Full Length Research Paper
References
Abolarinwa TO, Ajose DJ, Oluwarinde BO, Montso KP, Fri J, Fayemi OE, Aremu AO, Ateba CN (2024). Antimicrobial Properties and Cytotoxicity of Iron Oxide Nanoparticles Synthesized Using Melia azedarach Leaf Extract against Diarrhoeal Pathogens. BioNanoScience 14(5):5003-5016. Crossref |
||||
Adnan WG, Mohammed AM (2024). Green synthesis of chromium oxide nanoparticles for anticancer, antioxidant and antibacterial activities. Inorganic Chemistry Communications 159:111683. Crossref |
||||
Ahmad W, Jaiswal KK, Soni S (2020). Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorganic and Nano-Metal Chemistry 50(10):1032-1038. Crossref |
||||
Ahmed RH, Mustafa DE (2020). Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. Int Nano Lett 10(1):1-14. Crossref |
||||
Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, Mohamed MG (2024). Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery and Public Health 2:100081. Crossref |
||||
Ali H, Yadav YK, Ali D, Kumar G, Alarifi S (2023). Biosynthesis and characterization of cobalt nanoparticles using combination of different plants and their antimicrobial activity. Bioscience Reports 43(7):1-12. Crossref |
||||
Ali MA, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum MM, Wang Y, An Q, Sun G, Li B (2020). Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10:1146. Crossref |
||||
Anbumani D, vizhi Dhandapani K, Manoharan J, Babujanarthanam R, Bashir AK, Muthusamy K, Alfarhan A, Kanimozhi K (2022). Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. Journal of King Saud University-Science 34(3):101896. Crossref |
||||
Aswini R, Murugesan S, Kannan K (2021). Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. International Journal of Environmental Analytical Chemistry 101(15):2926-2936. Crossref |
||||
Avula A, JaleelI KA, Sreekanth T (2024). Impact of Successive Addition of Precursor in Synthesis of Copper and Silver Nanoparticles using the Tulsi leaf extract. Oriental Journal of Chemistry 40(2):441-445. Crossref |
||||
Balkrishna A, Rohela A, Kumar A, Mishra S, Arya V, Kala V, Thakur N, Thakur N, Kumari A, Khan N (2023a). Elucidating the Role of Plant Extracts Mediated Gold Nanoparticles as Smart Antimicrobials: Two?Way Attack. Journal of Nanomaterials 1:4085090. Crossref |
||||
Balkrishna A, Thakur N, Patial B, Sharma S, Kumar A, Arya V, Amarowicz R (2023b). Synthesis, characterization and antibacterial efficacy of Catharanthus roseus and Ocimum tenuiflorum-mediated silver nanoparticles: phytonanotechnology in disease management. Processes 11(5):1479. Crossref |
||||
Behera N, Arakha M, Priyadarshinee M, Pattanayak BS, Soren S, Jha S, Mallick BC (2019). Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Advances 9(43):24888-24894. Crossref |
||||
Bhuiyan MS, Miah MY, Paul SC, Aka TD, Saha O, Rahaman MM, Sharif MJ, Habiba O, Ashaduzzaman M (2020). Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 6(8):e04603. Crossref |
||||
Buzea C, Pacheco II, Robbie K (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17-MR71. Crossref |
||||
?apek J, Roušar T (2021). Detection of oxidative stress induced by nanomaterials in cells-the roles of reactive oxygen species and glutathione. Molecules 26(16):4710. Crossref |
||||
Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850-2871. Crossref |
||||
Cypriyana PJJ, Saigeetha S, Samrot AV, Ponniah P, Chakravarthi S (2021). Overview on toxicity of nanoparticles, it's mechanism, models used in toxicity studies and disposal methods-A review. Biocatalysis and Agricultural Biotechnology 36:102117. Crossref |
||||
Dakal TC, Kumar A, Majumdar RS, Yadav V (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology 7:1831. Crossref |
||||
Duran N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine 12(3):789-799. Crossref |
||||
Farida A, Bahram GE, Farrokh K, Tabrizy S, Pooneh SS (2016). An investigation of the effect of copper oxide and silver nanoparticles on E. coli genome by RAPD molecular markers. Journal of Advanced Biotechnology and Microbiology 1:1-6. Crossref |
||||
Garcia-Torra V, Cano A, Espina M, Ettcheto M, Camins A, Barroso E, Vazquez-Carrera M, García ML, Sánchez-López E, Souto EB (2021). State of the art on toxicological mechanisms of metal and metal oxide nanoparticles and strategies to reduce toxicological risks. Toxics 9(8):195. Crossref |
||||
González-Sánchez MI, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P (2015). Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Materials Science and Engineering 50:332-340. Crossref |
||||
Gupta R, Xie H (2018). Nanoparticles in daily life: applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology 37(3):209-230. Crossref |
||||
Hanan NA, Chiu HI, Ramachandran MR, Tung WH, Mohamad Zain NN, Yahaya N, Lim V (2018). Cytotoxicity of plant-mediated synthesis of metallic nanoparticles: a systematic review. International Journal of Molecular Sciences 19(6):1725. Crossref |
||||
Hassan D, Abd F (2023). Antibacterial Activity of Nanoparticle Biosynthesis by Bacteria. Journal of University of Babylon for Pure and Applied Sciences 31(2):146-160. Crossref |
||||
Hassan D, Khalil AT, Solangi AR, El?Mallul A, Shinwari ZK, Maaza M (2019). Physiochemical properties and novel biological applications of Callistemon viminalis?mediated α?Cr2O3 nanoparticles. Applied Organometallic Chemistry 33(8):e5041. Crossref |
||||
Horie M, Fujita K, Kato H, Endoh S, Nishio K, Komaba LK, Nakamura A, Miyauchi A, Kinugasa S, Hagihara Y, Niki E (2012). Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics 4(4):350-360. Crossref |
||||
Horie M, Kato H, Endoh S, Fujita K, Nishio K, Komaba LK, Fukui H, Nakamura A, Miyauchi A, Nakazato T, Kinugasa S (2011). Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion. Metallomics 3(11):1244-1252. Crossref |
||||
Horie M, Stowe M, Tabei M, Kuroda, E (2016). Metal ion release of manufactured metal oxide nanoparticles is involved in the allergic response to inhaled ovalbumin in mice. Occupational Diseases and Environmental Medicine 4(2):17-26. Crossref |
||||
Huang L, Sun Y, Mahmud S, Liu H (2020). Biological and environmental applications of silver nanoparticles synthesized using the aqueous extract of Ginkgo biloba leaf. Journal of Inorganic and Organometallic Polymers and Materials 30:1653-1668. Crossref |
||||
Huang YW, Cambre M, Lee HJ (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. International Journal of Molecular Sciences 18(12):2702. Crossref |
||||
Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG (2012). Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. Journal of Medical Microbiology 61(12):1719-1726. Crossref |
||||
Iqbal J, Abbasi BA, Munir A, Uddin S, Kanwal S, Mahmood T (2020). Facile green synthesis approach for the production of chromium oxide nanoparticles and their different in vitro biological activities. Microscopy Research and Technique 83(6):706-719. Crossref |
||||
Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, Chang CH, Liu R, Tolaymat T, Telesca D, Zink JI (2014). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8(1):374-386. Crossref |
||||
Jamil YM, Al-Hakimi AN, Al-Maydama HM, Almahwiti GY, Qasem A, Saleh SM (2024). Optimum green synthesis, characterization, and antibacterial activity of silver nanoparticles prepared from an extract of Aloe fleurentinorum. International Journal of Chemical Engineering 1:2804165. Crossref |
||||
Jayandran M, Haneefa MM, Balasubramanian V (2015). Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. Journal of Applied Pharmaceutical Science 5(12):105-110. Crossref |
||||
Kamran U, Bhatti HN, Iqbal M, Jamil S, Zahid M (2019). Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. Journal of Molecular Structure 1179:532-539. Crossref |
||||
Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G (2020). Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine 11(1):37-44. Crossref |
||||
Khan MF, Khan MA (2023). Plant-derived metal nanoparticles (PDMNPs): synthesis, characterization, and oxidative stress-mediated therapeutic actions. Future Pharmacology 3(1):252-295. Crossref |
||||
Khan SA, Shahid S, Hanif S, Almoallim HS, Alharbi SA, Sellami H (2021). Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities. International Journal of Molecular Sciences 22(2):502. Crossref |
||||
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 3(1):95-101. Crossref |
||||
Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T (2023). Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 23(1):1059. Crossref |
||||
Lai MJ, Huang YW, Chen HC, Tsao LI, Chang Chien CF, Singh B, Liu BR (2022). Effect of size and concentration of copper nanoparticles on the antimicrobial activity in Escherichia coli through multiple mechanisms. Nanomaterials 12(21):3715. Crossref |
||||
Lai Y, Gao FF, Ge RT, Liu R, Ma S, Liu X (2024). Metal ions overloading and cell death. Cell Biology and Toxicology 40(1):72. Crossref |
||||
Logeswari P, Silambarasan S, Abraham J (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society 19(3)311-317. Crossref |
||||
Lopez-Miranda JL, Vázquez M, Fletes N, Esparza R, Rosas G (2016). Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity. Materials Letters 176:285-289. Crossref |
||||
Madubuonu N, Aisida SO, Ahmad I, Botha S, Zhao TK, Maaza M, Ezema FI (2020). Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Applied Physics A 126:1-8. Crossref |
||||
Mahdavi B, Paydarfard S, Zangeneh MM, Goorani S, Seydi N, Zangeneh A (2020). Assessment of antioxidant, cytotoxicity, antibacterial, antifungal, and cutaneous wound healing activities of green synthesized manganese nanoparticles using Ziziphora clinopodioides Lam leaves under in vitro and in vivo condition. Applied Organometallic Chemistry 34(1):e5248. Crossref |
||||
Mary AA, Ansari AT, Subramanian R (2019). Sugarcane juice mediated synthesis of copper oxide nanoparticles, characterization and their antibacterial activity. Journal of King Saud University-Science 31(4):1103-1114. Crossref |
||||
Miri A, Dorani N, Darroudi M, Sarani M (2016). Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity. Cellular and Molecular Biology 62(9):46-50. | ||||
Mohamad SMB, Karunakaran R, Masrom AK, Abdullah MZ, Nelson J (2012). Evaluation of antimicrobial efficacy of nano coated silver-titania metallic plates against selective pathogens. Malaysian Journal of Microbiology 8(1):51-54. Crossref |
||||
Najahi-Missaoui W, Arnold RD, Cummings BS (2020). Safe nanoparticles: are we there yet?. International Journal of Molecular Sciences 22(1):385. Crossref |
||||
Naz S, Gul A, Zia M, Javed R (2023). Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Applied Microbiology and Biotechnology 107(4):1039-1061. Crossref |
||||
Nolte TM, Lu B, Hendriks AJ (2023). Nanoparticles in bodily tissues: predicting their equilibrium distributions. Environmental Science: Nano 10(2):424-439. Crossref |
||||
Okeke ES, Nweze EJ, Anaduaka EG, Okoye CO, Anosike CA, Joshua PE, Ezeorba TPC (2023). Plant-derived nanomaterials (PDNM): a review on pharmacological potentials against pathogenic microbes, antimicrobial resistance (AMR) and some metabolic diseases. 3 Biotech 13(9):291. Crossref |
||||
Pal S, Tak YK, Song JM (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology 73(6):1712-1720. Crossref |
||||
Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping LJ, Durairaj R (2014). Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. Journal of Nanobiotechnology 12:1-7. Crossref |
||||
Pallela PN, Ummey S, Ruddaraju LK, Gadi S, Cherukuri CS, Barla S, Pammi SV (2019). Antibacterial efficacy of green synthesized α-Fe2O3 nanoparticles using Sida cordifolia plant extract. Heliyon 5(11):e02765. Crossref |
||||
Priya M, Venkatesan R, Deepa S, Sana SS, Arumugam S, Karami AM, Vetcher AA, Kim SC (2023). Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Scientific Reports 13(1):18838. Crossref |
||||
Qayyum S, Oves M, Khan AU (2017). Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PloS one 12(8):e0181363. Crossref |
||||
Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012). Silver nanoparticles: the powerful nanoweapon against multidrug?resistant bacteria. Journal of Applied Microbiology 112(5):841-852. Crossref |
||||
Ren E, Zhang C, Li D, Pang X, Liu G (2020). Leveraging metal oxide nanoparticles for bacteria tracing and eradicating. View 1(3):20200052. Crossref |
||||
Rostek A, Breisch M, Pappert K, Loza K, Heggen M, Köller M, Sengstock C, Epple M (2018). Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4-8 nm diameter. Beilstein Journal of Nanotechnology 9(1):2763-2774. Crossref |
||||
Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials 10(8):1566. Crossref |
||||
Saod WM, Hamid LL, Alaallah NJ, Ramizy A (2022). Biosynthesis and antibacterial activity of manganese oxide nanoparticles prepared by green tea extract. Biotechnology Reports 34:e00729. Crossref |
||||
Seabra AB, Durán N (2015). Nanotoxicology of metal oxide nanoparticles. Metals 5(2):934-975. Crossref |
||||
Shahzadi T, Zaib M, Riaz T, Shehzadi S, Abbasi MA, Shahid M (2019). Synthesis of eco-friendly cobalt nanoparticles using Celosia argentea plant extract and their efficacy studies as antioxidant, antibacterial, hemolytic and catalytical agent. Arabian Journal for Science and Engineering 44:6435-6444. Crossref |
||||
Sharma S, Kumar K, Thakur N, Chauhan S, Chauhan MS (2021). Eco-friendly Ocimum tenuiflorum green route synthesis of CuO nanoparticles: Characterizations on photocatalytic and antibacterial activities. Journal of Environmental Chemical Engineering 9(4):105395. Crossref |
||||
Sharma S, Kumar K (2021). Aloe-vera leaf extract as a green agent for the synthesis of CuO nanoparticles inactivating bacterial pathogens and dye. Journal of Dispersion Science and Technology 42(13):1950-1962. Crossref |
||||
Shegokar R, Singh KK (2011). Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. International Journal of Pharmaceutics 421(2):341-352. Crossref |
||||
Shkodenko L, Kassirov I, Koshel E (2020). Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms 8(10):1545. Crossref |
||||
Slavin YN, Asnis J, H?feli UO, Bach H (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology 15:1-20. Crossref |
||||
Sonwani S, Madaan S, Arora J, Suryanarayan S, Rangra D, Mongia N, Vats T, Saxena P (2021). Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: a review. Frontiers in Sustainable Cities 3:690444. Crossref |
||||
Staszek M, Siegel J, Rimpelová S, Lyutakov O, Švor?ík V (2015). Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Materials Letters 158:351-354. Crossref |
||||
Subhapriya S, Gomathipriya PJMP (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis 116:215-220. Crossref |
||||
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018). Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters 13:1-21. Crossref |
||||
Susanti D, Haris MS, Taher M, Khotib J (2022). Natural products-based metallic nanoparticles as antimicrobial agents. Frontiers in Pharmacology 13:895616. Crossref |
||||
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018). Impact of nanoparticles on brain health: an up to date overview. Journal of Clinical Medicine 7(12):490. Crossref |
||||
Thakur BK, Kumar A, Kumar D (2019). Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. South African Journal of Botany 124:223-227. Crossref |
||||
Uddin TM, Chakraborty AJ, Khusro A, Zidan BR, Mitra S, Emran TB, Dhama K, Ripon MK, Gajdács M, Sahibzada MU, Hossain MJ (2018). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health 14(12):1750-1766. Crossref |
||||
Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun SI (2023). Metallic nanoparticles: a promising arsenal against antimicrobial resistance-unraveling mechanisms and enhancing medication efficacy. International Journal of Molecular Sciences 24(19):14897. Crossref |
||||
You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012). The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Molecular Biology Reports 39:9193-9201. Crossref |
||||
Zaib M, Shahzadi T, Muzammal I, Farooq U (2020). Catharanthus roseus extract mediated synthesis of cobalt nanoparticles: evaluation of antioxidant, antibacterial, hemolytic and catalytic activities. Inorganic and Nano-Metal Chemistry 50(11):1171-1180. Crossref |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0