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Table 1. Effect of washing on the numbers of nitrifying and denitrifying bacteria  
 

 Nitrifying and denitrifying bacteria
Number of bacteria (MPN/100 ml) 

First washing Fourth washing 

Ammonia-oxidizing bacteria (AOB) 23.0 ± 0.0 3.0 ± 0.0 
Nitrite-oxidizing bacteria (NOB)          3.3 ± 0.4 3.0 ± 0.0 
Denitrifying bacteria                             161.5 ± 96.9 5.5 ± 2.7 

 
 
 
Ammonium analysis 
 
Ammonium was assayed using the indophenol blue-ISO 7150/1 
(Merck-Spectroquant) method. Merck reagents Spectoquant 
ammonium was used. The optical density (OD) was determined at 
692 nm by a spectrophotometer (Spectronic® 20 GenesysM). The 
OD692 value was converted to NH4

+mg/l, using the 
Excel/Fiexcel/Calcdos.  
 
 
Nitrate analysis 
 
For two milliliters of the sample were two milliliters of sodium 
salicylate solution (5 g/l) added. After mixing, the solution was 
evaporated at 60°C for 2 h and cooled in desiccators. Two ml of 
H2SO4 concentrated was added. After ten minutes, 15 ml of distilled 
H2O and 15 ml of NaOH/sodium potassium tartrate (40/6%, vol/vol) 
were added. The mixture was brought to a final volume of 50 ml 
and OD was measured at 420 nm using a spectrophotometer 
UNICAM. 
 
 
Turbidity measurements 
 
Turbidity is the measure of relative clarity of a liquid. It is an optical 
characteristic of water and is an expression of the amount of light 
that is scattered by material in the water when a light is shined 
through the water sample. The turbidity of the solutions was 
measured by ISO 2100P turbidimeter HACH® and expressed in 
nephelometric turbidity units (NTU). 
 
 
Nitrifying and denitrifying bacteria enumeration 
 
The autotrophic nitrifying bacteria (AOB and NOB) and the 
heterotrophic denitrifying populations were enumerated using the 
most probable number (MPN) method (Lorch et al., 1995). 
Preparation and composition of the AOB, NOB and denitrifying 
medium were as described by Alef (1995). An incubation period of 
four weeks was used. After incubation, ammonia-oxidizing bacteria 
were counted with the MPN-Griess method, while NOB was 
counted with both the MPN-diphylamine (Both et al., 1990). 
Denitrifying bacteria presence was expressed by gas that can be 
observed after three weeks of incubation at room temperature in an 
anaerobic jar containing nitrogen gas. MPN values were calculated 
according to the statistical tables of De Man (1983). 
 
 
Experimental protocol of biofilm detachment 
 
Bacterial enumeration after successive washing 
 
In this experiment, a single piece of gravel was removed from the 
top (F) of the horizontal filter and placed in a sterile tube. Three 
milliliters of sterile distilled water were added followed by agitation 

at 2 rpm during 4 s. The bacterial suspension in the tube was 
enumerated for nitrifying and denitrifying bacteria. The gravel was 
washed three more times following the same way and the number 
of bacteria was determined after each washing. This experience 
was released in triplicate.  
 
 
Nitrification after washing 
 
The kinetics of nitrification was followed after washing. Gravel was 
sampled from vertical and horizontal filter. For this, for a weight of 
100 g of gravel was added a volume of 200 ml of sterile distilled 
water. After agitation at 2 rpm during 10 s the suspension was 
separated from the gravel and this fraction is considered as the first 
wash fraction. Four successive washes were applied and each 
obtained fraction was collected separately. The turbidity of the 
different fraction was determined. After the fourth wash, a volume of 
200 ml of solution A[(NH4)SO4 20 mg/l with pH 7,6 and 500 mg/l of 
CaCO3 as carbon source] was added to the sample gravel included 
in bottles and the bottles were incubated at 25°C during increasing 
times (5 min, 4, 8, 24 and 48 h). Then, a volume of 10 ml was 
sampled and analyzed for the various nitrogen forms. 

The kinetics of nitrification was followed before washing (as 
control samples). Each gravel sample (100 g), undergoing a 
successive washing, was placed into 500 ml bottle. After addition of 
200 ml of solution A, bottles were incubated at 25°C. Then, a 
volume of 10 ml was taken at different time (5 min and 4, 8, 24 and 
48 h) and analyzed for the various nitrogen forms. 
 
 
Statistical procedures 
 
Pearson’s correlation coefficient (r) was used to show correlation 
between the analyzed parameters data using Statistical Package 
for the Social Sciences (SPSS) software (SPSS for Windows, 
SPSS Inc., Chicago, Il, USA). 
 
 
RESULTS AND DISCUSSION 
 
Detachment of nitrifying bacteria on gravel 
 
The nitrifying and denitrifying bacteria decreased with 
subsequent washings (Table 1). The population of 
ammonia-oxidizing bacteria (AOB) in suspension was 
higher than 23 MPN/100 ml. After the fourth wash, this 
number decreased to attain 3.3 MPN/100 ml. In the same 
way, the number of denitrifying bacteria was affected by 
washing, as these populations decreased from 161.5 to 
5.5 MPN/100 ml before and after fourth washing, 
respectively. The nitrite-oxidizing bacteria (NOB) popu-
lations present in suspension of sample (single piece of
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Table 2. Biomass cell suspension expressed by the turbidity values obtained after the first and fourth sample washing at 
vertical filter (at 5 and 20 cm of depth), horizontal filter characterized by fine gravel (in the top, medium and bottom of 
filter) and horizontal filter characterized by coarse gravel (in the top, medium and bottom of filter). 
 

Washing 
Vertical filter (cm) HF with fine gravel HF with coarse gravel 

5 20 Top Medium Bottom Top Medium Bottom 

First washing  57 ± 2d 97 ± 2h 63.5 ± 1.3e 76.4 ± 2f 88.5 ± 1.5g 35.3 ± 2c 29 ± 1.3b 23 ± 2.2a 
Fourth washing 4.4 ± 2b 7 ± 1bc 6.9 ± 1.9bc 0.7 ± 1.6a 8.3 ± 1.4c 9.5 ± 2c 3.2 ± 0.16ab 3.8 ± 0.3ab

 

HF: Horizontal filter; (a, b, c, etc.): In each line for each sample, mean values followed by a different symbol are significantly 
different according to Student–Newman–Keuls test at P < 0.05. 

 
 
 
gravel) were lower, saving a constant value of 3.3 
MPN/100 ml. For this reason after washing, the number 
of NOB populations remained almost constant (3.0 
MPN/100 ml). This may be due to the low number of 
NOB that failed to form a thick biofilm on the gravel. 
Thus, after washing, the detachment will be too minor. 

In this study, the autotrophic bacteria (AOB) are 
detached and their concentration decreased. Similar 
study by Derlon (2008) showed that detachment causes 
a decrease in the number of autotrophic bacteria. The 
heterotrophic bacteria with fast growth in the outer layers 
of biofilm (substrate concentration and detachment rate 
are high) may cover nitrifying bacteria with slow growth in 
internals layers of the biofilm (Nogueiro et al., 2002). 
Thus, the heterotrophic bacteria affect positively the 
nitrifying bacteria by protecting them against detachment, 
when the oxygen levels were sufficient for their main-
tenance under the biofilm matrix (Furumai and Rittmann, 
1994). In this study, the insufficient oxygen level in the 
horizontal filter (where the sample was taken) prevents 
the heterotrophic bacteria from protecting the autotrophic 
bacteria against the detachment. 
 
 
Biomass density in suspension 
 
Results showed that the turbidity was inversely 
proportional to the number of gravel washings (Table 2). 
In the vertical filter, the turbidity after the first washing 
was much higher (97 NTU at 20 cm) than the turbidity 
after thes ubsequent washings (7NTU after 4th wash). 
The statistical analysis indicated significant differences 
according to the Student–Newman–Keuls test at P<0.05 
obtained between turbidity after the first and fourth 
washing of the gravel sample taken at 20 cm of depth 
from vertical filter (Table 2). In the vertical filter, we found 
that the turbidity of the first washing of gravel taken from 
20 cm was higher (97 NTU) than that for gravel sampled 
at 5c m of depth (57 NTU). In addition, the statistical 
analysis indicated that turbidity marks significant 
differences according to Student–Newman–Keuls test at 
P<0.05 after the first washing of the gravel sample taken 
at 5 and 20 cm of depth from vertical filter (Table 2). 

Generally, the turbidity was greater at the bottom of the 
horizontal beds (88.5 NTU during the first washing than 

that obtained at the top and medium of horizontal filter 
(63.5, 76.4 NTU, respectively). The bottom of horizontal 
filter consisted of more fine gravel and it may be that the 
microbial loading is greater in the bottom of filter. The 
statistical study indicated significant differences 
according to the Student–Newman–Keuls test at P<0.05 
obtained between turbidity at the bottom of horizontal 
filter characterized by fine gravel and the turbidity 
obtained at the top and medium of horizontal filter (Table 
2). Also, it is probable that the microbial biomass at the 
bottom is less fixed than that at top and medium of 
horizontal filter. At the top of horizontal filter characterized 
by coarse gravel the turbidity value is higher than the 
turbidity value obtained at the medium and the bottom of 
this basin with values of 35.3, 29 and 23 NTU, respec- 
tively (Table 2). The fine gravel loaded per unit mass of 
microorganisms indicated less fixed microbial biomass 
than those obtained with coarse gravel. The microorga-
nisms loading are more important in the filter with fine 
gravel than the filter with coarse gravel. The turbidity 
values after the first wash of fine gravel saved a value 
ranging between 60 and 100 NTU. The statistical study 
indicated significant differences according to the 
Student–Newman–Keuls test at P<0.05 obtained 
between turbidity of sample characterized by fine and 
coarse gravel from horizontal filter after the first washing 
(Table 2).  

The nature of the carrier media used requires 
development of a very thin, evenly distributed and 
smooth biofilm to enable transport of substrate and 
oxygen to the biofilm surface. The turbulence sloughs off 
excess biomass and maintains adequate thickness of 
biofilm. Biofilm thickness less than 100 µm for full 
substrate penetration is usually preferred (Odegaard et 
al., 1994). Nevertheless, extremely high turbulence 
detaches biomass from the carrier and therefore is not 
recommended.  
 
 
Ammonium oxidation in vertical and horizontal filters 
 
The gravel from 5 cm incubated for 8 h at 25°C did not 
show a reduction of NH4

+-N amount expressed by 
constant value of ammonium saved at the level of 
samples from before and after washing 13.84 ± 3.6 and
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after washing or presence of substrate even in lower 
loading, thereby allowing a stable nitrification (Ohashi et 
al., 1995). 
 
 
Conclusion 
 
The decrease in AOB and denitrifying bacteria popula-
tions was affected by the number of washings, while the 
number of NOB present in suspension was lower and 
had a constant value of 3.0 MPN/100 ml. Washing seems 
to affect the nitrification performance by delaying 
nitrification.  

Despite this detachment for gravel sampled from 
vertical filter, ammonium oxidation yield has been 
obtained by an extension of the treatment period. After 
washing, the ammonium oxidation was more important at 
20 cm (5.41 mg/l) than at 5 cm of depth (2.26 mg/l). This 
supposes that at 20 cm of depth microorganisms loading 
was more important than at 5 cm depth. 

In horizontal filter with fine gravel, the nitrification 

performance was more important at the bottom of filter 
even after washing. Whereas, at the horizontal filter 
(coarse gravel), the nitrification performance was more 
important at the medium of the basin. 

Since the yield of nitrification is unaffected by detachment, 
enhancing detachment by acting in some physico-
chemical parameters may lead to clogging prevention in 
fixed-biofilm wastewater treatment processes.  
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