Full Length Research Paper
ABSTRACT
Spirulina subsalsa, a filamentous cyanobacterium, was first described by Gomont in 1892. This microorganism has been subject to biotechnological evaluations, due to their high content of proteins and pigments. The objective of this study was to analyze the biochemical composition of the biomass of a native strain of S. subsalsa cultivated in low-cost saline medium and harvested in the exponential and stationary phases of growth. The highest protein contents (58.5%) were obtained in the exponential phase; while the highest amounts of carbohydrates (20%), lipids (19.7%), chlorophyll (51.6 μg/ml), total carotenoids (218,215 μg/ml), exopolysaccharides (7.30 ± 0.7 mg/ml) and phycocyanin (25.8 μg/ml) were accumulated in the stationary phase. Additionally, in the biomass of S. subsalsa, the presence of saponins and polyphenols was detected in both growth phases, whereas basic alkaloids and flavonoids were detected only in the stationary phase. This article concludes information on the potential future biotechnological applications of the cyanobacterium strain, S. subsalsa.
Key words: Cyanobacterium, biotechnology, Spirulina subsalsa.
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
CONFLICT OF INTERESTS
The authors have not declared any conflict of interests.
REFERENCES
Ahmed H, Metwally S, Mohamed M, Ahmed E, Nour S, Azmuddin M (2014). Evaluation of antioxidants, pigments and secondary metabolites contents in Spirulina platensis. Applied Mechanics and Materials 625:160-163. |
|
Aiba S, Ogawa T (1977). Assessment of growth yield of a blue-green alga: Spirulina platensis, in axenic and continuous culture. Journal of General Microbiology 102:179-182. |
|
Amala K, Ramanathan N (2013). Comparative studies on production of Spirulina platensis on the standard and newly formulated alternative medium. Science Park 1(1):1-10. |
|
Andrade L, Andrade C, Días M, Nascimento C, Mendes M (2018). Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. Food Processing and Technology 6(1):45-58. |
|
Ayachi S, El Abed A, Dhifi W, Marzouk B (2007). Chlorophylls, proteins and fatty acids amounts of Arthrospira platensis growing under saline conditions. Pakistan Journal of Biological Sciences 10:2286-2291. |
|
Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf J, Codd G, Pflugmacher S (2004). Cyanobacteria and cyanobacterial toxins in three alkaline lakes of Kenya - Lakes Bogoria. Nakuru and Elmenteita. Journal Plankton Research 26:925-935. |
|
Bernal J (2002). Taxonomy of microalgae on the banks of the Clavellinos Reservoir, Ribero Municipality, Sucre State, Venezuela. Thesis of Degree. Department of Biology, Universidad de Oriente, Cumaná, Venezuela. |
|
Bligh E, Dyer W (1959). A rapid method of total lipid extraction and purification. The National Research Council of Canada. Canadian Journal of Biochemistry and Physiology 37:911-917. |
|
Blumwald E, Tel-Or E (1982). Osmoregulation and cell composition in salt-adaptation of Nostoc muscorum. Archive of Microbiology 132:168-172. |
|
Borowitzka M (1995). Microalgae as a source of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 7:13-15. |
|
Campanella L, Cubadda F, Sammartino D, Saoncella A (2001). An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Research 35(1):69-76. |
|
Chamorro G, Salazar M, Gomes K, Pereira C, Ceballos G, Fabila L (2002). Update on the pharmacology of Spirulina (Arthrospira), an unconventional food. Archivo Latinoamericano de Nutrition 52:232-240. |
|
Colla L, Reinehr C, Reichert C, Costa A (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology 98:1489-1493. |
|
De Philippis R, Margheri M, Pelosi E, Ventura S (1993). Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. Journal of Applied Phycology 5:387-394. |
|
Domínguez X (1973). Methods of photochemical research. Mexico. Limusa pp. 81-226. |
|
Dubois M, Gilles K, Hamilton J, Rebers P, Smith F (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3):350-356. |
|
Faucher O, Coupal B, Leduy A (1979). Utilization of seawater and urea as a culture medium for Spirulina maxima. Canadian Journal of Microbiology 25:752. |
|
Gabbay-Azaria R, Schonfeld M, Tel-Or S, Messinger R, Tel-Or E (1992). Respiratory activity in the marine cyanobacterium Spirulina subsalsa and its role in salt tolerance. Archive of Microbiology 157:183-190. |
|
Gómez P, González M (2005). The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biological Research 38(2-3):151-162. |
|
Gomont M (1892). Monographie des Oscillariées (Nostocacées homocystées) of Annales des Sciences Naturelles, Botanique Series. Fortin 7(15):91-264. |
|
González E, Ortaz M, Peñaherrera C, Montes E, Matos M, Mendoza J (2003). Phytoplankton from five reservoirs of Venezuela with different trophic states. Limnetica 22(1-2):15-35. |
|
Guevara M, Arredondo-Vega B, Palacios Y, Saéz K, Gómez P (2016). Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients. Journal of Applied Phycology 28(5):2651-2660. |
|
Hamouda I, Doumandji A (2017). Comparative phytochemical analysis and in vitro antimicrobial activities of the cyanobacterium Spirulina platensis and the green alga Chlorella pyrenoidosa: potential application of bioactive components as an alternative to infectious diseases. Bulletin de l'Institut Scientifique 39:41-49. |
|
Jiang L, Pei H, Hu W, Ji Y, Han L, Ma G (2015). The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition. Bioresource Technology 180:304-310. |
|
Joset F, Jeanjean R, Hagemann M (1996). Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiology Plant 96:738-744. |
|
Klejdus B, Lojkovo L, Plaza M, Snoblovo M, Stěrbovo D (2010). Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. Journal of Chromatography A 1217:7956-7965. |
|
Kumar A, Mody K, Jha B (2007). Bacterial exopolysaccharides- a perception. Journal of Basic Microbiology 47:103-117. |
|
Kumari A, Kumar A, Pathak A, Guria C (2014a). Carbon dioxide assisted Spirulina platensis cultivation using NPK-10:26:26 complex fertilizers in sintered disk chromatographic glass bubble column. Journal of CO2 Utilization 8:49-59. |
|
Kumari A, Sharma V, Pathak A, Guria C (2014b). Cultivation of Spirulina platensis using NPK-10:26:26 complex fertilizer and simulated flue gas in sintered disk chromatographic glass bubble column. Journal of Environmental Chemical Engineering 2:1859-1869. |
|
Laloknam S, Bualuang A, Boonburapong B, Rai V, Takabe T, Incharoensakdi A (2010). Salt stress induced glycine-betaine accumulation with amino and fatty acid changes in cyanobacterium Aphanothece halophytica. Asian Journal of Food and Agro-industry 3:25-34. |
|
Licet B, Guevara M, Lemus N, Freites L, Romero L, Lodeiros C, Arredondo - Vega B (2014). Growth and biochemical composition of Arthrospira platensis (Cyanophyta Division) cultivated at different salinities and nitrogen sources. Boletín del Instituto Oceanográfico de Venezuela 53(1):3-13. |
|
Lightner D (1978). Possible toxic effects of the marine blue-green alga, Spirulina subsalsa, on the blue shrimp, Penaeus stylirostris. Journal of Invertebrate Pathology 32(2):139-150. |
|
Lowry O, Rosebrough N, Farr J, Randall, R (1951). Protein measurement with the Folin phenol reagent. US National Library of Medicine. National Institutes of Health. The Journal of Biological Chemistry 193(1):265-275. |
|
Magro F, Margarites C, Reinehr O, Gonçalves C, Rodigheri G, Costa J, Colla L (2018). Spirulina platensis biomass composition is influenced by the light availability and harvest phase in raceway ponds. Environmental Technology 39(14):1868-1877. |
|
Marcano D, Hasegawa M (2002). Organic phytochemistry Council of Scientific and Humanistic Development, Central University of Venezuela P 588. |
|
Marrez D, Naguib M, Sultan Y, Daw Z, Higazy A (2014). Evaluation of chemical composition for Spirulina platensis in different cultures media. Research Journal of Pharmaceutical, Biological and Chemical Sciences 5(4):1161-1171. |
|
Marrez D, Naguib M, Sultan Y, Daw Z, Higazy A (2013). Impact of culturing media on biomass production and pigments content of Spirulina platensis. International Journal of Advanced Research 1:951-961. |
|
Mazur-Marzec H, BÅ‚aszczyk A, Felczykowska A, Hohlfeld N, Kobos J, ToruÅ„ska-Sitarz A, Devi P, Montalvão P, D'souza L, Tammela P, |
|
Mikosik A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G (2015). Baltic cyanobacteria - a source of biologically active compounds. European Journal of Phycology 50:343-360. |
|
Molitor V, Erber W, Peschek G (1986). Increased levels of cytochrome oxidase and sodium-proton antiporter in the plasma membrane of Anacystis nidulans after growth in sodium enriched media. FEBS Letters 204:251-256. |
|
Möllers K, Cannella D, Jørgensen H, Frigaard N (2014). Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels 7:64. doi:10.1186/1754-6834-7-64. |
|
Murugan T, Rajesh R (2014). Cultivation of two species of Spirulina (Spirulina platensis and Spirulina platensis var lonar) on sea water medium and extraction of C-phycocyanin. European Journal of Experimental Biology 4(2):93-97. |
|
Nagle V, Mhalsekar N, Jagtap T (2010). Isolation, optimization and characterization of selected cyanophycean members. Indian Journal of Marine Science 39:212-218. |
|
Oliveira M, Monteiro M, Robbs P, Leite S (1999). Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International 7:261-275. |
|
Otero A, Vincenzini M (2003). Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. Journal of Biotechnology 102:143-152. |
|
Pande S, Parvin K, Venkitasubramanian T (1963). Microdetermination of lipids and serum total fatty acids. Analytical Biochemistry 6:415-423. |
|
Pelizer L, Oliveira I (2014). A method to estimate the biomass of Spirulina platensis cultivated on a solid medium. Brazilian Journal of Microbiology 45(3):933-936. |
|
Petrash D, Gingras M, Lalonde S, Orange F, Pecoits E, Konhauser K (2012). Dynamic controls on accretion and lithification of modern gypsum-dominated thrombolites, Los Roques, Venezuela. Sedimentary Geology 245-246:29-47. |
|
Premkumar K, Abraham S, Santhiya S, Ramesh A (2004). Protective effect of Spirulina fusiformis on chemical-induced genotoxicity in mice. Fitoterapia 75(1):24-31. |
|
Pulz O, Gross W (2004). Valuable products from biotechnology of microalgae. Applied Microbiology Biotechnology 65:635-648. |
|
Raoof B, Kaushik B, Prasanna R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy 30:537-542 |
|
Reed R, Borowitzka L, Mackay M, Chudek J, Foster R, Warr S, Moore D, Stewart W (1986). Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiology Reviews 39:51-56. |
|
Rincón D, Semprun A, Dávila M, Velásquez H, Morales E, Hernández J (2013). Production of Spirulina maxima flour to be used as an ingredient in the elaboration of fish diets. Zootecnia Tropical 31(3):187-191. |
|
Rippka R (1988). Isolation and purification of cyanobacteria. Methods Enzymology 167:3-27. |
|
Rodríguez A, Triana F (2006). Evaluation of the pH in the culture of Spirulina spp. (= Arthospira) under laboratory conditions. Science Faculty. Pontifical Javeriana University. Bogota Colombia. [Online document] View. |
|
Rodríguez G (2001). The Maracaibo System, Venezuela. En Seeliger, U. & Kjerfve, B (Eds.), Coastal Marine Ecosystems of Latin America. Editorial Springer, Alemania. |
|
Romero L, Guevara M, Bernal J (2018). Crecimiento y pigmentos de Spirulina subsalsa cultivada a diferentes salinidades y concentraciones de nitrógeno. Revista Mutis 8(2):25-36. |
|
Senthilkumar T, Jeyachandran S (2006). Effect of salinity stress on the marine cyanobacterium Oscillatoria acuminata Gomont with reference to proline accumulation. Seaweed Research and Utilization 28:99-104. |
|
Sharma G, Kumar M, Irfan M, Dut N (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. Journal of Microbial and Biochemical Technology 6(4):202-206. |
|
Shrivastav A, Mishra S, Mishra S (2010). Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. International Journal of Biology Macromolecular 46(2):255-260. |
|
Sokal R, Rohlf F (1995). Biometry. The Principles and Practice of Statistics in Biological Research. 3rd Edition, W.H. Freeman and Co., New York. |
|
Szulbert K, Wiglusz M, Mazur-Marzec H (2018). Bioactive metabolites produced by Spirulina subsalsa from the Baltic Sea. Oceanologia 60(3):245-255. |
|
Thajuddin N, Subramanian G (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science 89:47-57. |
|
Vicente V, Ríos-Leal E, Calderón G, Cañizares R, Olvera R (2004). Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium 94a isolated from an arid zone of Mexico. Biotechnology Bioengineering 85(3):306-310. |
|
Volkmann H, Imianovsky U, Oliveira J, Sant'anna E (2008). Cultivation of Arthrospira (spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Brazilian Journal of Microbiology 39:98-101. |
|
Zarrouk C (1966). Contribution of the study of a cyanophycea. Influence of various physical and chemical factors on the growth and photosynthesis of Spirulina maxima (Setch and Gardner) Geitler. Trab. Doct. University of Paris, Paris, Francia P 41. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0