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al.,1999; Raheman and Mondal, 2012). However, these 
compounds can be degraded by bacteria (Joshi et al., 
2011) or white rot fungi, such as Pleurotus ostreatus (da 
Luz et al., 2014; Kasuya et al., 2012). Similarly, fungi 
have been efficiently used to increase the digestibility and 
nutritional value of agroindustrial residue, such as cocoa 
husk (Alemawor et al., 2009), Brachiaria sp. (Bisaria et 
al., 1996) and Jatropha seed cake (Kasuya et al., 2012).  

Jc has been used as a substrate for white-rot fungal 
growth (de Barros et al., 2011; Kasuya et al., 2012; da 
Luz et al., 2013; Da Luz et al., 2014). However, previous 
studies focused on the degradation of phorbol ester to 
improve the usefulness of this material. Here, we focused 
on improving mycelial growth in the substrate. Recently, 
fungal growth was associated with the improved chemical 
composition of Jc (Kasuya et al., 2012). Therefore, better 
fungal growth might increase, for example, its protein 
content, in vivo digestibility and palatability, all of which 
are desirable characteristics for further uses in animal 
feed.  

We combined Jc with different agro-industrial residues 
in order to look for substrate compositions that better 
supported fungal growth and that reduced lignin and 
cellulose/hemicellulose content, as lignocellulosic com-
pounds have an adverse effect on digestibility of feed 
(Woodman and Stewart, 1932). This biological processing 
by fungi may be an effective alternative means of adding 
economic value to Jc by transforming it into animal feed. 
 
 
MATERIALS AND METHODS 
 
Microorganism  
 
The fungus used was P. ostreatus isolate PLO 6 (KC782771, 
GenBank, 2013) from the Laboratory of Mycorrhizal Associations of 
the Universidade Federal de Viçosa. It was grown in a Petri dish 
containing 20 mL of potato dextrose agar culture medium (PDA, 
Merck, Darmstadt, Germany) at pH 5.5 ± 0.3 and incubated at 
25°C. 
 
 
Substrate composition and growth conditions  
 
Pure Jc or Jc supplemented with agro-industrial residues were used 
for PLO 6 growth. The type and amount of agro-industrial residues 
added to Jc was chosen based on substrate compositions that are 
commonly used for white rot fungi growth and lignocellulolytic 
enzymes production (Nunes et al., 2012; Wang et al., 2009). Forty-
five grams of substrate were combined with 25 mL of tap water in a 
250 mL glass beaker and autoclaved at 121°C for 20 min. The 
substrate was then innoculated using fungi grown in rice (de 
Assunção et al., 2012) and incubated for 45 days at 25°C. This 
incubation time was determined based on a previous study (da Luz 
et al., 2013). Three grams sample from each flask were used to deter-
mine the pH, as well as ergosterol, lignin and cellulose/hemicellulose 
levels.  
 
 
Fungal biomass determination using ergosterol 
 
Ergosterol analysis was used to quantify fungal biomass as described 
previously (Richardson and Logendra, 1997) but with some modi-
fications. Five grams of  substrate was triturated and added to 0.3 g 

 
 
 
 
polyvinylpyrrolidone (Sigma) and 15 mL of 95% ethanol. This material 
was centrifuged for 20 min at 4200 xg at 4°C. The supernatant was 
filtered through a Teflon sieve (200 mm x 53 μm) and stored at 4°C 
before analysis by high performance liquid chromatography 

(Shimadzu, CLC-ODS reverse phase and UV detection at 280 nm) 
using a methanol (Sigma) flow rate of 1.0 mL min-1. A standard 
curve was prepared using ergostatrien-3β-ol (Sigma) dissolved in 
95% ethanol. Fungal biomass was determined by the relationship 
between the ergosterol content and the dry mass of fungal mycelium 
cultivated in PDA for 15 days. For dry mass deter-mination, the 
medium colonized by the fungus was filtered through the Teflon 
sieve, transferred to a porcelain dish and dried at 60°C until mass 
was constant (Barajas-Aceves et al., 2002).  
 
 
Lignin content  
 
For total lignin determination, 1 g sample of each substrate before 
and after fungal colonization was treated with 10 mL of a mixture of 
95% ethanol and 5% toluene and 10 mL hot water (100 ± 10°C) to 
remove wax and mucilage. This material was filtered, washed and 
dried at 60°C (Van Soest, 1963; Hatfield et al., 1994). Then, 20 mL 
of 72% sulfuric acid was added, and the material was autoclaved at 
121°C for 1 h. After 12 h at 25°C, the material was filtered (Whatman, 
GF/D) and washed in hot water until the acid was completely 
removed. 

For insoluble lignin determination, the solid material retained in 
the filter paper was dried at 105°C until its mass was constant. The 
soluble lignin content was determined in the acid solution before 
washing with hot water by measuring the difference between absor-
bance at wavelengths of 215 and 280 nm (Van Soest, 1963; Hatfield 
et al., 1994). 
 
 
Cellulose/hemicellulose content 
 
Cellulose/hemicellulose content was quantified in the same acid 
solution that was used for lignin content determination (Van Soest, 
1963; Hatfield et al., 1994). For this assay, 1 mL of sample was added 

to 3 mL of sodium hydroxide (2 mol L-1) and 1 mL DNS solution 
(99.5% dinitrosalicylic acid, 0.4% phenol and 0.14% sodium 
metabisulfite). This mixture was boiled at 100°C for 5 min. Water 
was then added to make it 5 mL and the absorbance was 
measured at 540 nm.  
 
 
pH determination 
 
The pH of each substrate before and after 45 days of fungal growth 
was measured as described by Sodré et al. (2001). Five grams of 
each substrate was placed in Erlenmeyer flasks (125 mL) containing 
15 mL water. The flasks were kept in a shaker for 12 h at 220 rpm. 
The material was then left to stand for 1 h and the pH was 
measured in the supernatant.  
 
 
Statistical analysis 
 
This experiment was conducted using a completely randomized 
design with five replicates for each substrate. The data were 
subjected to analysis of variance, and averages were compared by 
Tukey’s test (p < 0.05) using Saeg software (version 9.1, 
Universidade Federal de Viçosa). 
 
 

RESULTS  
 

The percentage of lignocellulosic compounds in the sub-
strate was influenced by the types and amount of
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DISCUSSION  
 
In this study, the addition of agroindustrial residues to Jc 
affected fungal growth (Figure 1), perhaps by altering some 
physicochemical characteristics of the substrate. The 
addition of low granulometry substrates, for example, rice 
bran, likely decreased internal empty spaces available in 
the substrate (Rossi et al., 2003), reducing gas exchange 
with the atmosphere and oxygen availability, which is 
fundamental for aerobic microorganisms. Additionally, the 
substrate C:N ratio is important for mycelial growth (Mwangi 
et al., 2012) and alterations in this parameter can signi-
ficantly change fungal growth rates (Couto et al., 2012; 
Mwangi et al., 2012). The addition of corncobs, a sub-
strate with lower nitrogen content than Jc, decreased the 
fungal growth rate (Figure 1). It is worth noting that for 
better fungal growth, the substrate C:N ratio must be 
approximately 25:35 (Mwangi et al., 2012). Moreover, the 
presence of toxic compounds (e.g., caffeine found in the 
coffee husk) can inhibit or decrease P. ostreatus growth 
(Pandey et al., 2000; Fan et al., 2003). However, this 
problem seems to be attenuated by performing a prior 
boil of the substrate (Houdeau et al., 1991; da Silva et al., 
2012; de Assunção et al., 2012). Therefore, substrates 
should be carefully selected to favor fungal growth.  

The decreasing lignin and cellulose/hemicellulose degra-
dation seems to influence fungal growth (Figures 2 and 
3). Cavallazzi et al. (2004) noted that carbohydrases in P. 
ostreatus can metabolize new carbon resources from 
polysaccharides, while its lignocellulosic enzymes can 

break down lignin polymers and phenolic compounds. As 
lignin and cellulose/hemicellulose are the main source of 
carbon in Jc (Kasuya et al., 2012), the activity of these 
enzymes is highly relevant for fungal growth in this sub-
strate. Therefore, it is expected that substrates with more 
readily available carbon sources (e.g., monosaccharides, 
cellulose) should support fast and efficient mycelial growth. 
Indeed, here we observed that P. ostreatus grew well in 
Jc, the substrate with the highest level of cellulose/-
hemicellulose (Table 1). However, the addition of agro-
industrial residues decreased the level of these com-
pounds (Table 1), which in turn increases the importance 
of substrate depolymerization by lignocellulolytic enzymes 
in order to improve availability of carbon for fungal growth 
(Mata and Savoie, 1998). However, instead of increasing, 
lignin degradation also decreased when some residues 
were added (Figure 2), probably reducing carbon avai-
lability for mycelial growth, which may explain the 
reduction in fungal growth (Figure 1). Thus, the addition 
of substrates with a high level of cellulose/hemicellulose 
seems to be an interesting strategy to improve fungal 
growth and expand the potential uses of Jc.  

Lignin and cellulose/hemicellulose degradation (Figures 
2 and 3) can increase digestible dry mass, given the 
natural recalcitrance of these compounds (Pérez et al., 
2002). Indeed, an increase in digestibility after lignin degra-
dation was shown when Phanerochaete chrysosporium  
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was cultivated on cotton stalks (Shi et al., 2009) and 
Pleurotus sajor-caju was cultivated on agroindustrial resi-
dues (Bisaria et al., 1996). Here, supplementation with 
agroindustrial residues was shown to be an effective way 
to decrease lignin and cellulose/hemicellulose in the sub-
strate before and after fungal growth (Table 1). Among 
the treatments that did not influence the fungal growth 
(Figure 1), Jc supplemented with 10% coffee husk had 
the lowest lignin content (Table 1). Furthermore, the 
lignin and cellulose/hemicellulose content was lower than 
pure Jc (Table 1). This difference is important for animal 
feed, because a negative relationship between digesti-
bility and lignocellulosic compounds content has been 
observed for more than 70 years (Woodman and Stewart, 
1932).  

Recently, P. ostreatus growth in Jc was observed to 
increase its in vitro digestibility and the amount of non-
fiber carbohydrates and crude protein (da Luz et al., 
2014), which are all desirable features for animal feed 
(Montagne et al., 2003). Moreover, Kasuya et al. (2012) 
showed that Jc after P. ostreatus growth was well-accepted 
by goats, leading to an increase in dry mass intake. The 
above authors pointed out that consumption and pala-
tability of the feed was not diminished by the inclusion of 
detoxified Jc. Here, lignin and cellulose/hemicellulose con-
tent after fungal growth (Table 1) were lower than that 
reported by Kasuya et al. (2012). In this study, Jc supple-
mented with 10% coffee husk and processed via fungal 
growth showed good potential for use as an animal feed.  

However, some considerations about coffee husk 
should be made, as coffee husk contains antinutritional 
compounds, such as tannins and caffeine (Pandey et al., 
2000). Both compounds were shown to be degraded by 
P. ostreatus (Fan et al., 2003; da Luz et al., 2013), 
although the degradation of these compounds should be 
further evaluated, as tannins have an adverse effect on 
rumen metabolism (Makkar et al., 1995) and caffeine can 
cause dependence (Griffiths and Woodson, 1988) and, 
depending on the concentration, can even be toxic to 
animals (Hosenpud et al., 1995). Indeed, the intake of 
feed with 20% coffee grounds by rats has been shown to 
negatively affect dry matter digestibility by depressing 
feed intake and increasing urinary output and water 
intake (Campbell et al., 1976). Thus, from this starting 
point, further studies should evaluate the degradation of 
tannins and caffeine by fungi in Jc supplemented with 
10% coffee husk, and animal assays should be 
performed using this substrate.  
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