African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5087

Full Length Research Paper

Antimicrobial activities of microbially-synthesized silver nanoparticles against selected clinical pathogens in Akure, Nigeria

Ekundayo E. A.1, Adegbenro A.2, Ekundayo F. O.2, Onipede H.2, Bello O. O.1* and Anuoluwa I. A.1
1Department of Biological Sciences, University of Medical Sciences, Ondo, Nigeria. 2Department of Microbiology, The Federal University of Technology, Akure, Ondo State, Nigeria.
Email: [email protected]

  •  Received: 14 August 2020
  •  Accepted: 21 January 2021
  •  Published: 31 March 2021

References

Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, Alkhulaif MM (2018). Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi Journal of Biological Sciences 26(6):1207-1215.
Crossref

 

Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces 28:313-318.
Crossref

 
 

Al-Khuzai RAH, Aboud MK, Alwan SK (2019). Biological Synthesis of Silver Nanoparticles from Saprolegnia parasitica. Journal of Physics: Conference 1294(6):1-15.
Crossref

 
 

Amr-Saeb TM, Alshammari AS, Al-Brahim H, Al-Rubeaan KA (2014). Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria. The Scientific World Journal.
Crossref

 
 

Anil-Kumar S, Abyaneh MK, GosaviSulabha SW, Ahmad A, Khan MI (2007). Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters 29:439-445.
Crossref

 
 

Bello OO, Mabekoje OO, Efuntoye MO, Bello TK (2012). Prevalence of vaginal pathogens associated with genital tract infections in Ogun State, Nigeria. British Microbiology Research Journal 2(4):277-289.
Crossref

 
 

Beneke ES, Rogers AL (2005). Medical mycology manual. 3rd ed. Minneapolis: Burgers Publishing P 226.

 
 

Castro L, Blázquez ML, Muñoz JA, González F, Ballester A (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnology 7(3):109-116.
Crossref

 
 

Chaudhari PR, Shalaka AM, Vrishali BS, Suresh PK (2012). Antimicrobial activity of extracellular synthesized silver nanoparticles using Lactobacillus species obtained from VIZYLAC capsule. Journal of Applied Pharmaceutical Science 2(3):25-29.

 
 

Cheng KM, Hung YW, Chen CC, Liu CC, Young JJ (2014). Green synthesis of chondroitin sulfate-capped silver nanoparticles: Characterization and surface modifcation. Carbohydrate Polymers 110:195-202.
Crossref

 
 

Cowan ST, Steel KJ (1985). Manual for the identification of bacteria. Cambridge University Press, Verlage, New York, P. 502.

 
 

Deljou A, Goudarzi S (2016). Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenic bacteria. Iranian Journal of Biotechnology 14(2):25-32.
Crossref

 
 

El-Saadony MT, El-Wafai NA, El-Fattah HIA, Mahgoub SA (2019). Biosynthesis, optimization and characterization of silver nanoparticles using a soil isolate of Bacillus pseudomycoides MT32 and their antifungal activity against some pathogenic fungi. Advances in Animal and Veterinary Sciences 7(4):238-249.
Crossref

 
 

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2008). A mechanistic of the antibacterial effect of silver ions on E. coli and S. aureus. Journal of Biomedical Materials Research 52(4):662-668.
Crossref

 
 

Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011). Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894-8918.
Crossref

 
 

Ghareib M, Tahon MA, Saif MM, El-Sayed AW (2016). Rapid Extracellular Biosynthesis of Silver Nanoparticles by Cunning hamellaphaeospora Culture Supernatant. Iranian Journal of Pharmaceutical Research 15(4):915-924.

 
 

Gole A, Dash C, Ramakrishnan V, Sainkar V, Mandale AB, Rao M (2001). Pepsin-Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity. Langmuir 17(5):1674-1679.
Crossref

 
 

Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Report 9:13701.
Crossref

 
 

Harrigan MG, McCane ME (1976). Laboratory methods in food and dairy microbiology. London: Academic Press pp. 33-200.

 
 

Holt GH, Krieg NR, Sneath PH, Staley JT, Williams ST (2004). Bergey's manual of determinative bacteriology. 9th ed. Baltimore: Williams and Wilkins, 787 p.

 
 

Husseiny M, Aziz MAE, Badr Y, Mahmoud MA (2006). Biosynthesis of goldnanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular Spectroscopy 67(3-4):1003-1006.
Crossref

 
 

Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635-41.
Crossref

 
 

Jyoti K, Baunthiyal M, Singh A (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences 9(3):217-227.
Crossref

 
 

Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces 65(1):150-153.
Crossref

 
 

Kannan R, Berger C, Myneni S, Technau GM, Shashidhara LS (2010). Abdominal-A mediated repression of Cyclin E expression during cell-fate specification in the Drosophila central nervous system. Mechanisms of Development 127(1-2):137-145.
Crossref

 
 

Keshavamurthy M, Srinath BS, Rai VR (2017). Phytochemicals mediated green synthesis of gold nanoparticles using Pterocarpussantalinus L. (Red Sanders) bark extract and their antimicrobial properties. Particulate Science and Technology 36(7):785-790.
Crossref

 
 

Kumar CG, Mamidyala SK (2012). Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces 84(2):462-466.
Crossref

 
 

Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Se-Kwon, K (2013). Biosynthesis, Antimicrobial and Cytotoxic Effect of SilverNanoparticles Using a Novel Nocardiopsis sp. MBRC-1. BioMed Research International 1:1-9. 
Crossref

 
 

Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology 69(7):4278-4281.
Crossref

 
 

Mohammadi F, Yousefi M, Ghahremanzadeh R (2019). Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles (AgNPs) Using Leaves and Stems Extract of Some Plants. Advanced Journal of Chemistry 2(4):266-275.
Crossref

 
 

Mohanpuria P, Rana KN, Yadav SK (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research 10:507-517.
Crossref

 
 

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramfrez, JT, Yacaman M (2005). The bactericidal effect of silver nanoparticles. Journal of Nanotechnology 16(10):2346-2353.
Crossref

 
 

Narayanan KB, Sakthivel N (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science 156(1-2):1-13.
Crossref

 
 

Ozcelika B, Orhanb I, Tokerb G (2006). Antiviral and antimicrobial assessment of some selected flavonoids. Biological Activity of Flavonoids 61(9-10):632-638.
Crossref

 
 

Pal S, Tak YK, Song JM (2007). Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Applied and Environmental Microbiology 27(6):1712-1720.
Crossref

 
 

Prabhu S, Poulose E (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters 2(1):1-10. 
Crossref

 
 

Saha S, Sarkar J, Chattopadhayay D, Patra S, Chakraborty A, Acharya K (2010). Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures 5(4):887-895.

 
 

Saklani V, Suman JV, Jain K (2012). Microbial synthesis of silver nanoparticles: A Review. Journal of Biotechnology and Biomaterials S13:007.
Crossref

 
 

ŠedÄ›nková I, Trchová M, Stejskal J, Prokeš J (2009). Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. ACS Applied Materials and Interfaces 1(9):1906-1912.
Crossref

 
 

Sharma N, Pinnaka AK, Raje M, Ashish FN, Bhattacharyya MS, Choudhury AR (2012). Exploitation of marine bacteria for production of gold nanoparticles. Microbial Cell Factories 11:86. 
Crossref

 
 

Singh AK, Tiwari R, Kumar V, Singh P, Khadim SKR, Tiwari A, Srivastava V, Hasan SH, Asthana RK (2017). Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology B: Biology 166:202-211.
Crossref

 
 

Singh C, Sharma V, Naik PK, Khandelwal V, Singh H (2011). Green biogenic approach for synthesis of gold and silver nanoparticles using Zingiber officinale. Digest Journal of Nanomaterials and Biostructures 6(2):535-542.

 
 

Sondi I, Salopek-Sondi B (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science 275(1):17-182.
Crossref

 
 

Sunkar S, Nachiyar CV (2012). Microbial Synthesis and Characterization of Silver Nanoparticles Using the Endophytic Bacterium Bacillus cereus: A Novel Source in the Benign Synthesis. Global Journal of Medical Research 12(2):1-9.

 
 

Thu TT, Thi THV, Thi HN (2013). Biosynthesis of silver nanoparticles using Tithonia diversifolia leaf extracts and their antimicrobial activity. Materials Letters 105:220-223.
Crossref

 
 

Vanmathi SK, Sivakumar T (2012). Isolation and characterization of silver nanoparticles from Fusarium oxysporum. International Journal of Current Microbiology and Applied Sciences 1(1):56-62.

 
 

Venkatesan KR, Vajrai R, Nithyadevi M, Arun KP, Uma MK, Brindham P (2013). Characterization and Antimicrobial effect of silver Nanoparticles Synthesized from Bacillus subtilis (MTCC 441). International Journal of Drug Development and Research 5(4):187-193.

 
 

Vishwanatha T, Keshavamurthy M, Mallappa M, Murugendrappa MV, Nadaf YF, Siddalingeshwara KG, Dhulappa A (2018). Biosynthesis, characterization, and antibacterial activity of silver nanoparticles from Aspergillus awamori. Journal of Biology and Biotechnology 6(5):12-16.
Crossref

 
 

Walker LR (2003). Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession. Journal of Vegetation Science 14(2):277-290.
Crossref

 
 

Wolfe BE, Klironomos JN (2005). Breaking new ground: Soil communities and exotic plant invasion. BioScience 55(6):477-487.
Crossref

 
 

Yamal G, Sharmila P, Rao KS, Pardha S (2013). In built potential of YEM medium and its constituents to generate Ag/Ag2O nanoparticles. PLoS One 8:e61750. 
Crossref