacteriaceae isolates (N = 67) to a spectrum of 19 antimicrobial agents.  
 

Classes 
Antimicrobial 

agents 
Range (μg/ml) MIC50 MIC90 

n (%) of  susceptible 

isolates 

β-Lactams 

Amoxicillin 0.25-16 > 16 >16 0.00 

Penicillin 0.06-8 > 8 > 8 0.00 

Ceftiofur  0.25-4 4 > 4 4 (6%) 
      

Aminoglycosides 

Gentamicin 0.5-8 > 8 > 8 0.00 

Spectinomycin 8.0 - 64 8 > 64 4 (6%) 

Streptomycin 8-1024 32 128 57 (85%) 

Neomycin 2.0 - 32 16 > 32 42 (62.6%) 
      

Sulfonamides 

SXT 0.5/9.5–2/38 < 0.5/9.5 1.0/19 52 (77.6%) 

Sulphathiazole 32-256 128 > 256 16 (23.9%) 

Sulphadimethoxine 32-256 > 256 > 256 0.00 
      

Tetracyclines 
Tetracycline 0.25-8 1 > 8 3 (4.5%) 

Oxytetracycline 0.25-8 1 > 8 3 (4.5%) 
      

Macrolides 
Tylosin tartrate 2.5 - 20 5 > 20 22 (32.8%) 

Erythromycin 0.12-4 > 4 > 4 0.00 
      

Fluoroquinolones Enrofloxacin 0.12-2 0.25 1 65 (97%) 

Phenicols Florfenicol 1.0 - 8 2 > 8 42 (62.7%) 

Coumarins Novobiocin 0.5-4 < 1 4 57 (85%) 

Lincomycins Clindamycin 0.5- 4 2 > 4 16 (23.9%) 
 

SXT – Trimethoprim/ sulfamethoxazole. 

 
 
 
visible growth. The MIC50 and MIC90 represent the MIC value at 
which ≥ 50% and ≥ 90% of the isolates were inhibited respectively. 
A multiple antimicrobial resistance (MAR) index was then 
determined for each isolate by dividing the number of antimicrobials 
to which an isolate was resistant with the total number of 
antimicrobials tested. The MAR index analysis was used to group 
the different sources from which the bacteria were recovered using 
the frequency of antimicrobial resistance. Isolates with MAR index < 
0.2 were considered as isolates recovered from low-risk sources of 
contamination while isolates with MAR index > 0.2 were considered 
recovered from high- risk sources (Samuel et al., 2011; Tambekar 
et al., 2006). 

 
 
RESULTS 
 

Antimicrobial susceptibility of Flavobacteriaceae 
isolates 
 
The in vitro activities of the 19 antimicrobial agents tested 
against the Flavobacteriaceae isolates are summarized in 
Table 1, showing both the MIC range and the MIC50 and 
MIC90 results of all isolates, as well as the number and 
percentage of susceptible isolates. Figure 1 shows the 
MIC distribution of the isolates towards streptomycin, 
enrofloxacin, novobiocin and trimethoprim/ 
sulfamethoxazole. Among 67 isolates  tested,  97%  were 

susceptible to enrofloxacin (MIC50, 0.12 μg/ml, MIC90 2 
μg/ml). Novobiocin (MIC90, 4 μg/ml) and streptomycin 
(MIC90, 128 μg/ml) inhibited 85% of the isolates at the 
susceptible breakpoints. Moderate susceptibility (60 - 
80%) was observed to trimethoprim/ sulfamethoxazole 
77.6%, neomycin and florfenicol both at 62.7% of overall 
isolates. Extent of susceptibility was low (less than 50 - 
60%) for tylosin tartrate (32.8%), clindamycin and 
sulphathiazole both at (23.9%). The susceptibility levels 
were very low (less than 10%) to ceftiofur (6%), 
spectinomycin (6%) and tetracyclines/ oxtetracyclines 
(4.5%). In contrast, 0% overall susceptibility was 
exihibited for β-Lactams (amoxicillin, penicillin), 
gentamycin and erythromycin against Flavobacteriaceae 
isolates at the given susceptible breakpoints (Table 1). 
MIC values of control strains were within the acceptable 
range (CLSI, 2014)(Figure 1). 
 
 

Antimicrobial susceptibility of Flavobacteriaceae 
isolates according to the sampling groups 
 

The in vitro activity of the antimicrobial agents was also 
evaluated based on farmed and wild fish and sampling 
regions. Generally, susceptibility levels among isolates 
did not vary  significantly  between  neither farmed versus  
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Figure 1. Distributions of Minimum Inhibitory Concentrations (MICs) values of the antimicrobial agent’s streptomycin, 
enrofloxacin, novobiocin, trimethoprim and sulfamethoxazole for susceptible Flavobacteriaceae isolates. 

 
 
 
wild fish nor sampling region. One observation was, 
however, that while none of the isolates from wild fish 
were susceptible to ceftiofur and tetracycline/ 
oxytetracycline, respectively three and four isolates from 
farmed fish were susceptible to these antimicrobials 
(Table 2). 
 
 
Multiple antimicrobial resistance (MAR) index 
 
Overall antimicrobial susceptibility pattern of each isolate 
is also summarized in Table 3. The susceptibility patterns 
varied within groups of isolates from the same site or 
sample, and also within the same species. Most of the C. 
indologenes isolates showed low susceptibility up to 17 of 
the 19 antimicrobials tested, which was the highest 
degree of multi-resistance observed in this study 
regardless of sample origin. The lowest level of 
resistance was observed in F. indicum, which was 
sensitive to 6 of 19 antimicrobials tested. Moreover, C. 
indologenes and C. joostei, which were isolated from 
almost all the sampling sites/fish, showed a broader 
range of MAR indexes. The highest MAR index was 0.89 
observed in C. indologenes and the lowest was 0.32 
observed in C. indicum isolates, indicating that none of 
the sampling sites could be characterized as low-risk 
sources of contamination. Comparison of the different 
culture system showed that all isolates recovered from 
wild and farmed Nile tilapia revealed multiple resistance 
to all antimicrobials tested.  

DISCUSSION 
 
Antimicrobial resistance has become a global health 
threat involving the environmental, animal and human 
sectors. Knowledge of antimicrobial susceptibility and 
resistance patterns in microbes from many biological 
compartments is important to understand the 
development and transmission of resistance within and 
between bacterial reservoirs as well as identifying 
treatment alternatives against specific infections. In this 
study, we report data on antimicrobial susceptibility of 
Flavobacteriaceae isolated from wild and farmed Nile 
tilapia in Tanzania. Our results show variable antimicrobial 
susceptibility patterns against 19 antimicrobial agents 
commonly used in veterinary medicine and aquaculture 
in most developed countries. 

This is in concordance with previous studies showing 
that Flavobacteriaceae isolates are able to grow in high 
concentrations of several antimicrobial agents, suggesting 
the presence of intrinsic or acquired resistance 
mechanisms, resulting in reduced susceptibility to multiple 
antimicrobial agents (Akinbowale et al., 2006, Clark et al., 
2009, Henríquez-Núñez et al., 2012, Hesami et al., 2010). 

All isolates were resistant to the β-lactams amoxicillin 
and penicillin, to the aminoglycoside gentamycin, the 
macrolide erythromycin and to sulfadimethoxine. 
Resistance to β-lactams was expected as the commonly 
chromosomally encoded Amber Class B and other β-
lactamase enzymes have been previously broadly 
recognized  in  Flavobacteriaceae (Bellais   et  al., 2002b,  
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Table 2. In vitro activities of selected antimicrobials against Flavobacteriaceae isolates according to the culture system. 
 

 Classes 
Antimicrobial 

agent 

Farmed fish isolates 

(N=44) 

Wild fish isolates 
(N=23) 

  
Susceptible isolates Susceptible isolates 

    n (%) n (%) 

β-Lactams 

Amoxicillin 0 (0) 0 (0) 

Penicillin 0 (0) 0 (0) 

Ceftiofur  4 (9.1) 0 (0) 

    

Aminoglycosides 

Gentamicin 0 (0) 0 (0) 

Spectinomycin 3 (6.8) 1 (4.3) 

Streptomycin 37 (84.1) 20 (87) 

Neomycin 29 (65.9) 13 (56.5) 

    

Sulfonamides 

SXT 33 (75) 19 (82.3) 

Sulphathiazole 13 (29.5) 3 (13) 

Sulphadimethoxine 0 (0) 0 (0) 

    

Tetracyclines 
Tetracycline 3 (6.8) 0 (0) 

Oxytetracycline 3 (6.8) 0 (0) 

    

Macrolides 
Tylosin tartrate 19 (43.2) 3 (13) 

Erythromycin 0 (0) 0 (0) 

Fluoroquinolones Enrofloxacin 43 (97.7) 22 (95.7) 

Phenicols Florfenicol 32 (73) 13 (56.5) 

Coumarins Novobiocin 38 (86.4) 19 (82.6) 

Lincomycins Clindamycin 13 (29.5) 3 (13) 

 
 
 
Bellais et al., 2002a; Gonzalez and Vila, 2012). 
Resistance to erythromycin is also consistent with 
previous studies, in which MICs of > 32 μg/ml have been 
reported amongst Flavobacteriaceae (Clark et al., 2009, 
Darwish et al, 2008, Declercq et al., 2013). In contrast to 
the present investigation, a previous study reported 100 
% susceptibility (MIC90 >8μg/ml) to gentamycin in 
Flavobacterium columnare isolates collected worldwide 
from 17 fish species (Declercq et al., 2013). 

Most (97%) Flavobacteriaceae isolates were 
susceptible to fluoroquinolone enrofloxacin. The variable 
levels of susceptibility found for streptomycin, novobiocin 
and sulfamethoxazole/ trimethoprim tested in this study, 
suggest that they may be useful for treatment of 
infections caused by some strains. However, sensitivity 
testing should be performed against the actual disease 
strain before any of these antimicrobials are considered 
for use. Variation in antimicrobial susceptibility amongst 
Flavobacteriaceae and other fish bacteria have been 
reported elsewhere (Akinbowale et al., 2006, Schmidt et 
al., 2000). In general, Flavobacteriaceae are recognized 
as intrinsically resistant to several antimicrobial agents, 
and only a few specific transferable resistance 
determinants known from other bacterial genera have 
been identified. Several  genes  coding  for  efflux  pumps 

have been associated with intrinsic resistance in 
Flavobacteriaceae isolates. For example, previous study 
investigated genome sequence of Flavobacterium 
johnsoniae and revealed presence of chloramphenicol 
inducible multidrug efflux pump system of RND family 
(Clark et al., 2009, Henríquez-Núñez, 2012, Michel et al., 
2005). In addition, the low susceptibility of 
Flavobacteriaceae to florfenicol has been associated with 
expression of multidrug efflux pumps (Michel et al., 
2005). Moreover, it has been demonstrated that efflux 
pumps are important for other processes such as 
detoxification of intracellular metabolites, bacterial 
virulence, cell homeostasis and intercellular signal 
trafficking (Martinez et al., 2009; Pasqua et al., 2019). 

Most isolates in the present study were inhibited by low 
concentrations of florfenicol, but since 37% were able to 
grow in higher florfenicol concentrations, the presence of 
acquired resistance mechanisms cannot be ruled out. 
The banning of use of phenicol, due to its adverse effect 
in humans, has probably aided in reducing the risk of 
acquired resistance in aquaculture environments 
(Akinbowale et al., 2006; Tsai et al., 2019). However, 
other studies have insisted that monitoring resistance of 
florfenicol is of great importance as it is the main 
antimicrobial  agent used to treat infections caused by  
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Table 3. MAR index of the Flavobacteriaceae isolates (N = 67). 
  

Isolates Species 
Culture  

system 

Year of 

isolation 

Number of antibiotics (N = 19)  to 
which isolate was resistant 

MAR 
index 

MZ9L C. joostei    Wild Nov 2015 11 0.57 

MZ81GL C. joostei    Wild Nov 2015 12 0.63 

MZ84GL C. joostei    Wild Nov 2015 11 0.57 

MZ18L C. joostei    Wild Nov 2015 10 0.53 

MZ32L C. joostei    Wild Nov 2015 13 0.68 

MZ26GL C. joostei    Wild Nov 2015 15 0.78 

MZ3L C. joostei  Wild Nov 2015 14 0.74 

MZ20KDS C. indologenes  Wild Nov 2015 12 0.63 

MZ60L C. indologenes Wild Nov 2015 15 0.79 

MZ4GL C. indologenes Wild Nov 2015 12 0.63 

MZ12GL C. indologenes  Wild Nov 2015 15 0.79 

MZ13GL C. indologenes Wild Nov 2015 15 0.79 

MZ52GL C. indologenes Wild Nov 2015 15 0.79 

MZ50GL C. indologenes Wild Nov 2015 11 0.58 

MZ83GL C. indologenes Wild Nov 2015 10 0.53 

MZ60KDS C. indologenes Wild Nov 2015 13 0.68 

MZ31GL C. indologenes Wild Nov 2015 13 0.68 

MZ119L C. indologenes Wild Nov 2015 14 0.74 

MZ32GL C. indologenes Wild Nov 2015 13 0.68 

MK8GL C. indologenes Wild Nov 2015 14 0.74 

MZ14GL C. species Wild Nov 2015 12 0.63 

MZ2GL C. species Wild Nov 2015 14 0.74 

MZ10L C. species Wild Nov 2015 14 0.74 

MGL22L F. aquatile Farmed Apr 2016 10 0.53 

TNM16GL F. aquatile Farmed May 2016 10 0.53 

DKM2GL F. aquatile Farmed Febr 2016 12 0.63 

DKM13GL C. species Farmed Febr 2016 11 0.58 

TNM37KDS F. oryzae Farmed May 2016 11 0.57 

MGL48GL F. oryzae Farmed Apr 2016 10 0.53 

DKM17KDS F. indicum        Farmed Febr 2016 6 0.32 

MGL37KDS F. indicum        Farmed Apr 2016 9 0.47 

TNM8GL F. indicum        Farmed May 2016 11 0.57 

MK27KDS C. joostei  Farmed Febr 2016 8 0.42 

MK49GL C. joostei    Farmed Febr 2016 9 0.47 

MGL50L C. joostei    Farmed Apr 2016 8 0.42 

DKM11L C. joostei    Farmed Febr 2016 9 0.47 

MK45GL C. joostei    Farmed Febr 2016 11 0.58 

DKM8GL C. joostei    Farmed Febr 2016 12 0.63 

DKM3GL C. joostei    Farmed Febr 2016 9 0.47 

MGL28GL C. joostei    Farmed Apr 2016 13 0.68 

MGL53L C. joostei    Farmed Apr 2016 12 0.63 

MK40GL C. indologenes Farmed Febr 2016 13 0.68 

TNM34KDS C. indologenes  Farmed May 2016 17 0.89 

MGL24GL C. indologenes Farmed Apr 2016 17 0.89 

MGL31GL C. indologenes Farmed Apr 2016 15 0.79 

DKM5L C. indologenes Farmed Febr 2016 12 0.63 

MGL54GL C. indologenes Farmed Apr 2016 11 0.58 

TNM13KDS C. indologenes Farmed May 2016 15 0.79 

MK45L C. indologenes Farmed Febr 2016 12 0.63 

MK5GL C. indologenes Farmed Febr 2016 13 0.68 
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Table 3. Contd. 
 

DKM12L C. indologenes Farmed Febr 2016 12 0.63 

DKM8L C. indologenes Farmed Febr 2016 10 0.52 

DKM11GL C. indologenes Farmed Febr 2016 16 0.84 

MGL22L C. indologenes Farmed Apr 2016 16 0.84 

TNM21GL C. species Farmed May 2016 15 0.79 

TNM34L C. species Farmed May 2016 12 0.63 

MGL8GL C. species Farmed Apr 2016 11 0.58 

TNM14GL C. species Farmed May 2016 12 0.63 

MGL57GL C. species Farmed Apr 2016 12 0.63 

MGL26L C. species Farmed Apr 2016 12 0.63 

TNM17L C. species Farmed May 2016 12 0.63 

TNM34L C. species Farmed May 2016 13 0.68 

TNM19GL C. species Farmed May 2016 13 0.68 

TNM40GL C. species Farmed May 2016 13 0.68 

TNM33L C. species Farmed May 2016 13 0.68 

TNM10GL C. species Farmed May 2016 12 0.63 

DKM13L C. species Farmed Febr 2016 10 0.53 
 

Note: isolate code MGL: Mgeta Langali, TNM: Tangeni, DKM: Dakawa, MK: Mkindo, MZ: Mwanza, GL: Gills, KDS: Kidney, L: Liver, C: 
Chryseobacterium and F: Flavobacterium.  

 
 
 

Flavobacteriaceae (Verner-Jeffreys et al., 2015). 
Unfortunately, no information regarding the use of 
florfenicol or other phenicol compounds was available in 
the sampling areas. 

Tetracycline and/or oxytetracycline have been 
frequently used in fish farming, particularly to control 
systemic bacterial infections of fish in most developed 
countries (Miranda et al., 2018; Jerbi et al., 2011), and it 
has been found that the continued and widespread use of 
tetracycline has led to the development of resistant 
bacteria in all aspects of fish farming (Higuera-Llantén et 
al., 2018; Mirand and Zemelman, 2002). This study 
revealed low susceptibility to tetracycline and/or 
oxytetracycline, with MIC ranges of 0.25 - 8 μg/ml. Other 
workers recorded considerable frequencies of tetracycline 
resistance amongst Flavobacteriaceae isolated from 
aquaculture environments and associated it with 
imprudent use of antimicrobials and acquired resistance 
(Schmidt et al., 2000). However, due to lack of information 
relating to the treatment history of the sampled fish, it is 
difficult to associate the low susceptibility observed with 
acquired resistance or imprudent use of antimicrobials. 

All Flavobacteriaceae were found with MAR index 
values greater than 0.2 in this study. Previous studies 
have shown that bacteria originating from an environment 
where several antimicrobials are used usually display 
MAR indexes greater than 0.2 (Tambekar et al., 2006). 
Thus, the fact that all MAR indexes recorded were above 
0.2 indicate that they are from the high risk source where 
antibiotics are frequently used, possibly from surrounding 
study areas. Furthermore, low susceptibility results in this 
study concur with the findings of previous studies (Clark 
et   al.,   2009),   who    found    multidrug    resistance   in 

Flavobacteria and Chryseobacterium species isolated 
from fish. Nile tilapia is the most cultured and widely 
consumed fish species in Tanzania. Lake Victoria is the 
major capture fish source in the country and also is a 
source for tilapia fingerlings to most fish farmers in 
Tanzania. The assessment of Antimicrobial resistance 
(AMR) is of great importance as dissemination of AMR 
bacteria to fish could lead to serious public health risks. 
Interviews conducted in our earlier study did not reveal a 
history of antimicrobial use in farmed fish during the 
present study (Mwega et al., 2018). Our results suggest 
that isolates from wild fish were slightly more resistant 
against the antimicrobials than the isolates from farmed 
fish. Although the difference is not significant among 
groups, this observation could be explained by the fact 
that the wild Nile tilapia was captured at the shorelines of 
Lake Victoria which makes the two environments more 
alike. Systematic data on use of antimicrobials to the 
ponds are not available in Tanzania, so we do not know 
how much and how frequent antimicrobials are used. 
Therefore, it is not possible to draw any conclusions on 
the association between antimicrobials use and the levels 
of resistance observed in the present study. 
 
 
Conclusion 
 
In this study, we have found that Flavobacteriaceae 
isolates are resistant to several antimicrobials tested. The 
ability of Flavobacteriaceae to resist multiple drugs is 
indeed was expected, as it is known that most of these 
isolates are intrinsically resistant to several classes of 
antimicrobials  and/ or  can  acquire  resistant genes from  



 
 
 
 
other environmental microbes. However, whether the 
antimicrobial resistance traits are acquired through gene 
transfer or intrinsic is not clearly elucidated at the 
moment. This can be determined by analyzing whole 
genomes of those isolates in the future. The findings from 
this study give us insight into appropriate choice of 
antimicrobial agents for effective treatment of infections 
caused by these isolates. 
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