African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5181

Full Length Research Paper

Morphophysiological and molecular characterization of wild yeast isolates from industrial ethanol process

Nádia Cristina Viana
  • Nádia Cristina Viana
  • Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
  • Google Scholar
Cauré Portugal
  • Cauré Portugal
  • Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
  • Google Scholar
Sandra Helena da Cruz
  • Sandra Helena da Cruz
  • Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
  • Google Scholar


  •  Received: 28 August 2017
  •  Accepted: 20 September 2017
  •  Published: 07 October 2017

References

Amorim HV, Lopes ML, Oliveira JVC, Buckeridge MS, Goldman GH (2011). Scientific challenges of bioethanol production in Brazil. Appl. Microbiol. Biotechnol. 91:1267-1275.
Crossref

 

Andrietta MGS, Andrietta SR, Stupiello ENA (2011). Bioethanol - what has Brazil learned about yeasts inhabiting the ethanol production processes from sugar cane? In. Bernardes, M.A.S. (ed.). Biofuel production - recent developments and prospects. InTech, Rijeka, pp. 67-84.
Crossref

 
 

Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GA (2009). Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258-2270.
Crossref

 
 

Barbosa C, Lage P, Vilela A, Mendes-Faia A, Mendes-Ferreira A (2014). Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts. AMB Express 4:39-52.
Crossref

 
 

Barbosa R, Almeida P, Safar SV (2016). Evidence of natural hybridization in Brazilian wild lineages of Saccharomyces cerevisiae. Genome Biol. Evol. 8:317-329.
Crossref

 
 

Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008). Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 8:1155-1163.
Crossref

 
 

Beato FB, Bergdahl B, Rosa CA, Forster J, Gombert AK (2016). Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial application. FEMS Yeast Res. 16:7.
Crossref

 
 

Bergström A, Simpson JT, Salinas F, Barré B, Parts L, Zia A, Nguyen Ba AN, Moses AM, Louis EJ, Mustonen V, Warringer J, Durbin R, Liti G (2014). A High-Definition view of functional genetic variation from natural yeast genomes. Mol. Biol. Evol. 31(4):872-888.
Crossref

 
 

Braus GH, Grundmann O, Brückner S, Mösch HU (2003). Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol. Biol. Cell 14:4272- 4284.
Crossref

 
 

Brown NA, Castro PA, Figueiredo BCP, Savoldi M, Buckeridge MS, Lopes ML, de Lima Paullilo SC, Borges EP, Amorim HV, Goldman MH, Bonatto D, Malavazi I, Goldman GH. (2013). Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Res. 13:277-290.
Crossref

 
 

Burke MK (2012). How does adaptation sweep through the genome? Insights from long-term selection experiments. Proc. R. Soc. B 279:5029-5038.
Crossref

 
 

Casalone E, Barberio C, Cappellini L, Polsinelli M (2005). Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology. Res. Microbiol. 156:191-200.
Crossref

 
 

Ceccato-Antonini SR (2010). Microbiologia da fermentação alcoólica: a importância do monitoramento microbiológico em destilarias. EdUFSCAR, São Carlos. (abstract in English)

 
 

Ceccato-Antonini SR, Silva DF (2000). Eficiência de meios diferenciais no isolamento de cepas de leveduras de processos industriais de fermentação alcoólica. STAB 18:40-46. (abstract in English)

 
 

da Cruz SH, Cilli EM, Ernandes JR (2002). Structural complexity of the nitrogen source and influence on yeast growth and fermentation. J. Inst. Brew. 108(1):54-61.
Crossref

 
 

Della-Bianca BE, Basso TO, Stambuk BU, GombertAK (2013). What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl. Microbiol. Biotechnol. 97:979-991.
Crossref

 
 

Duina AA, Miller ME, Keeney JB (2014). Budding yeasts for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197:33-48.
Crossref

 
 

El-Kirat-Chatel S, Beaussart A, Vincent SP, Flos MA, Hols P, Lipke PN, Dufrêne YF (2015). Forces in yeast flocculation. Nanoscale 7(5):1760-1767.
Crossref

 
 

Elsztein C, de Lucena RM, de Morais MA Jr. (2011).The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol. Biol. 12:38-47.
Crossref

 
 

Giudici P, Zambonelli C, Kunkee R E (1993). Increased production of n-propanol in wine by yeast strains having an impaired ability to form hydrogen sulfide.‎ Am. J. Enol. Vitic. 44:17-21.

 
 

Green SR, Gray PP (1950). A differential procedure applicable to bacteriological investigation in brewing. Wallerstein Lab. Commun 13:357-366.

 
 

Jespersen L, Jakobsen M (1996). Specific spoilage organisms in breweries and laboratory media for their detection. Int. J. Food Microbiol. 33:139-155.
Crossref

 
 

Jiranek V, Langridge P, Henschke PA (1995). Validation of bismuth-containing indicator media for predicting H2S-production potential of Saccharomyces cerevisiae wine yeast under enological conditions. Am. J. Enol. Vitic. 46(2):269-273.

 
 

Khoja AH, Ali E, Zafar K, Ansari AA, Nawar A, Qayyum M (2015). Comparative study of bioethanol production from sugarcane molasses by using Zymomonas mobilis and Saccharomyces cerevisiae. Afr. J. Biotechnol. 14(31):2455-2462.
Crossref

 
 

Kishkovskaia SA, Eldarov MA, Dumina MV, Tanashchuk TN, Ravin NV, Mardanov AV (2017). Flor yeast strains from culture collection: Genetic diversity and physiological and biochemical properties. Appl. Microbiol. Biotechnol. 53(3):359-367.
Crossref

 
 

Kurtzman CP, Robnett CJ (1998). Identification and phylogeny of Ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73(4):331-371.
Crossref

 
 

Lee MC, Marx CJ (2013). Synchronous waves of failed soft sweeps in the laboratory: remarkably rampant clonal interference of alleles at a single locus. Genetics 193:943-952.
Crossref

 
 

Lucena BTL, Santos BM, Moreira JLS, Moreira AP, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais MA Jr. (2010). Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol. 10:298-306.
Crossref

 
 

Mendes-Ferreira A, Mendes-Faia A, Leão C (2002). Survey of hydrogen sulphide production by wine yeasts. J Food Prot 64(6):1033-1037.
Crossref

 
 

Moreira CS, Santos MSC, Barros NS, Cardoso CAL, Batistote M (2015). Análise dos parâmetros morfofisiológicos de linhagens de leveduras industriais com potencial biotecnológico para a produção de etanol. Ciênc. Nat. 37(4):55-63.

 
 

Nagai S (1963). Diagnostic color differentiation plates for hereditary respiration deficiency in yeast. J. Bacteriol. 86:299-392.

 
 

Neto L, Mendes-Ferreira AA (2005). Pesquisa de atividade sulfito redutase em leveduras de origem enológica. Ciênc. Tecnol. Aliment. 25(2):275-278.
Crossref

 
 

Palmann CL (2001). Use of WL medium to profile native flora fermentations. Am. J. Enol. Vitic. 58:198-203.

 
 

Payen C, Di Rienzi SC, Ong GT, Pogachar JL, Sanchez JC, Sunshine AB, Raghuraman MK, Brewer BJ, Dunham MJ (2014). The Dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection. G3: Genes, Genomes, Genetics 4(3):399-409.

 
 

Priest FG, Campbell I (2003). Brewing Microbiology. 3.ed, Kluwer Academic/Plenum Publishers, New York.

 
 

Reis VR, Antonangelo ATBF, Bassi APG, Colombi D; Ceccato-Antonini S (2016). Bioethanol strains of Saccharomyces cerevisiae characterized by microsatellite and stress resistance. Braz. J. Microbiol. 48(2):268-274.
Crossref

 
 

Reis VR, Bassi APG, Silva JCG, Ceccato-Antonini SR (2013). Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation. Braz. J. Microbiol. 44(4):1121-1131.
Crossref

 
 

Rossouw D, Bagheri B, Setati ME, Bauer FF (2015). Co-flocculation of yeast species, a new mechanism to govern population dynamics in microbial ecosystems. PLoS ONE 10(8):e0136249.
Crossref

 
 

Sampaio JP, Gonçalves P (2008). Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl. Environ. Microbiol. 74:2144-2152.
Crossref

 
 

Silva-Filho EA, Santos SKB, Resende AM, de Morais JO, de Morais MA Jr, Simões DA (2005). Yeast population dynamics on industrial fuel ethanol fermentation processes assessed by PCR fingerprinting. Antoine Van Leewenhoek 88:13-23.
Crossref

 
 

Soares EV (2010). Flocculation in Saccharomyces cerevisiae: a review. J. Appl. Microbiol. 110:1-18.
Crossref

 
 

Stefanini I, Daporto L, Legras JL (2012). Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc. Natl. Acad. Sci. USA 109:13398-13403.
Crossref

 
 

Stewart GG (2009). The Horace Brown Medal lecture: forty years of brewing research. J. Inst. Brew. 115:3-29.
Crossref

 
 

Wu Z, Liu SQ, Huang D (2013). Dietary Restriction Depends on Nutrient Composition to Extend Chronological Lifespan in Budding Yeast Saccharomyces cerevisiae. PLoS ONE 8(5):e64448.
Crossref

 
 

Xufre A, Albergaria H, Gírio F, Spencer-Martins I (2011). Use of interdelta polymorphisms of Saccharomyces cerevisiae strains to monitor population evolution during wine fermentation. J. Ind. Microbiol. Biotechnol. 38:127-132.
Crossref

 
 

Zambonelli C, Solli MG, Guerra D (1964). Richerche Biometriche sulla produzione di hidrogenosulfurato in Saccharomyces cerevisiae. Ann. Microbiol. 14:129-135.