African Journal of
Pure and Applied Chemistry

  • Abbreviation: Afr. J. Pure Appl. Chem.
  • Language: English
  • ISSN: 1996-0840
  • DOI: 10.5897/AJPAC
  • Start Year: 2007
  • Published Articles: 362

Full Length Research Paper

A study of the morphology and optical properties of electro polished steel in the presence of Vitamin-C

Fatma M. Abouzeid
  • Fatma M. Abouzeid
  • Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
  • Google Scholar


  •  Received: 16 May 2015
  •  Accepted: 05 June 2015
  •  Published: 30 June 2015

References

Rajurkr KP (1992). Electrochemical polishing of biomedical titanium orifice rings. J. Mater. Proc. Technol. 35:83.
 
Wagner C (1954). Contribution to the Theory of Electropolishing. J. Electrochem. Soc. 181:225. Fitzgerald JM, McGeough JA (1969). Mathematical theory of electrochemical machining. {I}: Anodic smoothing. J. Inst. Math. Appl. 5:387. Fedkiw P (1980). Primary current distribution on a sinusoidal profile. J. Electrochem. Soc. 127:1304.
 
Sautebin R, Landolt D (1982). Leveling under secondary and tertiary current distribution conditions. J. Electrochem. Soc. 129:947. Clerc C, Landolt D (1984). On the Theory of Anodic Levelling: FEM Simulation of the Influence of Profile Shape and Cell Geometry. Electrochim. Acta. 29:787. Clerc C, Landolt D (1987). On the. theory of anodic levelling : Behaviour of macroprofiles. Electrochim. Acta. 32:1435. Matlosz M, Landolt D (1989). Shape Changes in electrochemical polishing: The effect of temperature on the anodic leveling of Fe‐24Cr. J. Electrochem. Soc. 136:919. Landolt D (1987). Fundamental aspects of electropolishing. Electrochim. Acta. 32:1.
 
Sautebin R, Froidevaux H, Landolt D (1980). Theoretical and Experimental Modeling of Surface Leveling in ECM under Primary Current Distribution Conditions. J. Electrochem. Soc. 127:1096.
Crossref
 
Clerc C, Datta M, Landolt D (1984). On the role of mass transport in high rate dissolution of iron and Chloride solutions. Electrochim. Acta. 29:1477.
Crossref
 
Datta M, Landolt D (1975). Surface Brightening during High Rate Nickel Dissolution in Nitrate Electrolytes. J. Electrochem. Soc. 122:1466.
Crossref
 
Datta M, Landolt D (1980). On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes-I. Chloride solutions. Electrochim. Acta. 25:1255.
Crossref
 
Magaino S, Matlosz M, Landolt D (1993). An Impedance Study of Stainless Steel Electropolishing. J. Electrochem. Soc. 140:1365.
Crossref
 
Gabe DR (1973). The determination of pitting potentials. Corros. Sci. 13:175.
Crossref
 
Ponto L, Datta M, Landolt D (1987). Electropolishing of iron-chromium alloys in phosphoric-acid and sulfuric-acid electrolytes. Surf. Coat. Technol. 30:265.
Crossref
 
Datta M, Vercruysse D (1990). Transpassive dissolution of 420 stainless steel in concentrated acids under electropolishing conditions. J. Electrochem. Soc. 137:3016.
Crossref
 
Datta M, Romankiw LT (1998). Surface finishing of high speed print Bands: II. An electrochemical process for microfinishing of hardened Fe‐13Cr Stainless Steel. J. Electrochem. Soc. 145:3052.
Crossref
 
Datta M, Andreshak JC, Romankiw LT, Vega LF (1991). US Patent 5:066-370.
 
Yuzhakov VV, Chang HC, Miller AE (1997). Pattern formation during electropolishing. Phys. Rev. B. 56(12):608.
Crossref
 
Bandyopadhyay S, Miller AE, Chang HC, Banerjee G, Yuzhakov V, Yue DF, Ricker RE, Jones S, Eastman JA, Baugher E, Chandrasekhar M (1996). Giant magnetoresistance in an electrochemically synthesized regimented array of nickel quantum dots. Nanotechnology. 7:360.
Crossref
 
Parkhutik VP, Shershulsky VI (1992). Theoretical modelling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys. 25:1258.
Crossref
 
Zhang J, Liu J, Yu W, Yan Y, You L, Liu L (2010). Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline. Corros. Sci. 52:2059.
Crossref
 
Shukla SK, Quraishi MA, Prakash R (2008). A self-doped conducting polymer "polyanthranilic acid": An efficient corrosion inhibitor for mild steel in acidic solution. Corros. Sci. 50:2867. Raja PB, Sethuraman MG (2008). Natural products as corrosion inhibitor for metals in corrosive media—a review. Mater. Lett. 62:113.
 
Shukla SK, Quraishi MA (2009). Cefotaxime sodium: A new and efficient corrosion inhibitor for mild steel in hydrochloric acid solution. Corros. Sci. 51:1007.
Crossref
 
Shukla SK, Quraishi MA (2009). Ceftriaxone: a noval corrosion inhibitor for mild steel in hydrochloric acid. J. Appl. Electrochem. 39:1517
Crossref
 
Shukla SK, Quraishi MA (2010). Effect of diethylcarbamazine on the corrosion of mild steel in HCl solution. Corros. Sci. 52:314.
Crossref
 
Singh AK, Shukla SK, Singh M, Quraishi MA (2011). Inhibitive effect of ceftazidime on corrosion of mild steel in hydrochloric acid solution. Mater. Chem. Phys. 1-2(129):68.
Crossref
 
Shukla SK, Quraishi MA (2010). The effects of pharmaceutically active compound.doxycycline on the corrosion of mild steel in hydrochloric acid solution. Mater. Chem. Phys. 120:142.
 
Palmieri V (2003). Fundamentals of Electrochemistry - The Electrolytic polishing of Metals: Application to Copper and Niobium. in SRF Workshop, 2003. Germany. Jacquet PA (1935). Electrolytic Method for obtaining Bright Copper Surfaces. Nature 135:1076. Okafor PC, Ikpi ME, Uwah IE, Ebenso EE, Ekpe UJ, Umoren SA (2008). Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media. Corros. Sci. 50:2310. Abdel-Gaber AM, Abd-El-Nabey BA, Sidahmed IM, El-Zayady AM, Saadawy M (2006). Inhibitive Action of Some Plant Extracts on the Corrosion of Steel in Acidic Media, Corros. Sci. 48:2765.
 
Schweinsberg DP, George GA, Nanayakkara AK, Steinert DA (1988). The protective action of epoxy resins and curing agents inhibitive effects on the aqueous acid corrosion of iron and steel. Corros. Sci. 28:33. Okafor PC, Ikpi ME, Ekanem UI, Ebenso EE (2013). Effects of Extracts from Nauclea Latifolia on the Dissolution of Carbon Steel in H2SO4 Solutions. Int. J. Electrochem. Sci. 8:12278. Awad AM, Abdel Ghany NA, Dahy TM (2010). The effect of surfactants on the electropolishing behavior of copper in orthophosphoric acid. Appl. Surf.Sci. 256:4370.
 
Osman MM, El-Ghazawy RA, Al-Sabagh AM (2003). Corrosion inhibitor of some surfactants derived frommaleic-oleic acid adduct on mild steel in 1 M H2 SO4. J. Mater. Chem. Phys. 80:55-62.
Crossref
 
Gomma GK (1998). Effect of copper cation on electrochemical behaviour of steel in presence of imidazole in acid medium. Mater. Chem. Phys. 55-131. Ammar IA, el-Khorafi FM (1973). Adsorbability of Thiourea on Iron Cathodes. Werkstoffe und Korrosion. 24:702.
 
Omar B, Mokhtar O (2011). Inhibition of cold rolled steel corrosion in sulphuric acid solution by 2-mercapto-1-methylimidazole: Time and temperature effects treatments. Arab. J. Chem. 4:443. Avci G (2008). Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5 M HCl. Colloids Surf. A: Physicochem. Eng. Aspects. 317:730.
 
Li L, Qu Q, Bai W, Yang F, Chen Y, Zhang S, Ding Z (2012). Sodium diethyldithiocarbamate as a corrosion inhibitor of cold rolled steel in
Crossref
 
Amin MA, Ahmed MA, Arida HA, Arslan T, Saracoglu M, Kandemir F (2011). Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series – Part II. Temperature effect, activation energies and thermodynamics of adsorption. Corros. Sci. 53:540.
Crossref