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We tracked Listeria monocytogenes as a microbiological risk factor in pork processing plants. The five 
plants analyzed were located in main areas for meat processing in Colombia. Prevalence of L. 
monocytogenes was 11.46% (36/314), represented by serotypes 4b (6/36, 16.7%), 4d/4e (10/36, 27.8%), 
4b/4d/4e (4/36; 11.1%), 3a (3/36, 8.3%), 3c (1/36, 2.8) and 1/2c/3c (9/36, 25%); 4/36 isolates (11.1%) were 
assumed as possible serotypes 4ab or 7. There was no tolerance to per-acetic acid and only 9/36 (25%) 
surface-isolates displayed tolerance (0.5-2% (v/v)) to alkyl dimethyl benzyl ammonium chloride. The risk 
factors analysis showed variations for each processing plant and found that surface and equipment 
had a higher degree of contamination, with the chopper and cutter at the highest risk. The general 
prevalence of L. monocytogenes in pork meat processing plants was 11.46%. All these results 
demonstrate deficiencies in the implementation and monitoring of cleaning and disinfection programs. 
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INTRODUCTION 
 
Listeria monocytogenes can contaminate a wide variety 
of foods (Molero et al., 2010; Ramírez Mérida et al., 
2010; Ballesteros et al., 2011), with the ready-to-eat food 
(RTE) as potential transmission sources in particular 
meat- and dairy-products (Martins and Leal Germano, 
2011; Muñoz et al., 2011).  

Listeriosis is a foodborne disease caused by L.  

monocytogenes that is acquired in 99% of the cases by 
consuming contaminated food. The illness can manifest 
itself as invasive or non-invasive disease. The invasive 
form of the disease is characterized by spread of a 
severe- and/or local-infection in the central nervous 
system (CNS), which can result in death. In addition, it 
involves complications such as meningitis, and perinatal
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infections (Korkeala and Siitonen, 2003). On the other 
hand, the non-invasive form is associated with fever and 
gastrointestinal symptoms with no complications (Aureli 
et al., 2000; Pichler et al., 2009).  

Up to date 13 potentially pathogenic serovars of L. 
monocytogenes have been identified, with 4b (37 - 64%), 
1/2b and 1/2a (15 - 25%), and 1/2c (0 - 4%) the most 
frequent outbreaks and sporadic cases of the disease 
(Jacquet et al., 1995; Jay, 1996; Miyasaki et al., 2009; 
Markkula et al., 2011). The population identified at risk for 
this disease include immunocompromised individuals, 
pregnant women, infants and adults over 65 years (López 
et al., 2007; Garmendia et al., 2008; Mammina et al., 
2009; Taillefer et al., 2010).  

Despite the low incidence of listeriosis and far of 
surpassing other foodborne pathogens such as 
Salmonella, listeriosis outbreaks are associated with high 
mortality (20 and 30%), (Mead et al., 1999; FAO/OMS, 
2004). The European Union and the United States of 
America report an annual incidence of 0.3 per 100,000 
and 0.4 per 100,000 inhabitants, respectively (Centers for 
Disease Control and Prevention Morbidity and Mortality 
CDC, 2008; EFSA, 2008). Reports from Africa, Asia and 
South America have been scarce (Rocourt et al., 2003). 
However, recent reports indicate an increase in the 
number of cases, possibly associated with an increasing 
population at risk, in addition to changing trends in food 
consumption (Taillefer et al., 2010; Scallan et al., 2011). 

In Colombia reports on foodborne disease incidence is 
scarce. The epidemiological data for L. monocytogenes 
shows few cases, probably associated with sub-
registration (Vanegas et al., 2009). However, the 
“Instituto Nacional de Vigilancia de Medicamentos y 
Alimentos” (INVIMA), the Colombian equivalent of the US 
FDA, include a surveillance for the pathogen in their 
programs of food Inspection, Monitoring and Control 
(IVC). Recent studies have demonstrated the presence of 
this bacterium in the Colombian pork-industry. 
Furthermore, studies identified 4b as the most common 
serovar in contaminated RTE products. However, there is 
few data on contamination sources or microorganism 
control measures (Muñoz et al., 2011). 

Considering the necessity  to provide information on 
the country's status with respect to L. monocytogenes in 
meat processing plants, our objective was to evaluate 
and document the risk factors favoring the presence of L. 
monocytogenes in Colombian meat processing plants 
(pressed ham (sandwich type), standard sausage, and 
sausage “chorizo”). 
 
 
MATERIALS AND METHODS 
 
Selection of meat products plants 
 
Five meat processing plants were selected based on the following 
criteria: 

 
 
 
 
1. Surveyed by the “Instituto Nacional de Vigilancia de 
Medicamentos y Alimentos” (INVIMA) as a registered plant. 
2. Located in areas one and two, where the largest number of pork 
meat processing plants are (Figure 1). 
3. Production of at least one of the following meat products: 
pressed ham (sandwich type), standard sausage, and sausage 
“chorizo”. 
4. Use of pork-meat as an ingredient in other processed meat 
products. 
 
 
Polls 
 
Each plant was assessed to establish factors that might favor the 
presence of L. monocytogenes. At question were aspects related 
to: technology level, infrastructure, type of utensils and processing 
equipment, blanching time and temperature, use of antimicrobials, 
and frequency of cleaning and disinfection, water quality, raw meat 
storage temperature, finished product and operator training, among 
others. 
 
 
Number of samples 
 
Three hundred and fourteen samples from five plants were 
selected, distributed as follows: plant 1: 53 samples (16.9%), plant 
2: 71 samples (22.6%), plant 3: 61 samples (19.4%), plant 4: 89 
samples (28.3%) and plant 5: 40 samples (12.7%). Environmental 
samples were collected from walls, floors, sewage, desks, 
equipment such as cutter, grinder, chopper, and raw meat 
described previously as the most likely sites of contamination 
(Thévenot et al., 2006). 
 
 
Sampling numbers 
 
Two samplings were conducted for each of the plants included in 
this study. However, plant 4 included four samplings due to its 
complexity. 
 
 
Microbiological analysis 
 
Samples were transported to the laboratory under aseptic 
conditions and processed immediately. The method for processing 
environmental samples was described by the United States 
Department of Agriculture, (USDA-FSIS, 2002). For meat cuts, the 
standard method ISO11290-1 was used (ISO, 1996). Isolates 
presumptive of L. monocytogenes were subjected to molecular 
identification (genus and species). 
 
 
Genomic DNA purification and quantification 
 
For genomic DNA extraction 100 l of each isolate stock was 
cultivated in BHI supplemented with 0.5% (w/v) glucose during 12 h 
at 37°C and 250 rpm (Ruiz-Bolivar et al., 2011). One millilitre of 
culture was taken for DNA purification using the Wizard® Genomic 
DNA Purification Kit (Promega, Madison, WI USA). DNA purity and 
concentration were determined (NanoDrop 2000c, Thermo 
Scientific, Waltham, MA, USA) (Sambrook and Russell, 2001). 
 
 
Molecular identification of L. monocytogenes 
 
Two sets of primers were employed: L1/U1 and LF/LR. PCR final
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Figure 1. Map of Colombia with the two main areas of pork meat derivate product production. 
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Table 1. Sets of primers used successively in molecular serotyping L. monocytogenes. 
 

Primers set Forward sequence Reverse sequence Product 
Size (bp) 

Amplification conditions 
Hot start; (cycles details) # cycles; final extension Especificity Ref 

       
L1/U1 CTCCATAAAGGTGACCCT CAGCMGCCGCGGTAA TWC 938 

95°C x 1´; (94°C x 30s, 51°C x 20s, 72°C x 30s) 40; 72°C x 8´ 
Genus (16S rADN) 

Ruiz-Bolivar  
et al. (2011)   
 

     
LF/LR CAAACGTTAACAACGCAGTA TCCAGAGTGATCGATGTTAA 750 Specie (hlyA) 
      
D1* CGATATTTTATCTACTTTGTCA TTGCTCCAAAGCAGGGCAT 214 95°C x 3´; (95°C x 30s; 59°C x 30s; 72°C x 1´) 25; 72°C x 10´ Divisions I or III 
      
D2* GCGGAGAAAGCTATCGCA TTGTTCAAACATAGGG CTA 140 95°C x 3´; (95°C x 30s; 59°C x 30s; 72°C x 1´) 25; 72°C x 10´ Division II 
      
FlaA TTACTAGATCAAACTGCTCC AAGAAAAGCCCCTCGTCC 538 95°C x 3´; (95°C x 30s, 54°C x 30s; 72°C x 1´) 25; 72°C x 10´ Serotypes ½a y 3a 
      
GLT AAAGTGAGTTCTTACGAGATTT AATTAGGAAATCGACCTTCT 483 95°C x 3´; (95°C x 30s, 45°C x 30s; 72°C x 1´) 25; 72°C x 10´ Serotypes ½b y 3b 
      
MAMA-C * CAGTTGCAAGCGCTTGGAGT  GTAAGTCTCCGAGGTTGCAA 268 95°C x 10´; (95°C x 30s, 55°C x 1´, 72°C x 1´) 40; 72°C x 10´ Serotypes 4a y 4c 
       
CLM1/CLM2 ACA GCT GGG ATT GCG GT CCC AGC CAG AGC CGT GGA 1395 95°C x 5´; (95°C x 90s, 54°C x 1´, 72°C x 3´) 33; 72°C x 7´ Serotypes ½a, ½c, 4b Comi et al.  (1997)  

 

Conditions for electrophoresis.: 1% (w/v) agarose gel in buffer TAE 1X (40mM Tris-acetate, 1mM EDTA pH 8.0 ± 0.2), 120 volts, 1h. *: 2% (w/v) agarose gel in buffer TAE 1X. : 1.2 (w/v) agarose gel in 
buffer  TAE 1X. : 1% (w/v) agarose gel in buffer TAE 1X, a 4 V/cm. :   2.5% (w/v) agarose gel in buffer TAE 1X. Molecular size markers used were 100 bp (Promega, Invitrogen or Axygen). Gels were 
stained with ethidium bromi de (5 mg/ml). 
 
 
 
reaction volume was 35 μl, composed of 1X Green PCR 
buffer, 1.5 mM  MgCl2, 0.2 mM dNTPs, 20 pmol of primers 
and 2U of GoTaq Flexi DNA polymerase (Promega). Five 
μl of DNA were used for thermal cycling. Cycling 
temperature was controlled in a C1000TM Thermal Cycler 
(BioRad, Hercules, CA USA). Amplification cycles and 
temperatures are listed in Table 1. L. monocytogenes 
(ATCC 19115) was used as PCR positive control 
(Gamboa-Marín et al., 2013). 
 
 
Sorting by divisions and molecular serotyping 
 
Isolates of L. monocytogenes were sorted-out by divisions 
using a Multiplex-PCR with two pairs of primers. Pair D1 

yields a 214 bp product and classifies isolates into division 
I (serotypes 1/2b, 3b, 4b, 4d and 4e) or division III 
(serotypes 4a and 4c). Pair D2 yields a 140 bp product and 
classifies the isolates into division II (serotypes 1/2a, 1/2c, 
3a and 3c). Isolates classified into division II were subtyped 
using the FlaA primer set to generate a 538 bp product, 
characteristic of serotypes 1/2a and 3a. The absence of 
amplification product indicated the presence of serotypes 
1/2c or 3c. Isolates grouped into divisions I and III were 
subtyped with the GLT primer set to obtain a 483 bp 
product identifying serotypes ½b and 3b. Isolates that did 
not amplify a 483 bp product were considered serotype 4, 
and thus further subtyped with primers MAMA-C 
(LM4/LMB) yielding an amplified product of 268 bp that 
identifies serotypes 4a and 4c. Consequently, strains that 

did not amplify a 268 bp fragment were considered of 
serotype 4b/4d/4e, (Ruiz-Bolivar et al., 2011), (Table 1). 
The 100 bp ladder (Promega or Invitrogen, Carlsbad, CA 
USA) was used as molecular marker, and L. 
monocytogenes (ATCC 1915) was used as a positive PCR 
control. 
 
 
Serotyping reaction mixtures 
 
Primer sets D1 and D2 were used for classifying into 
divisions, and primer sets FlaA and GLT were used for 
PCR subtyping. The reaction mixture consisted of: 25 μl 
reaction volume, 50 pmol/μl of each primer, 1U of GoTaq 
Flexi DNA polymerase, 1X of Green PCR Buffer, 0.2 mm of  



 

 

 
 
 
 
each dNTP, 2.5 mM MgCl2 and 5 μl of sample DNA.  For PCR 
subtyping of serotype 4 of division III, the primer set MAMA-C was 
used; the reaction mixture consisted of: reaction volume of 50 μl, 
0.5 μmol of each primer, 2U TaqDNApol, 1X PCR buffer, 200 μM of 
each dNTP, 2.0 mM MgCl2 and 2 μl of sample DNA (Ruiz-Bolivar et 
al., 2011). Cycles and temperatures of the amplifications are listed 
in Table 1.  
 
 
Molecular confirmation of serotypes 1/2a, 1/2c and 4b  
 
Isolates that were classified in serotype groups as 1/2a/3a, 1/2c/3c 
and 4b/4d/4e were subtyped by a single PCR by using a primer set 
CLM1/CLM2 which located within the iap gen of L. monocytogenes 
with a 1395 bp product. The reaction volume was 50 μl containing 
0.1 pmol of each primer, 1.25U Taq DNA polymerase (Vivantis, 
Oceanside, CA USA distributed by Wacol S.A. Colombia), 1X PCR 
buffer, 0.125 mM of each dNTP, 1.5 mM MgCl2 and 5 μl (~100 ng) 
of DNA sample (Table 1). Five microliter of each CLM1/CLM2 PCR-
products were digested with HindIII restriction enzymes (Vivantis, 
distributed by Wacol S.A. Colombia), following the manufacturer’s 
instructions (Comi et al., 1997).  
 
 
Disinfectant tolerance test 
 
All isolates were evaluated "in vitro" by using the “Disinfectants 
Tolerance Test” method, according to Colombian Technical 
Standard NTC5150, 2003. The disinfectants tested were per-acetic 
acid (0.5-1.0% v/v) and alkyl dimethyl benzyl ammonium chloride 
(DCA, 0.5, 2.0 and 3% v/v). 
 
 
Characterization of the risk factors 
 
Prevalence of L. monocytogenes risk characterization in each type 
of tested surface was analyzed, and the following scale was 
assigned: 0% insignificant, 1-10% low, 11-30% medium and high 
with values above 30%. Additionally, contamination of the final 
product was estimated by using a 2 x 2 matrix following the model 
proposed by the World Health Organization (WHO). Severity was 
determined based on the possibility of product contamination with 
L. monocytogenes, by using the following scale.  
 
a) Low: Contaminated surface was not in direct contact with the 
finished product. 
b) Medium: Contaminated equipment or raw meat used before 
thermal processing. 
c) High: Equipment, surfaces or utensils were in direct contact with 
the finished product after subjected to thermal processing. 
 
 
RESULTS AND DISCUSSION 
 
For the five plants analyzed our results pointed out the 
following risks: use of wooden baskets (plant 2), use of 
equipment with additions made out of iron (plant 2), 
weekly monitoring instead of a daily inspection of residual 
chlorine in the water (plant 3), raw meat storage 
temperatures higher than the country’s mandatory 
temperature (plant 3), and finished product storage 
temperature higher than 4°C (plants 1 and 5). 

The  most  important extrinsic  parameter  to  control  L. 
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monocytogenes is temperature, considering its ability to 
grow in refrigeration temperatures. This aspect is critical 
for meat products. Even at low initial contamination 
concentrations, the organism can multiply during storage 
in the processing plant or the market, reaching levels 
above the minimum infective dose (1000 CFU/g). It has 
been shown that these levels can be achieved during the 
lifetime of the product, when stored at temperatures 
ranging between 4 - 9°C. From our results we observed 
that plants 1 and 5 maintain products at storage 
temperatures within this range, and are therefore at risk 
(Sergelidis et al., 1997). 

A total of 36 isolates of L. monocytogenes were 
molecularly identified and serotyped  as follows (Figure 
2): plant 1: 13/53 samples were positive (24.5%), plant 2: 
10/71 samples were positive (14%); plant 3: 4/61 
samples were positive (6.5%), plant 4: 9/89 samples 
were positive (10%) and plant 5: 0/40 were positive (0%), 
demonstrating that the presence of this organism due to 
external factors, for an overall prevalence of 11.46%. Our 
results agree with studies by Gudbjörnsdóttir et al., 
(2004) who reported a prevalence ranging between 0 and 
15.1% and are inferior to those obtained by 
Chasseignaux et al., (2002) who reported 23.7%. These 
differences may be related to the technology level and 
equipment used. Isolates were recovered from: work 
surfaces (33%), followed by raw meat (29%) and knives 
(16.7%). As with other reports the most frequent site of 
contamination were floors (Thévenot et al., 2006). Non-
contact surfaces represented 14% and 10% in 
processing equipment, demonstrating that any 
environment within the meat industry may be 
contaminated with this bacterium. 

For many years pork-meat derived products have been 
associated with foodborne outbreaks around the world 
(Goulet et al., 1998; CFIA, 2008). When analyzing the 
causes of outbreaks, it has been determined that 
contamination in meat processing plants occurs at the 
post-processing stage or by the presence of 
contaminated raw meat entering the plants. The latter 
one are contaminated during the deboning process, 
because the prevalence of this organism during the 
benefit has been low 3.7 to 4%, (Gamboa-Marín et al., 
2012), 4% (Kanuganti et al., 2002). Several studies 
indicate that contamination of raw meat occurs mainly in 
deboning-rooms (Van den Elzen and Snijders, 1993; 
Nesbakken et al., 1996).  

In the present study we found L. monocytogenes in four 
out of five plants, which confirms the ability of this 
microorganism to enter into meat processing plants, 
despite established programs for cleaning and 
disinfection. The presence of L. monocytogenes showed 
a wide spread in meat processing plants, which is 
consistent with studies by various authors (Chasseignaux 
et al., 2002; Thévenot et al., 2006). L. monocytogenes 
can survive industrial environments because it can grow 
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Figure 2. A: DNA isolation, molecular identification and serotyping of isolates of L. monocytogenes. (a1) 1 - 6. DNA extractions. (a2) 
Amplification with U1/L1-LF/LR for genus and species Lane 7: Listeria spp. isolate, Lane 8: L. monocytogenes ATCC 19115, Lane 9:  L. 
monytogenes isolate (present study), Lane 10: PCR reagent control. (a3) Amplification with D1/D2 to clasify in Division I or Division II and III. 
Lanes 18 and 19: L. monytogenes isolates (present study), Lane 20: L. monocytogenes ATCC 19115, Lane 21: L. monytogenes isolate 
(present study), Lane 22: PCR reagent control, Lane 23: L. monocytogenes isolate (present study) amplified with U1/L1-LF/LR for genus and 
species. (a4) Lanes 11 and 12: Amplification with FlaA for individuals in the Division II, Lane 13: L. monocytogenes ATCC 19115 amplified 
with GLT serotype 1/2b, Lanes 14 and 16: amplification with GLT of  1/2b or 3b isolates, Lane 17: PCR reagent control. (a5) Lanes 24 - 26: 
isolates of serotype 4 that were not amplified with MAMA-C, therefore classified as serotypes 4b/4d/4e, Lane27: the same DNA as in lane 20, 
Lane 28: the same DNA as in lane 14. (a6) amplification with CLM1/CLM2, Lane 29: L. monocytogenes ATCC 19115, Lanes 30 and 31: 
serotypes 4b/4d/4e isolates). (a7) Restriction Enzyme Analysis of amplification products obtained with CLM1/CLM2, Lane 32: same DNA as in 
lane 30, Lane 33 same DNA as in lane 31, Lane 34: isolate of serotype 1/2a, 3a showing the expected restriction pattern with HindIII, 
therefore serotype 3a, Lane 35: isolate of serotype 4b/4d/4e, showing the expected restriction pattern with HindIII, therefore serotype 4b. B: 
Distribution of serovars of L. monocytogenes in meat processing plants. 
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at low temperatures, adheres easily to surfaces, and 
some strains are tolerant to disinfectants (Ruiz-Bolivar et 
al., 2011). According to Kathariou (2002) the main source 
of food contamination by L. monocytogenes before 
arriving to the final consumer seems to be the processing 
environment. The RTE food can become contaminated 
by contact with raw meat or ingredients, equipment and 
utensils, or post-processing contamination.  This issue 
was confirmed by our results as we demonstrated L. 
monocytogenes on meat choppers.  

Gandhi and Chikindas (2007), emphasize that food 
contamination can occur at any stage of processing, and 
the most important source of re-contamination are raw 
products. In the present study two plants were found to 
be contaminated with raw meat. Other authors indicate 
that L. monocytogenes can survive in different types of 
surfaces, including stainless-steel (material commonly 
used in the meat industry for equipment, tools and work 
tables). Previous studies have demonstrated L. 
monocytogenes’ ability to persist and form biofilms 
(Mattos de Oliveira et al., 2010). All these risk factors 
favor the cross-contamination between the environment 
and all processing equipment (Jemmi et al., 2002).  

Figure 2A shows the identification and molecular 
characterization of isolates and Figure 2B depicts the 
serovars isolated. Serovar 4d/4e was detected in all 
plants positive for L. monocytogenes. Serovar 4b was 
isolated from plants 1 and 2; in this latter one it was 
isolated from the chopper. Serovar 3a was recovered in 
samples from three different plants. Some of the isolates 
only amplified bands for genus (938 bp) and species (750 
pb), but no amplification products were generated with 
primers used for serotyping. Thus they were grouped as 
members of serotypes 4ab or 7, these results remain to 
be confirmed experimentally (Figure 2B). 

Although Orsi et al., (2011), indicated that serotypes 
1/2 a, 1/2 c, 3a and 3c are often found in food processing 
plants because of their greater ability to adapt to the 
environment, this study also identified isolates of 
serotype 4. We assert the finding of serovar 4b, as it has 
been associated to primary causes of foodborne 
outbreaks.   

Regarding disinfectants evaluation, no isolates were 
tolerant to per-acetic acid at the concentrations studied. 
Nine isolates (25%) from: floors (3), walls (3) and sewage 
(3) displayed tolerance to ACDA at concentrations of 0.5 
and 2.0% (v/v). When analyzing the isolates’ tolerance to 
disinfectants, it was found that those isolated from 
sewage, floors and walls showed certain tolerance 
degree to ACDA, which suggests that contact with 
organic matter and high humidity, promotes the formation 
of a biofilm, increasing the tolerance to disinfectants 
(Denyerae and Stewart, 1998). Additionally, L. 
monocytogenes’ presence in sewage received sublethal 
concentrations of disinfectant, allowing it to gradually 
adapt to  these substances,  favoring  the  persistence  of 

Carrascal-Camacho et al.         1905 
 
 
 
some strains (Mattos de Oliveira et al., 2010). 

Our results are consistent with other studies that 
demonstrated an increase in the tolerance of L. 
monocytogenes to quaternary ammonium (Mereghetti et 
al., 2000), traditionally used disinfectants in the food 
industry. This data suggest the possible presence of 
efflux pumps as an adaptation mechanism in sensitive 
strains (To et al., 2002).  

Risk factors classification for each meat processing 
plant is described in Table 2. As depicted in this table risk 
varied among plants. None the less, some surfaces and 
equipment had increased contamination, with chopper 
and cutter at the highest risk. Furthermore, we found this 
organism in raw meat.  

Traditionally studies to assess the risk factors of L. 
monocytogenes in the industry are established through 
the sampling of different sites where the organism may 
be present and correlated with environmental factors 
(Giovannacci et al., 1999; Chasseignaux et al., 2002). 
However, this appraisal cannot determine the impact that 
contamination could have on the final product. In this 
study we propose to qualify the risk factors. This model 
proposes to estimate the probability level of contaminated 
foods leaving the factory.  This tool allowed to 
demonstrate that the contamination vary depending on 
the processing plant, agreeing with several authors 
(Chasseignaux et al., 2002; Thévenot et al., 2006). 
Moreover, this tool allowed establishing that the number 
of contaminated sites along the production process is 
proportional to the risk of final product contamination. It 
was also demonstrated that the critical risk on plant 3 
was the chopper. If this equipment is contaminated with 
L. monocytogenes, it increases the possibility of releasing 
contaminated product to the customer. Additionally it 
demonstrated the low risk that sewage represents to the 
final product. However, it remains an issue to be 
considered. Last, this model allowed determining which 
and how areas within the plant should be treated to 
reduce contamination of the final product. 
 
 

Conclusions 
 

Finally, one of the most important practices for the control 
of L. monocytogenes in processing plants should be to 
implement a cleaning and disinfection program under 
strict monitoring. As part of this program it should be 
included cleaning of sewage. It is decisive during this 
cleaning to avoid the formation of aerosols and the use of 
high pressure systems. 

The general prevalence of L. monocytogenes in pork 
meat processing plants was 11.46%. The main risk 
factors were: raw meat, cutter, mixer, sewage and 
choppers. The best strategy for reducing L. 
monocytogenes in meat processing plants is the 
implementation and monitoring of cleaning and 
disinfection programs. 
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Table 2. Risk factors that favor the presence of L. monocytogenes in Colombian pork meat processing plants. 
 

Sample origin Number of Samples taken Positive Samples Prevalence Frequence Severity Risk 

Plant 1 
Floors 3 0 0 Insignificant Low Insignificant 
Walls 4 0 0 Insignificant Low Insignificant 
Sewage 5 2 40 High Low Low 
Desks 2 1 50 High Medium High
Knives 2 0 0 Insignificant Medium Insignificant 
Mill 6 3 50 High Medium High 
Mixer 4 2 50 High Medium High 
Stuffer 9 1 11 Medium Medium High 
Cutter 6 3 50 High Medium High 
Chopper 6 0 0 Insignificant High Insignificant 
Baskets 2 0 0 Insignificant High Insignificant 
Raw meat  2 1 50 High Medium High 

 
Plant 2 
Floors 4 0 0 Insignificant Low Insignificant 
Walls 4 0 0 Insignificant Low Insignificant 
Sewage 6 0 0 Insignificant Low Insignificant 
Desks 4 1 25 Medium Medium High 
Knives 2 1 50 High Medium High 
Mill 6 0 0 Insignificant Low Insignificant 
Mixer 6 0 0 Insignificant Low Insignificant 
Stuffer 15 0 0 Insignificant Low Insignificant 
Cutter 6 1 17 Medium Medium High 
Oven 2 1 50 High Medium High 
Chopper 9 5 56 High High Critical
Baskets 3 0 0 Insignificant Low Insignificant 
Emulsifier 2 1 50 High Medium High 
Raw meat 2 1 50 High Medium High 
       
Plant 3 
Floors 2 0 0 Insignificant Low Insignificant 
Walls 4 3 75 High Low Insignificant 
Sewage 11 0 0 Insignificant Low Insignificant 
Mill 5 0 0 Insignificant Low Insignificant 
Mixer 8 0 0 Insignificant Low Insignificant 
Stuffer 17 0 0 Insignificant Low Insignificant 
Chopper 6 1 17 Medium High High 
Emulsifier 1 0 0 Insignificant Low Insignificant 
Raw meat  1 0 0 Insignificant Low Insignificant 
 
Plant 4 
Floors 7 1 14 Medium Low Low 
Walls 5 0 0 Insignificant Low Insignificant 
Sewage 14 5 35 High Low Insignificant 
Mill 18 2 11 Medium Medium Higher 
Mixer 12 0 0 Insignificant Low Insignificant 
Stuffer 14 0 0 Insignificant Low Insignificant 
Oven 2 0 0 Insignificant Medium Insignificant 
Baskets 3 0 0 Insignificant Low Insignificant 
Emulsifier 1 0 0 Insignificant Low Insignificant 
Raw meat  1 0 0 Insignificant Low Insignificant 
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