Full Length Research Paper
References
Berge O, Guinebretiere MH, Achouak W, Normand P, Heulin T (2002). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52:607-616. |
|
Berger LR, Reynolds DM (1988). Colloidal chitin preparation. Methods in Enzymol. 161:430. |
|
Bradford MM (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 74:248-254. |
|
Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M (2014).Chitinolytic microorganisms and their possible application in environmental protection. Curr. Microbiol. 68(1):71-81. |
|
Budi SW, van Tuinen D, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000). Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15(2):191-199. |
|
Chung YR, Kim CH, Hwang I, Chun J (2000). Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int. J. Syst. Evol. Microbiol. 50(4):1495-1500. |
|
Cody RM, Davis ND, Lin J, Shaw D (1990). Screening microorganisms for chitin hydrolysis and production of ethanol from amino sugars. Biomass. 21(4):285-295. |
|
Drahos DJ, West L (2003). Bacillus licheniformis biofungicide. United States patent US 6:569-425. |
|
El-Mougy NS, Abdel-Kader MM, Alhabeb RS (2011). In vitro antifungal activity of chitinolytic enzymes produced by bio-agents against root rot pathogenic fungi. Arch. Phytopathol. Plant Protec. 44:613-622. |
|
Fortes TO, Alviano DS, Tupinambá G (2008). Produc¬tion of an antimicrobial substance against Cryptococcus neoformans by Paenibacillus brasilensis Sa3 isolated from the rhizosphere of Kalanchoe brasoloensis. Microbiol. Res. 163:200-207. |
|
Fu X, Yan Q, Wang J, Yang S, Jiang Z (2016). Purification and biochemical characterization of novel acidic chitinase from Paenicibacillus barengoltzii. Int. J. Biological Macromol. 91:973-979. |
|
Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006). Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr. J. Biotechnol. 5:54-72. |
|
Hamid R, Khan, MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013). Chitinases: An update. J. Pharm. Bioall. Sci. 5: 21–29. |
|
Imoto T, Yagishita K (1971). A simple activity measurement of lysozyme. Agric. Biol. Chem. 35:1154-1156. |
|
Jung SJ, An KN, Jin YL, Park RD, Kim KY, Shon BK, Kim TH (2002). Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J. Microbiol. biotechnol. 12(6):865-871. |
|
Jung WJ, An KN, Jin YL, Park RD, Lim KT, Kim KY, Kim TH (2003). Biological control of damping-off caused by Rhizoctonia solani using chitinase-producing Paenibacillus illinoisensis KJA-424. Soil Biol. Biochem. 35(9):1261-1264. |
|
Jung WJ, Jin YL, Kim KY, Park RD, Kim TH (2005). Changes in pathogenesis-related proteins in pepper plants with regard to biological control of phytophthora blight with Paenibacillus illinoisensis. BioControl. 50(1):165-178. |
|
Jung WJ, Jin YL, Park RD, Kim KY, Lim KT, Kim TH (2006). Treatment of Paenibacillus illinoisensis suppresses the activities of antioxidative enzymes in pepper roots caused by Phytophthora capsici infection. World J. Microbiol. Biotechnol. 22(9):901-907. |
|
Kamil Z, Rizk M, Saleh M, Moustafa S (2007). Isolation and identification of rhizobacteria and their potential in antifungal biocontrol. Global. J. Mol. Sci. 2:57-66. |
|
Karthik N, Binod P, Pandev A (2015). Purification and characterization of an acidic and antifungal chitinase produced by a Streptomyces sp. Bioresour. Technol.188:195-201. |
|
Liu WW, Mu W, Zhu BY, Du YC, Liu F (2008). Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric. Sci. China 7:1104-1114. |
|
Loni PP, Patil JU, Phugare SS, Bajekal SS (2014). Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J. Basic Microbiol. 54(10):1080-1089. |
|
Lorentz RH, Artico S, Da Silveira AB, Einsfeld A, Corcao G (2006). Evaluation of antimicrobial activity in Paenibacillus spp. strains isolated from natural environment. Lett. Appl. Microbiol. 43(5):541-547. |
|
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic acids res. 41:W597-600. |
|
Naing KW, Nguyen XH, Anees M, Lee YS, Kim YC, Kim SJ, Kim MH, Kim YH, Kim KY (2015). Biocontrol of Fusarium wilt disease in tomato by Paenibacillus ehimensis KWN38. World J. Microbiol. Biotechnol. 31(1):165-174. |
|
Prasanna L, Eijsink VG, Meadow R, Gåseidnes S (2013). A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl. Microbiol. Biotechnol. 97(4):1601-1611. |
|
Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. |
|
Senthilkumar M, Govindasamy V, Annapurna K (2007). Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr. Microbiol. 55:25-29. |
|
Shahidi F, Abuzaytoun R (2005). Chitin, chitosan, and co-products: Chemistry, production, applications, and health effects. Adv. Food Nutr. Res. 49:93-135. |
|
Sharma N, Sharma KP, Gaur RK, Gupta VK (2011). Role of chitinase in plant defense. Asian J. Biochem. 6:29-37. |
|
Tamura K, Dudley J, Nei M, Kumar S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. |
|
Velázquez E, De Miguel T, Poza M, Rivas R, Rosselló-Mora R, Villa TG (2004). Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int. J. Syst. Evol. Microbiol. 54(1):59-64. |
|
von der Weid I, Alviano DS, Santos ALS, Soares RMA, Alviano CS, Seldin L (2003). Antimicrobial activity of Paenibacillus peoriae strains NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95:1143-1151. |
|
von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002). Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int. J. Syst. Evol. Microbiol. 52:2147-2153. |
|
Williamson N, Brian P, Wellington EMH (2000). Molecular detection of bacterial and streptomycete chitinases in the environment. Antonie Van Leeuwenhoek. 78(3-4):315-321. |
|
Xu SJ, Hong SJ, Choi W, Kim BS (2014). Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol. J. 30(1):102-108. |
|
Yoon JH, Weiss N, Lee KC, Lee IS, Kang KH, Park YH (2001). Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, and reclassification of Bacillus marinus Ruger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int. J. System Evol. Microbiol. 51:2087-2093. |
Copyright © 2023 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0