African Journal of
Pharmacy and Pharmacology

  • Abbreviation: Afr. J. Pharm. Pharmacol.
  • Language: English
  • ISSN: 1996-0816
  • DOI: 10.5897/AJPP
  • Start Year: 2007
  • Published Articles: 2119

Full Length Research Paper

Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulfated polysaccharides from marine algae and bacteria

Sutapa Biswas Majee
  • Sutapa Biswas Majee
  • Division of Pharmaceutics, NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 B.L. Saha Road, Kolkata 700053, India.
  • Google Scholar
Dhruti Avlani
  • Dhruti Avlani
  • Division of Pharmaceutics, NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 B.L. Saha Road, Kolkata 700053, India.
  • Google Scholar
Gopa Roy Biswas
  • Gopa Roy Biswas
  • Division of Pharmaceutics, NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 B.L. Saha Road, Kolkata 700053, India.
  • Google Scholar


  •  Received: 29 October 2016
  •  Accepted: 27 January 2017
  •  Published: 08 February 2017

Abstract

Marine environment with rich biodiversity offer unlimited choice for novel biopolymers. Sulfated polysaccharides isolated from marine algae and bacteria constitute an important group in the marine-derived biomolecules and biopolymers. They possess unique structural features which can be exploited to their fullest potential in the development of new therapeutic molecules, design of nanocarriers and stimuli-responsive drug delivery systems, development of anti-aging and moisturizing creams and as molecular probes in diagnosis of cancers and cardiovascular diseases. The aim of the present review is to highlight the sources, characteristics and applications of sulfated polysaccharides and exopolysaccharides isolated from marine algae, cyanobacteria, extremophilic and halophilic bacteria. Detailed description of physicochemical properties and versatile applications of ulvan, fucoidan, galactofucan sulfate, laminarin, mauran, cyanobacterial exopolysaccharides and other lesser known exopolysaccharides of marine bacterial origin has been provided. In a nutshell, it can be concluded that sustainable exploitation of the renewable, diverse library of these unique and novel sulfated polysaccharides will unravel newer possibilities in future and will enrich the existing arsenal of biopolymers.

Key words: Exopolysaccharide, marine biopolymer, molecular probe, nanocarriers, stimuli-responsive drug delivery systems, sulfated polysaccharide.