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Salinity is one of the main environmental constraints to crop productivity worldwide.  The aim of the 
experiment was to study the role of mycorrhiza (Glomus clarum Nicol. & Schenck) in tolerance of wheat 
genotypes to salt stress in terms of growth, physiological and biochemical parameters. Wheat genotypes 
(cvs. Henta, Moaya and Samma) were grown at three levels of NaCl (0.75, 1.5 and 3 g kg

-1 
soil) with or 

without mycorrhiza. The growth and physio-biochemical characteristics of all genotypes decreased with 
increasing levels of salinity except concentration of reducing sugars, sodium and proline, and at 3 g of 
NaCl, only genotype ‘Samma’ survived and showed resistant against severe salinity. However, 
inoculation of mycorrhiza enhanced the growth and accumulation of nutrients, reducing sugars, total 
soluble carbohydrates, Chlorophyll (Chl) a and Chl b, carotene, proline and protein by reducing Na. The 
present study suggested that inoculation of fungi was effective in improving the tolerance of wheat 
genotypes by improving the accumulation of nutrients and soluble solutes that might be responsible for 
osmotic adjustment of plant to counteract oxidative damage generated by salinity. 
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INTRODUCTION 
 
Salinity is one of the major environmental factors limiting 
plant growth and crop productivity in arid and semiarid 
irrigated area (Szabolcs, 1989; Koca et al., 2007). The 
increasing salinization of arid and semiarid regions of the 
world is expected to have devastating global effects, re-
sulting in 30% land loss within the next 25 years, and up 
to 50% by the year 2050 (Wang et al., 2005). Many plant 
species especially crop species do not grow and tolerate 
salinity due to the accumulation of salts especially NaCl 
which compete with other nutrients and cause specific 
toxicity (Tester and Davenport, 2003). It is a menace to 
both agriculture and the soil body. 

Nowadays, it has become a challenge for the scientist 
community to overcome the salinity problem by searching 
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and developing salt tolerant plants through plant breeding 
and genetic engineering.  However, taken approaches to 
fight against salt stress are successful but they are costly 
and beyond the economic means of developing nations 
(Cantrell and Linderman, 2001). In recent years, the use 
of biological methods as an inexpensive and practical 
way to alleviate soil stresses, including salinity, on plant 
growth in  saline  soils has received increased attention 
(Giri and Mukerji, 2004; Al-Karaki, 2006).  

In rhizosphere, some beneficial bacteria and fungi are 
present and they improve plant performance under dif-
ferent environmental conditions. The symbiosis between 
plants and arbuscular mycorrhizal fungi (AMF) is one of 
the important ecological mutualisms (Remy et al., 1994). 
AMF are associated with the roots of over 80% of terres-
trial plant families (van der Heijden et al., 1998). AMF 
plays a key role in the regulation of ionome and membrane 



 

 
 
 
 
transport proteins that control the ion homeostasis of the 
host plants (Ramos et al., 2011; Song and Kong, 2012). 
AMF is known to exist in saline soil, and participates in 
the plant growth and development, and also improves the 
plant tolerance against biotic and abiotic stress (Berta et 
al., 2005; Abdel-Fattah et al., 2010) by regulating the 
physiological and biochemical process of plants (Evelin et 
al., 2009; Fernanda et al., 2012).  

Salinity is known to alter many physiological and bio-
chemical activities, such as ion toxicity, mineral distribution, 
respiration rate, osmolytic synthesis, osmotic adjustment, 
seed germination, enzyme activities and photosynthesis 
(Marschner, 2002; Siddiqui et al., 2008, 2012; Al-Whaibi 
et al., 2012). AMF has a regulatory and stimulatory influ-
ence on protein, sucrose, glucose, proline and glycine-
betaine (GB) synthesis; hence, these solutes may play a 
role in osmotic adjustment (Evelin et al., 2009) that helps 
plant to perform normally under salinity. Under salinity, 
AMF application increased accumulation of proline in 
Vigna radiate (Jindal et al., 1993) and in soybean (Sharifi 
et al., 2007). However, in contrast to the report above, 
Rabie and Almadini (2005) and Bhosala and Shinde 
(2011) reported that non-AMF plants accumulated more 
proline than AMF plants under abiotic stress. Many 
studies have demonstrated that AMF plays a pivotal role 
in improvement of tolerance of plant to abiotic stress by 
enhancing nutrient uptake, particularly of N and P and 
subsequent increased growth (Jeffries et al., 2003; Cho 
et al., 2006). However, in some cases salt tolerance was 
not related to P concentration (Ruiz-Lozano and Azcón, 
2000). Copeman et al. (1996) suggested that inoculation 
with VAM fungi from non-saline soil enhanced shoot 
growth, while VAM fungi from saline soil suppressed 
shoot and root growth by increasing accumulation of Cl

-
 

in leaf. Carbohydrates also constitute a major role in the 
adjustment of osmotic potential (Evelin et al., 2009). The 
increase in total soluble carbohydrates (SC) is found to 
be positively correlated with mycorrhization of the host 
plant as reported by Thomson et al. (1990), Porcel and 
Ruiz-Lozano (2004) and Al-Garni (2006). On the other 
hand, in some other reports, negative correlations were 
found between AMF colonization and total SC accumu-
lation in host plants (Pearson and Schweiger, 1993; 
Sharifi et al., 2007). It is evident that there is no clear 
consensus regarding the mechanisms by which soluble 
solutes reduce salt stress. Also, AMF associated salt 
tolerant mechanisms of plant are still debatable and need 
to be confirmed. Proline regulates gene expression for 
osmotic adjustment (Iyer and Caplan, 1998). The strategy 
of osmotic adjustment varies from plant to plant, as well 
as from tissue to tissue (Shaddad et al., 1990; Siddiqui et  
al., 2009). In view of these reports, the experiment was 
aimed at testing if the inoculation with AMF can improve 
the tolerance of wheat genotypes to salinity by amelio-
rating the accumulation of solutes and mineral nutrient 
uptake, and by improving the growth performance of 
plants. 
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MATERIALS AND METHODS 
 
Cultivation conditions and mycorrhizal inoculation 

 
Experiment were carried out under glasshouse conditions using 
three wheat (Triticum aestivum L.) genotypes namely: Henta, 
Moaya and Samma obtained from a local market in Riyadh, Saudi 
Arabia. Healthy seeds were surface sterilized with 1% sodium 
hypochlorite for 10 min, then vigorously rinsed with sterilized double 
distilled water (DDW) before sowing. The seeds were sown in 
plastic pots (25 cm diameter, 25 cm height) filled with sterilized soil 
brought from sandy soil of Dharama, west of Riyadh. The pots were 
kept in controlled greenhouse conditions at the Botany and Micro-

biology Department, College of Science, King Saud University, 
maintained at 32/19°C (day- night temperature), 63% (day relative 
humidity) and 55% (night relative humidity) with a 16-h light and 8-h 
dark lighting regime. Pots were irrigated every week with DDW (200 
mL), and supplied with Hogland and Arnon’s nutrient solution 
(Hogland and Arnon, 1950).  

Mycorrhizal spores were isolated from the rhizosphere of plants 
growing naturally on saline soil at Algasab, northwest of Riyadh by 
using water sieving method of Gerdemann and Nilson (1963). 

Spores were identified according to the international basis of myco-
rrhizal classification (Gerdemann and Trappe, 1974; Fischer et al., 
2004; Walker et al., 2007). The spores of Glomus clarum Nicol. & 
Schenck were replicated on the host plant Sorghum valgare var. 
sudanense and the spores and roots of the host plant were used as 
inoculum for Triticum aestivum genotypes. The fungal association 
with wheat plants was tested by the use of trypan blue according to 
the method of Philips and Hayman (1970). 

Three levels of salinity were applied with mycorrhiza (M) or 

without mycorrhiza (NM). The pots were arranged in a simple 
randomized design with a single factor and ten replicates. The 
layout of treatments for each cultivar was: (i) 0.0 g NaCl kg

-1 
soil + 

without mycorrhiza (control), (ii) 0.0 g NaCl kg
-1 

soil + mycorrhiza, 
(iii) 0.75 g NaCl kg

-1 
soil + without mycorrhiza, (iv) 0.75 g NaCl kg

-1 

soil + mycorrhiza, (v) 1.5 g NaCl kg
-1 

soil + without mycorrhiza, (vi) 
1.5 g NaCl kg

-1 
soil + mycorrhiza, (vii) 3.0 g NaCl kg

-1 
soil + without 

mycorrhiza and (viii) 3.0 g NaCl kg
-1 

soil + mycorrhiza. After 6 days 

of seedlings emergence, thinning was done and five healthy plants 
of uniform size were maintained in each pot. Treatments were 
started after 10 days of sowing, and the addition of NaCl solution to 
the pots was alternate days to attain the final concentration.  

 
 
Plant growth and physiological parameters measurements 
 

The plants were sampled to assess their growth characteristics 
[root fresh plant

-1
 (RFW), root dry weight plant

-1
 (RDW), shoot fresh 

weight weight plant
-1

 (SFW), shoot dry weight plant
-1

 (SDW), stem 
length plant

-1
, number of leaves plant

-1
 and leaf area plant

-1
 and 

physio-biochemical attributes [content of  chlorophylls: (Chl a)  and 
Chl b), carotene,  total soluble carbohydrates (TSC), reducing 
sugars, proline, protein content, and content of nitrogen (N), 
phosphorus (P), potassium (K), sodium (Na), calcium (Ca) and 
magnesium (Mg)]  

The plant height was measured by using a meter scale after 
removal from the pots. The plants were then placed in oven run at 
60°C for 48 h. These dried plants were weighed to record the plant 
dry weight. Leaf area was measured by leaf area meter (LI.COR-
MODEL LI-3000). 

The chlorophyll and carotenoids were extracted from fresh leaves 
of experimental plants using the acetone method based on Metzner 
et al. (1965). The Chl and carotenoids absorption in the extract 
were measured using Visible Spectrophotometer-LKB Biochrom 
4050. Contents of the Chls and carotenoids were calculated from 
the following formula: 
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Table 1. Influence of mycorrhiza on fresh and dry weight of wheat cultivars under salinity. g of Nacl/kg soil,  NM = no mycorrhiza, M 
= with mycorrhiza, and NS = did not survive. Same letters in each column show no statistical difference at P < 0.05  (Duncan 
multiple range test). 
 

 

Treatment 

Cultivar 

Henta Moaya Samma 

SFW plant
-1

 
(g) 

RFW plant
-1

 
(g) 

SFW plant
-1

 
(g) 

RFW plant
-1

 
(g) 

SFW plant
-1

 
(g) 

RFW plant
-1

 
(g) 

0.0 g NaCl + NM 1.72
b
 0.29

b
 1.23

a
 0.27

b
 1.35

bc
 0.29

ab
 

0.0 g NaCl + M 2.27
a
 0.54

a
 1.56

a
 0.52

a
 1.65

a
 0.48

a
 

0.75 g NaCl + NM 1.20
d
 0.17

d
 0.99

bc
 0.19

c
 1.20

c
 0.19

ab
 

0.75 g NaCl + M 1.63
c
 0.27

b
 1.24

ab
 0.30

b
 1.42

b
 0.31

ab
 

1.50 g NaCl + NM 0.72
f
 0.14

d
 0.72

c
 0.10

d
 0.74

de
 0.10

b
 

1.50 g NaCl + M 0.99
e
 0.21

c
 0.79

c
 0.18

c
 0.79

d
 0.13

b
 

3.00 g NaCl + NM NS NS NS NS 0.42
f
 0.07

b
 

3.00 g NaCl + M NS NS 0.65
c
 0.13

cd
 0.61

e
 0.10

b
 

 

 
SDW plant

-1
 

(g) 
RDW plant

-1
 

(g) 
SDW plant

-1
 

(g) 
RDW plant

-1
 

(g) 
SDW plant

-1
 

(g) 
RDW plant

-1
 

(g) 

0.0 g NaCl + NM 0.61
b
 0.19

b
 0.63

b
 0.18

b
 0.71

b
 0.18

b
 

0.0 g NaCl + M 0.71
a
 0.35

a
 0.81

a
 0.30

a
 0.89

a
 0.31

a
 

0.75 g NaCl + NM 0.55
b
 0.11

cd
 0.45

d
 0.12

c
 0.56

c
 0.12

c
 

0.75 g NaCl + M 0.61
b
 0.18

b
 0.57

c
 0.19

b
 0.71

b
 0.21

b
 

1.50 g NaCl + NM 0.31
d
 0.09

c
 0.41

de
 0.06

d
 0.40

d
 0.06

d
 

1.50 g NaCl + M 0.43
c
 0.14

c
 0.45

d
 0.12

c
 0.43

d
 0.09

cd
 

3.00 g NaCl + NM NS NS NS NS 0.29
e
 0.04

d
 

3.00 g NaCl + M NS NS 0.39
e
 0.08

cd
 0.33

e
 0.07

cd
 

 
 
 

Chlorophyll (a) = 10.3 × O.D663 – 0.918 × O.D644 = g/ml. 

Chlorophyll (b) = 19.7 × O.D664 – 3.87 × O.D663 = g/ml. 
 

Carotenoids = 4.2 × O.D452.5 – [0.0264 Chlorophyll (a) + 0.426 

Chlorophyll (b)] = g/ml  
 

Proline content was determined by adopting the ninhydrin method 
of Bates et al. (1973) using spectrophotometer.  

Lowry method (Lowry et al., 1951) was adopted for protein 
determination after preparation of plant tissue so that samples were 
free of lipids and pigments (Katerman and Eargle, 1970) using 
bovine serum albumin for the standard curve. Total SC concentra-
tion was estimated as described by the methods of Nelson (1944) 
and Somogy (1952) while reducing sugars were determined by the 
method of Bell (1955). 

Plant content of some mineral elements such as Na
+
, K

+
, Ca

++
 

and Mg
++

 were determined according to the Association of Official  
Analytical Chemistry methods (AOAC, 1984) using Atomic  Absorp-
tion  Spectrophotometer AA-675 Series. On the other hand, nitro-
gen content was estimated according to Kjeldhal method (Chapman 
and Pratt, 1961), and phosphorus content was determined follo-

wing the methods of AOAC. (1956). 
 
 

Statistical analysis 
 

The data were analyzed statistically with SPSS-12 statistical soft-
ware (SPSS Inc., Chicago, IL, USA). Means were statistically com-
pared by Duncan’s multiple-range test at p<0.05% level. 
 
 

RESULTS 
 

Under  non-saline  conditions,  inoculation  of  mycorrhiza  

increased RFW, RDW, SFW, SDW, stem length, number 
of leaves and  leaf area in all cultivars of wheat when 
compared with control (without mycorrhiza inocu-lation) 
(Tables 1 and 2). However, all growth parameters decre-
ased with increasing level of salinity (0 to 3 g NaCl). The 
genotypes Henta and Moaya did not survive at 3 g of 
NaCl, except Samma. However, at 3 g of NaCl, geno-
types Moaya and Samma survived when plants of both 
genotypes were inoculated with mycorrhiza. Under 
stress, inoculation of mycorrhiza significantly improved 
most of the growth characteristics of plants of all geno-
types. However, RFW of Samma at all levels of NaCl, 
SDW of Henta at 0.75 g NaCl and Samma at 1.5 and 3 g 
of NaCl, RDW of Henta at 1.5 g of NaCl, leaf number of 
Henta and Moaya at 1.5 g NaCl and Moaya at 3 g NaCl, 
and leaf area of Moaya at 1.5 g and Samma at 0.75 
were found statistically non-significant (Tables 1 and 2). 
Table 3 reveals that plants of all genotypes ino-culated 

with mycorrhiza exhibited reduced accumulation of 
reducing sugars in all cultivars of wheat. However, plants 
of all genotypes supplemen-ted with NaCl stress showed 
slightly enhanced accumulation of reducing sugars. The 
maximum accumulation was recorded in Samma at 3 g 
of NaCl as compared to the other geno-types. But a 
different pattern of crop response was observed when 
total SC was studied in mycorrhiza-treated plants in the 
presence of NaCl stress in all cultivars (Table 3). Under 
non-stress  medium,  mycorrhizal plants of all genotypes 



 

 
 
 
 
Table 2. Influence of mycorrhiza on stem length, number of leaf 
and leaf area of wheat cultivars under salinity. g of Nacl/kg soil,  
NM = No mycorrhiza, M = with mycorrhiza, and NS = did not 
survive. Same letters in each column show no statistical difference 
at P < 0.05 (Duncan multiple range test). 
 

Treatment 

Cultivar 

Henta Moaya Samma 

Stem length cm plant
-1
 

0.0 g NaCl + NM 52.2
ba

 48.3
b
 45.8

b
 

0.0 g NaCl + M 59.3
a
 54.1

a
 51.4

a
 

0.75 g NaCl + NM 42.3
d
 39.8

d
 40.3

c
 

0.75 g NaCl + M 48.6
c
 44.9

c
 45.9

b
 

1.50 g NaCl + NM 18.3
f
 20.3

f
 23.6

e
 

1.50 g NaCl + M 23.2
e
 24.7

e
 27.7

d
 

3.00 g NaCl + NM NS NS 19.2
f
 

3.00 g NaCl + M NS 17.8
g
 23.1

e
 

    

Number of leaves plant
-1
 

0.0 g NaCl + NM 4.6
b
 4.3

abc
 4.6

ab
 

0.0 g NaCl + M 5.3
ab

 5.0
a
 5.0

a
 

0.75 g NaCl + NM 5.3
ab

 4.0
bc

 4.3
ab

 

0.75 g NaCl + M 6.0
a
 4.6

ab
 5.3

a
 

1.50 g NaCl + NM 3.0
c
 4.3

abc
 3.6

b
 

1.50 g NaCl + M 3.0
c
 4.3

abc
 4.3

ab
 

3.00 g NaCl + NM NS NS 2.3
c
 

3.00 g NaCl + M NS 3.6
c
 2.6

c
 

 

Leaf area plant
-1
 

0.0 g NaCl + NM 22.6
c
 18.2

c
 19.9

b
 

0.0 g NaCl + M 24.1
b
 19.3

b
 21.1

a
 

0.75 g NaCl + NM 24.1
b
 19.5

ab
 20.9

a
 

0.75 g NaCl + M 25.2
a
 20.5

a
 21.8

a
 

1.50 g NaCl + NM 15.1
e
 14.1

d
 11.2

d
 

1.50 g NaCl + M 17.2
d
 14.6

d
 14.9

c
 

3.00 g NaCl + NM NS NS 8.1
e
 

3.00 g NaCl + M NS 10.1
e
 11.2

d
 

 

 
 

exhibited higher value for total SC as compared to the 
controls. However, effects of mycorrhiza equalled by con-
trol, gave maximum value for total SC in Samma, under 
stress conditions. The degree of efficiency of mycorrhiza 
inoculation in alleviating the adverse effect of salt stress, 
and the accumulation of total SC in leaves of all geno-
types was found to be high.  

Under non-stress conditions, the content of N, P, K, Ca 
and Mg was recorded higher in mycorrhiza-inoculated- 
plants of all genotypes than the respective non-inoculated 
plants, except Na content in all genotypes (Table 4). 
However, these nutrients decreased with increasing levels 
of NaCl treatments in all cultivars, except Na content. 
Under stress conditions, inoculation was found to be 
effective in improving leaf- N, P, K, Ca and Mg concen-
tration in all genotypes. On the other hand, under stress, 
low content of Na was recorded at all salinity levels when  
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Table 3. Influence of mycorrhiza on accumulation of reducing 
sugar and total soluble carbohydrate in leaf of wheat cultivars 
under salinity. g of Nacl/kg soil,  NM = No mycorrhiza, M = with 
mycorrhiza, and NS = did not survive. Same letters in each 
column show no statistical difference at P < 0.05 (Duncan 
multiple range test) 
 

Treatment 

Cultivar 

Henta Moaya Samma 

Reducing sugars (mg 100g
-1

 DW) 

0.0 g NaCl + NM 10.70
d
 9.45

e
 11.01

c
 

0.0 g NaCl + M 10.20
e
 9.22

f
 10.40

d
 

0.75 g NaCl + NM 11.30
 b
 9.90

c
 11.80

b
 

0.75 g NaCl + M 10.90
c
 9.60

c
 10.00

ab
 

1.50 g NaCl + NM 11.49
a
 10.40

a
 12.00

ab
 

1.50 g NaCl + M 11.30
b
 10.10

b
 11.05

c
 

3.00 g NaCl + NM NS NS 12.10
a
 

3.00 g NaCl + M NS 10.0
bc

 10.90
c
 

    

 
Total soluble carbohydrates (mg 

100g
-1

 DW) 

0.0 g NaCl* + NM 15.71
c
 14.05

c
 15.11

b
 

0.0 g NaCl + M 16.19
b
 14.21

a
 15.27

b
 

0.75 g NaCl + NM 14.50
e
 13.20

d
 14.80

c
 

0.75 g NaCl + M 16.60
a
 14.45

b
 15.59

a
 

1.50 g NaCl + NM 14.19
f
 13.00

e
 14.00

d
 

1.50 g NaCl + M 14.90
d
 14.24

c
 15.30

b
 

3.00 g NaCl + NM NS NS 13.90
d
 

3.00 g NaCl + M NS 14.20
c
 14.90

c
 

 
 
 

plants of all genotypes were inoculated with mycorrhiza. 
Figures 1 and 2 reveal that the content of Chl a and 

carotene was higher, except Chl b, in all cultivars under 
non-stress conditions. However, synthesis of plant pig-
ments in all cultivars was found to be decreased with 
increasing levels of NaCl. On the other hand, application 
of mycorrhiza enhanced a significant increase in the plant 
pigments in all the genotypes under stress. Under NaCl 
stress, genotypes Moaya and Samma were found to be 
contain higher accumulation of pigments than Henta, 
especially at 3.0 g NaCl. 

Under normal conditions, proline and protein accumula-
tion were observed to be high in plants of all genotypes 
inoculated with mycorrhiza (Figure 3). An increase in pro-
line accumulation was recorded with increasing levels of 
salinity in all genotypes. But a different pattern was ob-
served with protein content in all genotypes under salt 
stress. The content of protein decreased with increasing 
levels of salinity. However, a similar trend has been ob-
served in this study with respect to the accumulation of 
proline and protein in all genotypes. In plants of all geno-
types under stress, increased proline and protein concen-
tration was observed when they were inoculated with 
mycorrhiza, but Henta cultivar survived at high dose of 
NaCl (3.0 g).  
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Figure 1. Influence of mycorrhiza on content of Chl a and Chl b in leaf of wheat cultivars under salinity. 

Bars followed by the same letters show no statistical difference at P < 0.05 (Duncan multiple range test). 
Average of four determinations are presented with bars indicating SE. 

 
 

 

DISCUSSION 
 
It is well established that salt stress inhibits plant growth. 
In the present experiment, RFW, SFW, RDW, SDW, stem 
length and number of leaves decreased with increasing 
levels of NaCl over the control (Tables 1 and 2). At high 
dose of NaCl, genotypes Henta and Moaya did not sur-

vive except Samma. It may be due to the toxic effects of 
NaCl by accumulating more salt (Afroz et al., 2005; 
Siddiqui et al., 2009). However, plants inoculated with G. 
clarum showed enhanced growth attributes in all cultivars 
under both saline and non-saline conditions, while inocu-
lation of mycorrhiza increased SFW, RFW, SDW, RDW, 
stem length and leaf area of Moaya and SFW, RDW, stem 
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Figure 2. Influence of mycorrhiza on content of carotene in leaf of wheat cultivars under salinity. 

Bars followed by the same letters show no statistical difference at P < 0.05 (Duncan multiple 

range test). Average of four determinations are presented with bars indicating SE. 
 

 
 

length and leaf area of Samma even under severe saline 
conditions. Therefore, we may postulate that inoculation 
of G. clarum isolated from saline soil can differentially 
suppress the inhibitory effects of salinity and also varie-
tal differences in plant growth responds to G. clarum 
under stress may be dependent on genotypic differences 
in rates of nutrients uptake, transport, accumulation and 
distribution within the plant (Siddiqui et al., 2009). 

The mechanism of osmotic adjustment plays a vital role 
in the protection of plant against stress particularly against 
the salinity (Siddiqui et al., 2008). Plants accumulate soluble 
sugars that participate actively in the osmotic adjustment 
when they are under stress (Evelin et al., 2009). In this 
study, reducing sugars increased with increasing level of 
salinity (Table 3), but TSC decreased with increasing 
levels of salinity in plant of all genotypes (Table 3). How-
ever, both parameters increased in plants of all genotypes 
when inoculation was applied to the host plants. The 
increase in TSC is found to be positively correlated with 
mycorrhization of the host plant and this result coincides 
with earlier studies of Thomson et al. (1990). Conversely, 
the decrease in reducing sugars was found to be nega-
tively correlated with mycorrhizal treatment. Pearson and 
Schweiger (1993) reported a reduction in carbohydrate 
concentration with an increase in the percentage of root 
colonization. These differences among the cultivars could 
be ascribed to the variation in the genetic make-up of 
cultivars. Naureen and Naqvi (2010) reported that accu-

mulation of reducing sugars varied among the wheat 
genotypes under salt stress. Under stress, increase in 
accumulation of reducing sugars and TSC may be due to 
the nutrients uptake induced by the inoculation of 
mycorrhiza (Table 4).    

Salt stress disturbs the regulation of ion homeostasis 
of the host plants (Niu et al., 1995; Siddiqui et al., 2009, 
2012). All genotypes showed similar trends for the nutri-
ents content in leaf (Table 4). Under stress, a decrease in 
the content of N, P, K, Ca and Mg was recorded in all 
cultivars under NaCl stress, while a quantum of enhance-
ment of these nutrients was higher in inoculated-plants of 
all genotypes (Table 4). However, interestingly, mycorrhizal 
plant exhibited reduced Na accumulation. These results 
strengthen the findings of Garg and Manchanda (2009).  

The increased accumulation of these nutrients with the 
inoculation of G. clarum has been important factors for 
increasing plant growth because they are important com-
ponents of many metabolically active compounds and 
play a crucial role in several physiological and biological 
functions (Marschner, 2002). Siddiqui et al. (2012) reported 
that accumulation of nutrients improved the tolerance of 
plant by inducing the many enzymes associated with 
nutrients assimilation and antioxidant enzymes. Experi-
ment with wheat genotypes indicates that salt tolerance is 
associated with enhanced accumulation of nutrients by 
the inoculation of mycorrhiza. 

Salt stress suppressed the synthesis of photosynthetic



 

1292         Afr. J. Microbiol. Res. 
 
 
 

Table 4. Influence of mycorrhiza on content of N, P, K, Na, Ca and Mg in leaf of wheat cultivars under salinity. g of Nacl/kg soil,   NM = No mycorrhiza, M = with 

mycorrhiza, and NS = did not survive. Same letters in each column show no statistical difference at P < 0.05 (Duncan multiple range test). 
 

 

Treatment 

Cultivar 

Henta Moaya Samma 

N content P content K content N content P content K content N content P content K content 

0.0 g NaCl + NM 18.1
b
 4.1

c
 10.0

b
 15.7

b
 3.9

d
 9.6

a
 19.1

de
 5.1

de
 7.1

b
 

0.0 g NaCl + M 20.9
a
 5.2

b
 11.1

a
 16.0

b
 4.8

a
 9.8

a
 19.8

cd
 5.9

bc
 8.6

a
 

0.75 g NaCl + NM 17.1
b
 4.2

c
 6.1

d
 15.1

b
 4.1

cd
 7.6

b
 22.2

b
 5.4

cd
 5.9

cd
 

0.75 g NaCl + M 18.3
b
 5.7

ab
 6.9

c
 18.1

a
 5.3

b
 8.1

b
 24.4

a
 6.2

ab
 6.6

c
 

1.50 g NaCl + NM 15.8
c
 3.1

d
 4.1

f
 13.8

c
 3.2

e
 5.4

c
 18.1

e
 5.8

bc
 4.5

c
 

1.50 g NaCl + M 17.3
b
 6.2

a
 5.1

e
 15.3

b
 4.6

c
 5.9

c
 21.0

bc
 6.7

a
 5.1

cd
 

3.00 g NaCl + NM NS NS NS NS NS NS 15.9
f
 3.8

f
 4.0

e
 

3.00 g NaCl + M NS NS NS 13.7
c
 4.1

cd
 4.1

d
 16.5

f
 4.6

e
 4.6

e
 

 

 Na content Ca contant Mg content Na content Ca contant Mg content Na content Ca content Mg content 

0.0 g NaCl + NM 2.9
d
 6.3

a
 2.5

ab
 3.2

f
 5.9

bc
 1.9

ab
 5.3

f
 7.0

a
 3.1

c
 

0.0 g NaCl + M 2.6
d
 7.0

a
 3.1

a
 3.2

f
 6.2

ab
 2.2

a
 4.9

f
 6.8

a
 3.6

ab
 

0.75 g NaCl + NM 4.1
c
 6.4

a
 2.4

ab
 5.6

d
 6.8

ab
 1.7

b
 6.8

d
 7.1

a
 3.2

bc
 

0.75 g NaCl + M 3.7
c
 6.9

a
 2,9

a
 4.9

e
 7.2

a
 2.0

ab
 6.2

e
 7.6

a
 3.9

a
 

1.50 g NaCl + NM 7.3
a
 3.1

c
 1.1

c
 7.3

b
 4.3

d
 1.1

c
 8.6

b
 3.1

c
 2.1

d
 

1.50 g NaCl + M 6.2
b
 5.1

b
 2.0

b
 6.5

c
 5.1

cd
 1.6

b
 7.9

c
 4.9

b
 2.9

c
 

3.00 g NaCl + NM NS NS NS NS NS NS 9.7
a
 1.2

e
 1.8

d
 

3.00 g NaCl + M NS NS NS 7.8
a
 2.6

e
 1.5

b
 8.4

b
 2.1

d
 2.2

c
 

 
 
 

pigments in plants of all genotypes (Figures 1 and 
2). The inhibition of plant pigments content might 
be due to instability of protein complexes and 
destruction of chlorophyll by enhanced activity of 
chlorophyllase, a Chl degrading enzyme, under 
salt stress (Reddy and Vora, 1986). These results 
strongly agreed with the findings of Siddiqui et al. 
(2009, 2010). Interestingly, content of pigments 
(Chl a, Chl b and carotene) increased when 
mycorrhiza was inoculated to the host plants of all 
wheat genotypes under stress and non-stress 
conditions (Figures 1 and 2). The improvement of 
photosynthetic pigments might be due to the 

stimulation of plant by colonization and an inhibi-
tion of Na transport towards the plants leaves, and 
led to better functioning of photosynthetic appa-
ratus (Rabie and Almadini, 2005). Borde et al. 
(2010) reported that the highest chlorophyll was 
found in inoculated plants as compared to non-
inoculated plant. These results indicated that 
mycorrhiza alleviated the adverse effect of salinity 
by increasing pigments that enhanced the photo-
synthetic efficiency leading to improvement in 
values for growth parameters of wheat genotypes. 

In the present study, plants of wheat genotypes 
under stress conditions exhibited increased proline 

accumulation that further increased by the appli-
cation of mycorrhiza and thus could improve tole-
rance of wheat genotypes to salt stress by main-
taining the osmotic balance and reducing the free 
radicals damage induced by osmotic stress (Jain 
et al., 2001; Garg and Manchanda, 2009). It has 
been demonstrated that proline serves as a storage 
sink for carbon and nitrogen and a free-radical 
scavenger, stabilizes subcellular structures (mem-
branes and proteins) and buffers cellular redox 
potential under stress (Bohnert and Jensen, 1996; 
Chen and Murata, 2002) and that the level of 
accumulated solute is correlated with the degree
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Figure 3. Influence of mycorrhiza on content of proline and protein in leaf of wheat cultivars under salinity. 

Bars followed by the same letters show no statistical difference at P < 0.05 (Duncan multiple range test). 
Average of four determinations are presented with bars indicating SE. 

 

 
 

of salt tolerance (Garg and Manchanda, 2009). Elevated 
level of proline in inoculated-plants may be due to the 
accumulation of N and other nutrients. The regulation of 
biosynthesis of proline is very closely related to the nitro-
gen assimilation (Siddiqui et al., 2010).  Also,Neuberg et 
al. (2010) found that a marked increase in proline content 
was recorded in plant after nitrogen treatment. Proline may 
act as an N source in the cell under stress conditions, where 

the accumulation of this nitrogenous compound could be 
utilized as a form of stored N (Dandekar and Uratsu, 
1988). In the present experiment, protein content decre-
ased with increasing levels of salinity, while inoculation of 
mycorrhiza increased the content of protein in all cultivars 
(Figure 3). This result corroborates the finding of Parida 
et al. (2004). Thus, the results suggested that application 
of salt stress on wheat genotypes at different levels exhi- 



 

 

1294         Afr. J. Microbiol. Res. 
 
 
 
bited an increase in proline pool by decreasing protein, 
which facilitated the mode of adjustment to Sali-nity 
stress (Parida et al., 2004). Fukutoku and Yamada (1981) 
suggested that some de novo synthesis of proline occurs 
under stress and that the N source for this proline synthe-
sis may be protein. The improvement of protein content 
by the inoculation of mycorrhiza might be due to accumu-
lation of nutrients that are constituent of several metabo-
lically active compounds (Marschner, 2002). The change 
in protein content in NaCl fed plants of all genotypes 
could be responsible for the plants performing normally 
under stress conditions by changing biological adaptation 
process.  
 

 

Conclusion 
 

From the results, it can be concluded that improved 
growth performance of all genotypes in terms of RFW, 
RDW, SFW, SDW, plant height, leaf number and leaf area 
was accompanied by increased nutrients accumulation in 
plants inoculated with mycorrhiza under stress and non-
stress conditions. Mycorrhizal plants showed reduced 
accumulation of Na and enhanced content of N, P, K, Ca 
and Mg than non-mycorrhizal plants. The parallel increase 
in the content of nutrients, photosynthetic pigments, 
reducing sugars, TSC, proline and protein in inoculated 
plants might be responsible for plants counteracting oxi-
dative damage generated by salinity. Thus, the present 
study provides a highly cost-effective and environmental 
friendly approach to overcome the adverse effect of 
salinity.  
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