Full Length Research Paper

1H and 31P–NMR monitored cross-metathesis reaction of octavinylsilsesquioxane hybrid nanocomposite with ruthenium carbene: possibility for multifunctional octasilsesquioxane derivatives

Enock O. Dare

Department of Chemistry, University of Agriculture, P. O. Box 28, UNAAB, Abeokuta, Nigeria.
E-mail: dare3160@hotmail.com.

Accepted 10 June, 2010

Cross metathesis reaction of octavinylsilsesquioxane 1 with Grubb’s carbene 2 in CDCl$_3$ has been monitored by 1H – and 31P – NMR spectroscopy. Reaction in the presence of excess 1 afforded a ruthenium alkylidene resonance attributable to a monofunctional derivative of 1, while in the presence of excess 2, a tetrafunctional derivative resulted as determined by 1H - , 31P – NMR and mass spectrometry.

Key words: Cross metathesis, octavinylsilsesquioxane, ruthenium carbene, nanocomposite.

INTRODUCTION

Polyhedral oligomeric silsesquioxanes (POSS) are well known hybrid molecules that have recently attracted extensive attention as possible nanomaterial (size, Si - Si 0.5 nm; R - R 1.5 nm) building blocks in the synthesis of various materials, such as ceramic and liquid crystalline supramolecular systems. Most metal- functionalized silsesquioxanes were synthesized from trisilanol using “end- capped” reaction (Feher et al., 1992; Maschmeyer et al., 1995; Field et al., 1994). The metallasilsesquioxanes are noted for their high catalytic activities (Maschmeyer et al., 1995).

There are reports (Voronkov et al., 1979; Martynova et al., 1982; Yucks and Carrado, 1996) on cross-metathesis reactions of alkenes with readily available vinyl-substituted silsesquioxane and spherolitesilicates. However, investigations on metallasilsesquioxanes bearing ruthenium metal are often hampered by slow rates of cross-metathesis which limits its practicability. Moreover, there are reports on cross-metathesis of vinyl-substituted (vinyltrialkoxy) and (vinyltrisiloxy)-silanes catalyzed by a ruthenium carbene complex (Grubbs catalyst) with various olefins, such as styrene (Pietraszuk et al., 2000), terminal alkenes and p-substituted styrenes (Pietraszuk et al., 2001; Kujawa-Welton et al., 2002). However, the alkyl-substituted vinylsilanes appear to be quite inactive in ruthenium-catalyzed cross-metathesis (Kujawa-Welton et al., 2002). Recently, Itami et al. (2004) reported the functionalization of octavinylsilsesquioxane by employing both types of reactions catalyzed by ruthenium carbene complexes silylative coupling and cross-metathesis on a wide range of substituted silsesquioxanes with diverse b-substituted vinyl (especially b-heteroatom-substituted) groups. It is noteworthy that multifunctionalization of octasilsesquioxane with ruthenium carbene (Schwabs et al., 1995) has not been achieved. Here, a report of 1H – and 31P – NMR – monitored cross metathesis reactions of vinylsilsesquioxane 1 with [(Cy$_3$P)$_2$Cl$_2$Ru=CHPh] 2 (ruthenium or Grubb’s carbene) (Schwabs et al., 1995) on a preliminary scale is presented.

NMR TUBE EXPERIMENTS

NMR tube was charged with 1 (0.04 g, 6.3 x 10$^{-5}$ mole) and Grubb’s carbene (0.009 g, 1.01 x 10$^{-5}$ mole). CDCl$_3$ (1.0 mL) was added as fast as possible under nitrogen. The tube was sealed up and 1H and 31P-NMR signals were recorded.

Under nitrogen, a solution of 1 (0.02g, 3.16 x 10$^{-5}$ mole) in CH$_2$Cl$_2$ (5.0 mL) was prepared. This solution was added to a stirred solution of Grubb’s carbene. (0.104 g, 1.26 x 10$^{-4}$ mole) at 0°C. Ice-bath was removed and the mixture was stirred for 5 h at 30°C. The solvent was removed giving shinning black microcrystal, which was further washed with little dried methanol. 5 1H-NMR (CDCl$_3$): δ: 6.0-6.25 ppm (m, H$_2$C=CH-, 12H), 1.23-2.15 ppm (m, -C$_6$H$_{11}$). 31P-NMR (CDCl$_3$): δ: 50.94 ppm (s, P(C$_6$H$_{11}$)$_3$). MS (FAB): 3505.8 (M$, parent ion).
RESULTS AND DISCUSSION

In an NMR sample tube, treatment of 1 with 2 (6:1) in CDCl₃ afforded two products: [(Cy₃P)₂Cl₂Ru=CH₂] 3 and 4 within the first 12 min of reaction. The latter is the monofunctional derivative of vinylsilsesquioxane as determined by ¹H-NMR spectroscopy while the former is the self metathesis product. Hence, the peaks at (¹H: δ18.90, ³¹P: δ 43.71) and (¹H: δ 23.93, ³¹P: δ 45.36) are assigned to 3 and 4 respectively. This result conforms to a similar report [Feher et al., 1997] elsewhere (Figure 1).

After establishing the possibility for monofunctional formation of alkylidene complexes, the necessity to adopt a large excess of 2 arose. Within 20 min of reacting 1 with 2 (1:4) in CDCl₃, three ruthenium-alkylidene proton resonances appeared (Figure 2). In addition to the reappeared 3 and 4, the smallest peak at δ 22.6 on proton NMR is assigned to 5 (tetrafunctional derivative of 1). ³¹P-NMR of the mixture (Figure 3) also signified that indeed 3, 4, 5 and unreacted 2 were formed originally. The reaction was repeated on a preparative scale and 5 isolated as a shining black microcrystals with a clear ³¹P-NMR spectra indicating phosphorus signal at δ 50.94 (Figure 4).

The mechanism of cross metathesis reaction of alkenes and Grubb’s catalyst has been proposed by Schwab et al. (1996). 1 reacted with Grubb’s carbene to rapidly form a metallacyclobutane intermediate [Herrison and Chauvin, 1980]. Productive cleavage of the intermediate metallacycle leads to the formation of the alkylidene complexes 3, 4 and 5.

Conclusion

The possibility for the tetrafunctional derivative of 1 has been demonstrated by the cross metathesis reaction of octavinylsilsesquioxane and ruthenium carbene in an NMR tube as well as on a preparative scale. However, possibility for practicable octafunctionalization product still remains unsolved as proton NMR indicates complicated mixture of decomposed materials. The molecular orientation of the new organic-inorganic hybrid 5 may suggest its future application in catalysis. Full scale
Figure 2. 1H-NMR Spectra indicating ruthenium-alkylidene resonances of 3, 4 and 5.

Figure 3. 31P-NMR of the original mixtures of 2, 3, 4 and 5.
practical work is underway. Financial contribution of the institute of Chemistry, Academia Sinica is acknowledged.

REFERENCES