African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5236

Full Length Research Paper

Rhamnolipid biosurfactant production by Pseudomonas aeruginosa strain KVD-HR42 isolated from oil contaminated mangrove sediments

Deepika K. V.
  • Deepika K. V.
  • Department of Biotechnology, Krishna University, Machilipatnam - 521 001- AP, India.
  • Google Scholar
Raghuram M.*
  • Raghuram M.*
  • Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur - AP, India
  • Google Scholar
Bramhachari P. V.
  • Bramhachari P. V.
  • Department of Biotechnology, Krishna University, Machilipatnam - 521 001- AP, India.
  • Google Scholar


  •  Received: 12 December 2015
  •  Accepted: 26 January 2017
  •  Published: 14 February 2017

References

Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012). Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: Physicochemical and structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 113(2):211-219.
Crossref

 

Aparna A, Srinikethan G, Smitha H (2012). Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf. B Biointerfaces 95:23-29.
Crossref

 

Basu A, Apte SK, Phale PS (2006). Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl. Environ. Microbiol. 72(3):2226-2230.
Crossref

 

Bernard D, Pascaline H, Jeremie JJ (1996). Distribution and origin of hydrocarbons in sediments from lagoons with fringing mangrove communities. Mar. Pollut. Bull. 32(10):734-739.
Crossref

 

Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M (2005). Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J. Appl. Microbiol. 98(2):456-463.
Crossref

 

Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J (2009). Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci. Total Environ. 407(12):3634-3640.
Crossref

 

Calvo C, Martínez-Checa F, Toledo F, Porcel J, Quesada E (2002). Characteristics of bioemulsifiers synthesised in crude oil media by Halomonas eurihalina and their effectiveness in the isolation of bacteria able to grow in the presence of hydrocarbons. Appl. Microbiol. Biotechnol. 60(3):347-351.
Crossref

 

Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf. B Biointerf. 84(2): 292-300.
Crossref

 

de Santana-Filho AP, Camilios-Neto D, de Souza LM, Sassaki GL, Mitchell DA, Krieger N (2015). Evaluation of the Structural Composition and Surface Properties of Rhamnolipid Mixtures Produced by Pseudomonas aeruginosa UFPEDA 614 in Different Cultivation Periods. Appl. Biochem. Biotechnol. 175(2):988-995.
Crossref

 

de Sousa T, Bhosle S (2012). Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB. MJ10 isolated from a mangrove ecosystem. Bioresour. Technol. 123:256-262.
Crossref

 

dos Santos SC, Fernandez LG, Rossi-Alva JC, de Abreu Roque MR (2013). Evaluation of substrates from renewable-resources in biosurfactants production by Pseudomonas strains. Afr. J. Biotechnol. 9(35):5704-5711.

 

Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3):350-356.
Crossref

 

Dusane DH, Zinjarde SS, Venugopalan VP, Mclean RJ, Weber MM, Rahman PK (2010). Quorum sensing: Implications on rhamnolipid biosurfactant production. Biotechnol. Gen. Eng. Rev. 27(1):159-184.
Crossref

 

Franzetti A, Gandolfi I, Raimondi C, Bestetti G, Banat IM, Smyth TJ, Papacchini M, Cavallo M, Fracchia L (2012). Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour. Technol. 108:245-251.
Crossref

 

Gibson DT, Mahadevan V, Jerina DM, Yogi H, Yeh HJ (1975). Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science 189(4199):295-297.
Crossref

 

Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003). Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng. 81(3):316-322.
Crossref

 

Ilori MO, Amobi CJ, Odocha AC (2005). Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61(7):985-992.
Crossref

 

Ke L, Wong TW, Wong YS, Tam NF (2002). Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill. Mar. Pollut. Bull. 45(1):339-347.
Crossref

 

Khoshdast H, Sam A, Vali H, Noghabi KA (2011). Effect of rhamnolipid biosurfactants on performance of coal and mineral flotation. Int. Biodeterior. Biodegrad. 65(8):1238-1243.
Crossref

 

Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16(2):111-120.
Crossref

 

Krieg NR, Holt JG (1984). Bergey's manual of systematic bacteriology, Vol 1. The Williams and Wilkins, Baltimore, USA, pp. 140-309.

 

Li ZY, Lang S, Wagner F, Witte L, Wray V (1984). Formation and identification of interfacial-active glycolipids from resting microbial cells. Appl. Environ. Microbiol. 48(3):610-617.

 

Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009). An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf. B Biointerf. 69(2):183-193.
Crossref

 

Makkar RS, Cameotra SS, Banat IM (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1(5):1-19.
Crossref

 

Manresa MA, Bastida J, Mercade ME, Robert M, De Andres C, Espuny MJ, Guinea J (1991). Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J. Ind. Microbiol. 8(2):133-136.
Crossref

 

Mehdi S, Dondapati JS, Rahman PKSM (2011). Influence of nitrogen and phosphorous on rhamnolipid biosurfactant production by Pseudomonas aeruginosa DS10-129 using glycerol as carbon source. Biotechnology 10(2):183-189.
Crossref

 

Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008). Biosurfactants: Properties, commercial production and application. Curr. Sci. 94(6):736-747.

 

Naik MM, Dubey SK (2011). Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr. Microbiol. 62(2):409-414.
Crossref

 

Nerurkar AS, Hingurao KS, Suthar HG (2009). Bioemulsifiers from marine microorganisms. J. Sci. Ind. Res. 68(4):273.

 

Nishino SF, Spain JC (2006). Biodegradation of 3-nitrotyrosine by Burkholderia sp. strain JS165 and Variovorax paradoxus JS171. Appl. Environ. Microbiol. 72(2):1040-1044.
Crossref

 

Noordman WH, Janssen DB (2002). Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 68(9):4502-4508.
Crossref

 

Onbasli D, Aslim B (2009). Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J. Environ. Biol. 30(1):161-163.

 

Ozturk S, Kaya T, Aslim B, Tan S (2012). Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production. J. Hazard. Mat. 231:64-69.
Crossref

 

Perfumo A, Smyth TJP, Marchant R, Banat IM (2010). Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Handbook of hydrocarbon and lipid microbiology, Springer Berlin Heidelberg, pp. 1501-1512.
Crossref

 

Persson A, Österberg E, Dostalek M (1988). Biosurfactant production by Pseudomonas fluorescens 378: Growth and product characteristics. Appl. Microbiol. Biotechnol. 29(1):1-4.
Crossref

 

Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour. Technol. 81(1):25-32.
Crossref

 

Ramasubramanian R, Ravishankar T (2004). Mangrove Forest Restoration in Andhra Pradesh, India. P 10.

 

Raza ZA, Khan MS, Khalid ZM (2007). Physicochemical and surface active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J. Environ. Sci. Health A 42:73-80.
Crossref

 

Saikia RR, Deka S, Deka M, Banat IM (2012). Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann. Microbiol. 62(2):753-763.
Crossref

 

Saimmai A, Onlamool T, Sobhon V, Maneerat S (2013). An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand. World J. Microbiol. Biotechnol. 29(1):87-102.
Crossref

 

Saimmai A, Rukadee O, Sobhon V, Maneerat S (2012). Biosurfactant production by Bacillus subtilis TD4 and Pseudomonas aeruginosa SU7 grown on crude glycerol obtained from biodiesel production plant as sole carbon source. J. Sci. Ind. Res. 71:396-406.

 

Sandrin C, Peypoux F, Michel G (1990). Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol. Appl. Biochem. 12(4):370-375.

 

Santos HF, Carmo FL, Paes JE, Rosado AS, Peixoto RS (2011). Bioremediation of mangroves impacted by petroleum. Water Air Soil Pollut. 216(1-4):329-350.
Crossref

 

Siegmund I, Wagner F (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5(4): 265-268.
Crossref

 

Sneath PH, Sokal RR (1973). Numerical taxonomy. The principles and practice of numerical classification.

 

Syldatk C, Lang S, Matulovic U, Wagner F (1984). Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Zeitschrift fur Naturforschung C Biosci. 40(1-2):61-67.

 

Tajima F (1993). Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135(2):599-607.

 

Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8):1596-1599.
Crossref

 

Tuleva BK, Ivanov GR, Christova NE (2002). Biosurfactant production by a new Pseudomonas putida strain. Zeitschrift fur Naturforschung C Biosci. 57(3/4):356-360.

 

Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008). Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour. Technol. 99(5):1157-1164.
Crossref

 

Zhang Y, Miller RM (1995). Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl. Environ. Microbiol. 61(6):2247-2251.