Full Length Research Paper
References
Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012). Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: Physicochemical and structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 113(2):211-219. |
|
Aparna A, Srinikethan G, Smitha H (2012). Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf. B Biointerfaces 95:23-29. |
|
Basu A, Apte SK, Phale PS (2006). Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl. Environ. Microbiol. 72(3):2226-2230. |
|
Bernard D, Pascaline H, Jeremie JJ (1996). Distribution and origin of hydrocarbons in sediments from lagoons with fringing mangrove communities. Mar. Pollut. Bull. 32(10):734-739. |
|
Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M (2005). Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J. Appl. Microbiol. 98(2):456-463. |
|
Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J (2009). Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci. Total Environ. 407(12):3634-3640. |
|
Calvo C, Martínez-Checa F, Toledo F, Porcel J, Quesada E (2002). Characteristics of bioemulsifiers synthesised in crude oil media by Halomonas eurihalina and their effectiveness in the isolation of bacteria able to grow in the presence of hydrocarbons. Appl. Microbiol. Biotechnol. 60(3):347-351. |
|
Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf. B Biointerf. 84(2): 292-300. |
|
de Santana-Filho AP, Camilios-Neto D, de Souza LM, Sassaki GL, Mitchell DA, Krieger N (2015). Evaluation of the Structural Composition and Surface Properties of Rhamnolipid Mixtures Produced by Pseudomonas aeruginosa UFPEDA 614 in Different Cultivation Periods. Appl. Biochem. Biotechnol. 175(2):988-995. |
|
de Sousa T, Bhosle S (2012). Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB. MJ10 isolated from a mangrove ecosystem. Bioresour. Technol. 123:256-262. |
|
dos Santos SC, Fernandez LG, Rossi-Alva JC, de Abreu Roque MR (2013). Evaluation of substrates from renewable-resources in biosurfactants production by Pseudomonas strains. Afr. J. Biotechnol. 9(35):5704-5711. |
|
Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3):350-356. |
|
Dusane DH, Zinjarde SS, Venugopalan VP, Mclean RJ, Weber MM, Rahman PK (2010). Quorum sensing: Implications on rhamnolipid biosurfactant production. Biotechnol. Gen. Eng. Rev. 27(1):159-184. |
|
Franzetti A, Gandolfi I, Raimondi C, Bestetti G, Banat IM, Smyth TJ, Papacchini M, Cavallo M, Fracchia L (2012). Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour. Technol. 108:245-251. |
|
Gibson DT, Mahadevan V, Jerina DM, Yogi H, Yeh HJ (1975). Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science 189(4199):295-297. |
|
Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003). Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng. 81(3):316-322. |
|
Ilori MO, Amobi CJ, Odocha AC (2005). Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61(7):985-992. |
|
Ke L, Wong TW, Wong YS, Tam NF (2002). Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill. Mar. Pollut. Bull. 45(1):339-347. |
|
Khoshdast H, Sam A, Vali H, Noghabi KA (2011). Effect of rhamnolipid biosurfactants on performance of coal and mineral flotation. Int. Biodeterior. Biodegrad. 65(8):1238-1243. |
|
Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16(2):111-120. |
|
Krieg NR, Holt JG (1984). Bergey's manual of systematic bacteriology, Vol 1. The Williams and Wilkins, Baltimore, USA, pp. 140-309. |
|
Li ZY, Lang S, Wagner F, Witte L, Wray V (1984). Formation and identification of interfacial-active glycolipids from resting microbial cells. Appl. Environ. Microbiol. 48(3):610-617. |
|
Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009). An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf. B Biointerf. 69(2):183-193. |
|
Makkar RS, Cameotra SS, Banat IM (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1(5):1-19. |
|
Manresa MA, Bastida J, Mercade ME, Robert M, De Andres C, Espuny MJ, Guinea J (1991). Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J. Ind. Microbiol. 8(2):133-136. |
|
Mehdi S, Dondapati JS, Rahman PKSM (2011). Influence of nitrogen and phosphorous on rhamnolipid biosurfactant production by Pseudomonas aeruginosa DS10-129 using glycerol as carbon source. Biotechnology 10(2):183-189. |
|
Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008). Biosurfactants: Properties, commercial production and application. Curr. Sci. 94(6):736-747. |
|
Naik MM, Dubey SK (2011). Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr. Microbiol. 62(2):409-414. |
|
Nerurkar AS, Hingurao KS, Suthar HG (2009). Bioemulsifiers from marine microorganisms. J. Sci. Ind. Res. 68(4):273. |
|
Nishino SF, Spain JC (2006). Biodegradation of 3-nitrotyrosine by Burkholderia sp. strain JS165 and Variovorax paradoxus JS171. Appl. Environ. Microbiol. 72(2):1040-1044. |
|
Noordman WH, Janssen DB (2002). Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 68(9):4502-4508. |
|
Onbasli D, Aslim B (2009). Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J. Environ. Biol. 30(1):161-163. |
|
Ozturk S, Kaya T, Aslim B, Tan S (2012). Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production. J. Hazard. Mat. 231:64-69. |
|
Perfumo A, Smyth TJP, Marchant R, Banat IM (2010). Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Handbook of hydrocarbon and lipid microbiology, Springer Berlin Heidelberg, pp. 1501-1512. |
|
Persson A, Österberg E, Dostalek M (1988). Biosurfactant production by Pseudomonas fluorescens 378: Growth and product characteristics. Appl. Microbiol. Biotechnol. 29(1):1-4. |
|
Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour. Technol. 81(1):25-32. |
|
Ramasubramanian R, Ravishankar T (2004). Mangrove Forest Restoration in Andhra Pradesh, India. P 10. |
|
Raza ZA, Khan MS, Khalid ZM (2007). Physicochemical and surface active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J. Environ. Sci. Health A 42:73-80. |
|
Saikia RR, Deka S, Deka M, Banat IM (2012). Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann. Microbiol. 62(2):753-763. |
|
Saimmai A, Onlamool T, Sobhon V, Maneerat S (2013). An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand. World J. Microbiol. Biotechnol. 29(1):87-102. |
|
Saimmai A, Rukadee O, Sobhon V, Maneerat S (2012). Biosurfactant production by Bacillus subtilis TD4 and Pseudomonas aeruginosa SU7 grown on crude glycerol obtained from biodiesel production plant as sole carbon source. J. Sci. Ind. Res. 71:396-406. |
|
Sandrin C, Peypoux F, Michel G (1990). Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol. Appl. Biochem. 12(4):370-375. |
|
Santos HF, Carmo FL, Paes JE, Rosado AS, Peixoto RS (2011). Bioremediation of mangroves impacted by petroleum. Water Air Soil Pollut. 216(1-4):329-350. |
|
Siegmund I, Wagner F (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5(4): 265-268. |
|
Sneath PH, Sokal RR (1973). Numerical taxonomy. The principles and practice of numerical classification. |
|
Syldatk C, Lang S, Matulovic U, Wagner F (1984). Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Zeitschrift fur Naturforschung C Biosci. 40(1-2):61-67. |
|
Tajima F (1993). Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135(2):599-607. |
|
Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8):1596-1599. |
|
Tuleva BK, Ivanov GR, Christova NE (2002). Biosurfactant production by a new Pseudomonas putida strain. Zeitschrift fur Naturforschung C Biosci. 57(3/4):356-360. |
|
Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008). Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour. Technol. 99(5):1157-1164. |
|
Zhang Y, Miller RM (1995). Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl. Environ. Microbiol. 61(6):2247-2251. |
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0