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𝛼-Naphthylisothiocyanate (ANIT) is known to provoke liver damage with intrahepatic cholestasis. This 
ANIT is accepted to be important for assessing the effect of medicine instigated cholestasis. This 
assessment investigated the effect of green tea (Camellia sinensis) in contrast to that of Vitamin C (VC) 
against the hepatotoxicity of ANIT. Rats were orally treated with green tea portion (GT50, 75, 100 mg/kg) 
and CV (250 mg/kg) following 12 h of ANIT mixture (75 mg/kg). Rats were killed 24 h after treatment. 
Rats treated with ANIT demonstrated hepatocyte damage and cholestasis appeared as changes in 
serum biomarker levels, among others; increase in entire cholesterol, triglycerides, phospholipids, and 
lipid peroxide, and furthermore, an extension in hepatic lipid peroxide, a decline in glutathione and 
myeloperoxidase activity and a decrease in hepatic superoxide dismutase. The utilization of GT (75 
mg/kg) to rats treated with ANIT blocked hepatic cell mischief and cholestasis and alleviated these 
serum and hepatic biochemical changes, while the use of GT (50 or 100 mg/kg) was less impressive. 
Both VC and ANIT-treated rats kept up a vital separation from liver cell hurt, yet not cholestasis, and 
reduced serum lipid peroxide, hepatic lipid peroxide, and myeloperoxidase action. These results 
demonstrate that the GT guarantees ANIT-affected liver harm (Cholestasis in the rat) more satisfactorily 
than VC. 
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INTRODUCTION 
 
Green tea is the most expended drink and can deter the 

impact of cancer in vivo (Yang et al., 2009; Fujiki et al., 

2018) Green tea (Camellia sinensis) has cell fortifying 
and weakening properties. The protective impact was 
credited to the cell reinforcement limit of the concentrate 
(Erba et al., 1999; Somia et al., 2017) and likely  because  
 

 
of the gift of hydrogen by green tea polyphenols 
(Anderson et al., 2001). Correspondingly, green tea 
extricate anticipated H2O2-actuated cell demise just like 
manner bladder malignancy and urothelial cells (Coyle et 
al., 2008). Polyphenols in green tea are believed to be in 
charge of the protection  impacts  of  disease.  Every  day 
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utilization of polyphenols from green tea is high in a few 

nations (Lorenzo et al., 2016; Fujiki et al., 2018). The 

phenolic mixes of green tea with the most astounding 
focus are gallic acid, gallocatechin, catechin, epicatechin, 
epigallocatechin, epicatechin gallate, epigallocatechin 
gallate, p-coumaroylquinic corrosive and gallocatechin-3-
gallate (Shishikura and Khokhar, 2005; Kwon et al., 2015; 
Riley et al., 2018). Green tea likewise contains dense and 
hydrolyzable tannins (Okuda and Ito, 2011; McAlpine et 
al., 2016) and has the most astounding centralization of 
polyphenols contrasted with different teas, including 
epigallocatechin gallate (EGCG), which might be the 
reason green tea can prompt apoptotic cell passing in 
malignant growth than different teas (Lin et al., 2003; 
Riley et al., 2018; Miyata et al., 2018). Green tea 
polyphenols have been exhibited against malignant 
growth action in various investigations that could be 
intervened by the antioxidant or pro-oxidant system in 
various rats models of human disease (Davalli et al., 
2012; Naponelli et al., 2017; Fujiki et al., 2018). These 
polyphenols, for example, EGCG hinders cell feasibility 
and actuate apoptosis in various malignant growth cell 
lines, for example, osteogenic sarcoma (Ji et al., 2006), 
lymphoblastoid cells (Noda et al., 2007), leukemia cells 
(Nakazato et al., 2005), melanoma cells (Nihal et al., 
2005), immune system microorganisms (Li et al., 2000), 
antibladder cancer (Miyata et al., 2018) and laryngeal 
carcinoma (Lee et al., 2010). Green tea polyphenols have 
appeared to lessen the separation of malignant growth 
cells into slower multiplying cells (Zhou et al., 2004). Be 
that as it may, the ramifications of oxidative or cell 
antioxidant instruments is vague; it is as yet indistinct 
whether green tea has a defensive impact against 
intense liver damage with cholestasis in vivo in rats. 

α-Naphthylisothiocyanate (ANIT) is a substance usually 
used to start cholestasis by harming epithelial cells of the 
bile conduits and causing serious cholangitis and 

intrahepatic cholestasis (Yan et al., 2017;Wu et al., 2017; 

Han et al 2018). A one of a kind treatment of rats 
explored different avenues regarding α-
naphthylisothiocyanate (ANIT) which can harm the liver 
with intrahepatic cholestasis (Plaa and Clerical, 1976; 
Kossor et al., 1993; Golbar et al., 2017). It is imagined 
that this hepatic injury with ANIT-initiated cholestasis is 
valuable for examining the procedures associated with 
medication instigated cholestasis, since hepatic sores 
and cholestasis exist on account of the application of 
certain explicit medications (e.g. Erythromycin estolate, 
Chlorpromazine, and so forth) to rats and people by 
emulating the application of ANIT to rats (Kossor et al., 

1993; Yan et al., 2017;Han et al.,2018). ANIT instruments 

with cholestasis have been proposed; however, it has not 
yet been completely explained. It has been prescribed 
that lessened hepatic glutathione (GSH) be added to the 
movement  of   hepatic   inclusion    related    with   ANIT- 
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prompted cholestasis because of its capacity to deliver a 
reversible ANIT-S conjugate which is basic for the vehicle 
of ANIT into the bile where it is discharged at high 
fixations and most likely lethal (Roth and Dahm, 1997; 

Yan et al., 2017; Wu et al., 2017). Likewise, it has been 

proposed that neutrophil-intervened aggravation might be 
added to the enhancement of ANIT-initiated cholestatic 
liver damage in rats (Roth and Dahm, 1997). Besides, in 
rats treated once with ANIT, it was affirmed that lipid 
peroxidation instigated by responsive oxygen species 
(ROS) made by methods for attacking neutrophils in the 
liver tissues is engaged with the movement of liver sores 
with cholestasis (Kongo et al., 1999; Cullen et al., 2016). 
Moreover, it has appeared in ANIT-treated rats that the 
intrusion of the hepatic disease hindering action 
framework adds to enhanced cholestasis-related liver 
harm (Ohta et al., 2001; Nakamura et al., 2013; Wu et al., 
2017). 

The destructive ascorbic acid, also called vitamin C 
(VC), is prominent for applying antioxidant and reducing 
exercises (Sorice et al., 2014). This investigation 
demonstrates that green tea extricates control weight 
actuated liver harm, in any event to a lesser degree, 
through its cell reinforcement and calming exercises 
identified with VC (Reddy et al., 2017). Furthermore, VC 
has been proven to hinder the harm to liver cells (Yang et 
al., 2018), yet not cholestasis, in rats treated with a 
solitary ANIT treatment, at any rate to some degree, 
through its cancer prevention agent and calming 
exercises (Ohta et al., 2006; Han et al., 2018). In this 
vein, this investigation inspected the guarded impact of 
green tea extricate on ANIT-actuated liver damage and 
cholestasis in rats contrasted with that of VC. 
 
 

MATERIALS AND METHODS 
 

Chemical 
 

α-Naphthylisothiocyanate (ANIT), 3,3', 5,5'- tetramethylbenzidine 
(TMB), cow-like serum egg whites, p-coumaric corrosive, RRR-α-
tocopherol (α-Toc), superoxide dismutase (Grass) decontaminated 
from ox-like erythrocytes, yeast glutathione reductase, NADPH, 
chlorogenic corrosive, epigallocatechin gallate (EGCG), L-ascorbic 
corrosive, cinnamic corrosive, chrysin, N, N-dimethylformamide 
(DMF), α'- dipyridyl, 5.5 Dithiobis (2-nitrobenzoic corrosive) (DTNB), 
ethylenediaminetetraacetic corrosive (EDTA), Folin-Ciocalteu 
reagent (FCR), gallic corrosive, kaempferol, quercetin, glutathione 
decrease (GSH), 2-thiobarburic acid, trichloroacetic acid (TCA), 
Tween 80 and different synthetic concoctions were bought from 
Sigma (St. Louis, Missouri, USA); α-Toc and delta-tocopherol 
standard utilized for the assurance of the CV. 
 
 

Preparation of GT extract and determination its composition 
 

A green tea extricate (GT) was set up by drenching about 30 g of 
dried green tea leaves homogenized in 100 ml of 95% ethanol at 
90°C for 60 min. The cooled blend was sifted through a 0.45 μm 
millipore nylon channel before the examination. The sifted test was 
dried at 45°C. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Golbar%20HM%5BAuthor%5D&cauthor=true&cauthor_uid=28159300
http://www.frontiersin.org/people/u/507911
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    The polyphenol substance of the GT was controlled by the Folin-
Ciocalteau colorimetric system referenced by Ahn et al. (2004). The 
essential constituents of GT were decayed by HPLC as shown by 
the method portrayed by Friedman et al. (2006). HPLC was 
performed utilizing a Hitachi display 665-II fluid chromatograph with 
an autosampler (Demonstrate 655A-40, Hitachi Ltd., Tokyo, Japan). 
The section was (250 mm x 4.0 mm i.d.). The section temperature 
of 30°C was kept up utilizing a Shimadzu CTO-10vp segment 
heater (Shimadzu, Kyoto, Japan). The slope of the versatile stage 
was a blend of 100% acetonitrile and 20 mM KH2PO4. The stream 
rate was 1 mL/min. The photodiode cluster UV-VIS locator (SPD-
10Avp model, Kyoto, Japan) was set somewhere in the range of 
200 and 600 nm. The tea extricates (10 μL) was infused into the 
section. Recognition of every catechins, theaflavins, alkaloid, and 
artepillin C in the GT extricate were performed at 280 nm and the 
constituent of every substance was assessed. The constituent of 
strong parts was assessed at 14.3%. The catechins and the 
segments of the other two fundamental green tea, caffeine and 
theanine, are confirmed as just the extricated concentrates of 58, 
25 and 12 mg/g of catechins, caffeine, and theanine, referenced by 
Chang et al. (2000). 
 
 

Experimental animals and protocol 
 

Six-week-old male rats were acquired from King Fahad Exploration 
Center, King Abdul Aziz Higher Institution, Jeddah, Saudi Arabia. 
The rats were housed in temperature-controlled pens (25 ± 2°C) 
and relative stickiness (52 ± 5%) with 12 h of light. The rats were 
kept with free access to rats sustenance and faucet water for seven 
days. All rats got kind consideration as per Umm Al-Qura Higher 
Institution rules. 

The rats were isolated into 6 factions (n = 5 each) as shown 
below: 
 
i) Control faction: The rats did not get ANIT, GT or VC. 
ii) ANIT faction: The rats were dealt with just with ANIT. 
iii) ANIT + GT faction (50): The rats were treated with ANIT and 
managed after GT application at a quantity of 50 mg/kg. 
iv) ANIT + GT faction (75): The rats were treated with ANIT and 
BPEE at a quantity of 75 mg/kg was applied hereafter. 
v) ANIT + GT faction (100): The rats were treated with ANIT and 
along these lines managed by GT at a quantity of 100 mg/kg. 
vi) ANIT + VC faction: The rats were treated with ANIT and post-
managed with VC. ANIT has been broken down in olive oil. All rats 
were fasted for 15 h before treatment and got water voluntarily amid 
the tests. Seven-week-old rats from all factions got an 
intraperitoneal (I.P.) infusion of ANIT at a portion of 75 mg for each 
kg of body weight, as portrayed by Kongo et al. (1999), Ohta et al. 
(2001, 2006). The control faction and alternate factions were 
treated with a similar volume of olive oil. Following 12 h of starting 
an infusion of ANIT or olive oil, the rats treated with ANIT were 
partitioned into 4 factions; Three factions of them were orally 
attended to, with GT at various quantities (50, 75 and 100 mg/kg) of 
green tea extricate with ethanol. The last faction of ANIT was 
treated with VC at a quantity of 250 mg/kg body weight. The 
quantity of VC utilized in this examination was resolved dependent 
on information introduced by Kaida et al. (2010). Following 24 h, the 
treated rats were yielded for histological examination and 
biochemical investigation. 

 
 
Sample preparation 
 
24 h after the main infusion of ANIT or vehicle, each rat was 
gauged and relinquished  under  ether  anesthesia,  and  the   blood  

 
 
 
 
was expelled from the mediocre vena cava. The serum was 
disconnected from the blood gathered by centrifugation. Not long 
after the killing, every liver was washed with super cold 0.9% NaCl 
to empty the blood into the tissues, at that point weighed 
subsequent to being wiped on a channel paper. The liver and 
serum tests were kept at - 80°C until its utilization. 
 
 
Serum biomarkers investigation 
 
Alanine aminotransferase (ALT) and aspartate aminotransferase 
(AST) in serum were directed utilizing a transaminase II test pack. 
γ-Glutamyl transpeptidase (γ-GTP) was settled in the serum 
utilizing the γ-GTP C-Test pack. The bilirubin and bile acid totals 
were inspected utilizing the Bilirubin BII-Test and Aggregate bili 
basic analysis units, individually. Serum adds up to cholesterol (T-
Chol), while triglycerides and phospholipids were directed by the 
cholesterol test E test, the triglyceride test G packs, and the 
phospholipid C test, individually. The packs were obtained from 
Wako, Richmond, VA, USA. Lipid peroxide (LPO) was assessed 
using serum fluorometry by the methodology of thiobarbituric acid, 
as depicted by Yagi (1979). The excitation and transmission wave 
lengths of this gauge were 515 and 553 nm. The estimation of LPO 
in serum is communicated as malondialdehyde proportionate 
(MDA). 
 
 
Determination of hepatic biomarkers 
 
The liver was gathered and isolated from every trial faction and 
weighed independently. The heaviness of the liver was assessed 
by their relative weight (g/100 g B.W). Disconnected hepatic tissue 
was homogenized in 9 volumes of super cold 50 mM Tris-HCl 
support (pH 7.4), containing 1 mM EDTA, to set up a 10% 
homogenate utilizing a FisherbrandTM Q700 sonicator (Fisher, 
Hampton, New Hampshire, USA). In the wake of keeping the 
remaining on the ice for one moment, the homogenate was 
centrifuged at 4°C (10,000xg) for 20 min. A microdialysis device 
was utilized to dialyze the supernatant against 100 volumes of a 
comparative transporter at 4°C for 1 h (Fisher, Hampton, New 
Hampshire, USA). For estimation of GSH, 𝛼-Toc, and LPO, the 
subsequent liver homogenate was utilized. The DTNB procedure of 
Sedlak and Lindsay (1968) was utilized to gauge the dimension of 
GSH in liver homogenate. HPLC was utilized to assess α-Toc in the 
liver homogenate utilized as an interior standard, as demonstrated 
by Kamiya (2005). The spectrophotometer was utilized to evaluate 
LPO in a homogenate utilizing the thiobarbituric acid strategy 
depicted by Ohkawa et al. (1979). The estimation of liver LPO 
accounted for is like that of MDA reciprocals. Hepatic SOD 
movement was settled utilizing a business SOD test unit (Sigma, St. 
Louis, Missouri, USA). The techniques utilized by Cohen (1970) 
and Kamata et al. (1994) were utilized to decide catalase (Feline) 
and Se-glutathione peroxidase (Se-GSH-px), individually. 
Myeloperoxidase (MPO) was assessed as depicted by Suzuki et al. 
(1983), where MPO was utilized as a record of neutrophil invasion 
in tissues. The action of the MPO in the liver tissue supernatant was 
controlled by brooding of the supernatant at 60°C for 2 h to 
construct recuperation of MPO in liver tissues as revealed by 
Schierwagen et al. (1990). MPO movement in the warmed liver 
tissue test was evaluated by estimating the oxidation of the 
hydrogen peroxide-subordinate TMB at 37°C. The TMB was 
decayed to N, N-dimethylformamide. One unit (U) of this compound 
is described as estimating the catalyst, causing a change of the 
absorbance of 1.0 every moment at 655 nm. The protein in the 
supernatant was evaluated utilizing the Protein Test Fast unit 
(Wako, Richmond,  VA,  USA).  The  protein level  in the liver tissue  
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Figure 1. Impacts of GTAE and VCs applied on serum ALT (A) and AST (B) exercises in ANIT-treated rodents. Fasted rodents in 
the ANIT, ANIT + GTAE (50), ANIT + GTAE (75), ANIT + GTAE (100) and ANIT + VC factions were applied orally with the 
vehicle (Tween 80-EtOH), 50 mg/kg of GTAE, 75 mg/kg of GTAE, 100 mg/kg of GTAE and 250 mg/kg of VC, individually, 12 h 
after treatment with ANIT disintegrated in olive oil (75 mg/kg, IP). The fasted rodents in the control faction got olive oil and Tween 
80-EtOH as a vehicle just previously and 12 hours after ANIT treatment, individually. ALT and AST in serum were resolved 24 h 

after ANIT treatment. Each amount is an average Â± SD (𝑛 = 5 for the control faction, 𝑛 = 5 for each faction for every one of the 
factions treated with ANIT). ∗𝑃<0.05 (contrasted with the control faction); +𝑃 <0.05 (versus ANIT faction). 

 
 
 
supernatant was resolved and the cow-like serum egg whites were 
utilized as a benchmark. 
 
 
Histological study 
 
Rat liver specimens treated with ANIT and GT or VC and untreated 
control rats were gathered and settled in phosphate cradled saline 
for 10 h with 10% formalin. The specimen was washed with faucet 
water, and afterward got dried out in liquor. The tissue was inserted 
in paraffin and cut into 5-7 μm thick areas. They were mounted on 
glass slides and recolored with hematoxylin and eosin (H&E). The 
histological perceptions were inspected under an optical magnifying 
lens. 
 
 
Statistical analysis 
 
The outcomes acquired are communicated as mean ± standard 
deviation (S.D.). The measurable investigation was resolved to 
utilize StatView statistical programming. Each mean was thought 
about by one-way analysis of variance (ANOVA). Numerous 
correlations between factions were then performed utilizing the 
Tukey-Kramer test, and the distinction of P < 0.05 was viewed as 
measurably huge. 
 
 

RESULTS 
 
Effects of GT and VC on liver cell damage and 
cholestasis 
 
Serum ALT and AST demonstrate hepatocyte harm. In 
the ANIT faction, γ-GTP activity, a collection of bilirubin 
and    bile   acid     obsession,     and    cholestasis   were 

considerably higher than in the control faction (Figures 1 
and 2). In the ANIT + GT (50), ANIT + GT (75) and ANIT 
+ GT (100) factions, ANIT-driven serum ALT, AST, and γ-
GTP action augmentations were recognized, while ANIT 
instigated serum delta ALT and AST movement was 
considerably weakened in the ANIT + VC faction (Figures 
1A and 2B). The impact of ANIT + GT (50) on the 
expansion in ANIT-instigated serum ALT was in a general 
sense higher than in the ANIT + GT (75) and ANIT + GT 
(100) factions. The impact of ANIT-incited increments in 
AST and γ-GTP movement in the ANIT + GT (50) 
gathered was more articulated than in the ANIT + GT (75) 
and ANIT + GT (100) factions (Figures 1B and 2A). The 
impact of ANIT + GT (75) on the compression of 
expanded ANIT-prompted serum ALT and AST 
movement was tantamount to that of the ANIT + VC 
faction (Figure 1). In the ANIT + GT (75) faction, ANIT-
prompted increments in serum add up to bilirubin and 
aggregate bile acid focuses were essentially weakened 
(Figures 2B and 2C). In the ANIT + GT (75) faction, 
ANIT-instigated increments in serum total bilirubin and 
bile acid obsession were basically restricted (Figures 2B 
and 2C). Be that as it may, in the ANIT + GT (50) faction, 
the ANIT-prompted increment in serum total bilirubin and 
aggregate bile acid obsession was not constricted 
(Figures 2B and 2C). In spite of the fact that the 
expansion in serum adds up to bilirubin fixation actuated 
by ANIT which was totally constricted in the ANIT + GT 
(100) faction, the weakening impact of ANIT + GT (100) 
totals was basically as low as that of ANIT + GT (75) (P < 
0.05) (Figures 2B and 2C). In the ANIT + VC  faction,  the  

  

 

 

Figure 1: Impacts of GTAE and VCs applied on serum ALT (A) and AST (B) exercises in 

ANIT-treated rodents. Fasted rodents in the ANIT, ANIT + GTAE (50), ANIT + 

GTAE (75), ANIT + GTAE (100) and ANIT + VC factions were applied orally with 

the vehicle (Tween 80-EtOH), 50 mg/kg of GTAE, 75 mg/kg of GTAE, 100 mg/kg of 

GTAE and 250 mg/kg of VC, individually, 12 h after treatment with ANIT 

disintegrated in olive oil (75 mg/kg, IP). The fasted rodents in the control faction got 

olive oil and Tween 80-EtOH as a vehicle just previously and 12 hours after ANIT 

treatment, individually. ALT and AST in serum were resolved 24 h after ANIT 

treatment. Each amount is an average Â± SD (𝑛 = 5 for the control faction, 𝑛 = 5 for 

each faction for every one of the factions treated with ANIT). ∗𝑃<0.05 (contrasted 

with the control faction); +𝑃 <0.05 (versus ANIT faction). 

 

 



 

 

40          Afr. J. Pharm. Pharmacol. 
 
 
 

 
 

Figure 2. Impacts of applied GTAE and VC on serum Se-GSH-px (A) action and aggregate bilirubin (B) and 
aggregate bile acid (C) fixations in ANIT-treated rodents. Se-GSH-px, add up to bilirubin, and aggregate bile 
acid in serum was resolved at 24 h after ANIT treatment. Each amount is a mean ± S.D. (𝑛 = 5 for Control 
faction; 𝑛 = 5 for every each faction for all factions with ANIT treatment). ∗𝑃 < 0.05 (versus control faction); +𝑃 
< 0.05 (versus ANIT faction). 

 
 
 
ANIT-initiated increment in serum add up to bilirubin and 
accumulated bile acid obsession was not constrained at 
all (Figures 2B and 2C). 
 
 
Effects of GT and VC on live histological changes 
 
In the control faction, the ANIT faction, the ANIT + GT 
(75) faction, and the ANIT + VC faction, the hematoxylin 
and eosin recolored liver regions were exposed to 
histopathological changes, necrosis, and aggravation 
tests. The control aggregate demonstrated the ordinary 
histological structure and no progressions were watched. 
Be that as it may, the faction treated with ANIT indicated 
huge necrotic and degenerative changes with outrageous 
provocative cell penetration. The ANIT + GT (75) and 
ANIT + VC bunches demonstrated a critical decrease in 
necrotic and degenerative changes with less fiery cell 
invasion (Figure 3). In addition, the histological changes 
in the ANIT + GT (75) aggregate was to some degree like 
the ANIT + VC faction (Figures 3C and 3D). 

Effects of GT and VC on serum lipid profile 
concentrations 
 
Serum T-Chol, triglyceride and phospholipid fixations 
were fundamentally lifted in the ANIT faction contrasted 
with the control faction (Figure 4). In the faction treated 
with ANIT + GT (75), an expansion in ANIT enlistment 
was seen in serum T-Chol, and triglyceride and 
phospholipid levels were altogether diminished (Figure 
4). Nonetheless, in the ANIT + GT (50) faction, just ANIT 
enlistment with expanding serum triglyceride focus was 
essentially weakened. No noteworthy impact on ANIT-
prompted serum T-Chol, triglyceride and phospholipid 
fixations were seen in the ANIT + GT (100) and ANIT + 
VC factions (Figure 4). 
 
 
Effects of GT and VC on relative liver weight 
 
The relative liver load of the ANIT faction was essentially 
higher than that of the control  faction  (Figure  5).  In  the  

  

 

 

 

 
 

 
 

Figure 2: Impacts of applied GTAE and VC on serum Se-GSH-px (A) action and aggregate 

bilirubin (B) and aggregate bile acid (C) fixations in ANIT-treated rodents. Se-GSH-

px, add up to bilirubin, and aggregate bile acid in serum was resolved at 24 h after 

ANIT treatment. Each amount is a mean ± S.D. (𝑛 = 5 for Control faction; 𝑛 = 5 for 

every each faction for all factions with ANIT treatment). ∗𝑃 < 0.05 (versus control 

faction); +𝑃 < 0.05 (versus ANIT faction). 
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Figure 3. Histological figures of hepatic tissue of untreated control rodents and ANIT-treated rodents with and without GTAE 
or VC. (A) Control faction: no histological changes were detected. (B) ANIT faction: necrotic (N) and degenerative changes 
with serious incendiary cell invasion (In) were detected (arrow). (C) ANIT + GTAE faction (75): There was an emotional 
decline in necrotic and degenerative changes and incendiary cell penetration (arrow). (D) The ANIT + VC faction 
demonstrates a major decline in necrotic and degenerative changes and incendiary cell invasion (H and E, starting 
amplification Ã— 100). 

 
 
 
ANIT GT (75) faction, ANIT initiated a critical decline in 
relative liver weight, while in ANIT GT (50), ANIT GT 
(100) no huge impact was seen on the relative liver 
weight gain and the ANIT VC faction (Figure 5). 
 
 
Hepatic LPO concentrations and serum affected by 
GT and VC 
 
Serum and liver LPO focuses were altogether higher in 
the ANIT faction than in the control rats (Figure 6). In the 
ANIT GT (75), ANIT GT (100) and ANIT VC factions, 
serum ANIT-prompted increments, and liver LPO focuses 
were essentially weakened, yet no critical impacts were 
found   in    the    ANIT   GT  (50)  faction  (Figure 6).  The 

decrease in serum and liver LPO focuses in the ANIT GT 
(75) faction was like that in the ANIT VC faction, 
however, essentially higher than in the ANIT GT (100) 
faction (P < 0.05) (Figure 6). 
 
 
Hepatic antioxidant enzyme systems affected by GT 
and VC 
 
In spite of the fact that there was no noteworthy contrast 
in liver CAT and Se-GSH-px movement between the two 
factions, the liver SOD action of the ANIT faction was 
considerably lower than that of the control faction (Figure 
7). In the ANIT GT (50), ANIT GT (75), ANIT GT (100) 
and ANIT VC  factions,  an  ANIT-instigated  decrease  in  
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Figure 4. Impacts of the BPWs and VCs applied on serum dimensions of T-Chol, 
triglycerides, and phospholipids in ANIT-treated rodents. T-Chol, triglycerides, and 
phospholipids in the serum were measured 24 hours after ANIT treatment. Each amount 
is an average Â± SD (𝑛 = 5 for the control faction, 𝑛 = 5 for each faction for every one of 
the factions treated with ANIT). ∗𝑃 <0.05 (contrasted with the control faction); +𝑃 <0.05 
(versus ANIT faction). 

 
 
 

 
 

Figure 5. Impacts of controlled WGE and VC on liver load in ANIT-treated rodents. The 
liver load of each rodent was assessed utilizing its relative weight (g/100 g body 
weight) 24 h after ANIT treatment. Each amount is an average Â± SD (𝑛 = 5 for the 
control faction, 𝑛 = 5 for each faction for every one of the factions treated with ANIT). 
∗𝑃<0.05 (contrasted with the control faction); +𝑃<0.05 (versus ANIT faction). 

 
 
 
liver SOD action was fundamentally lessened, despite the 
fact that the ANIT GT (75) aggregate exhibited this. The 
best  constriction  was  found  in  the  three  ANIT  GTAW 

factions (Figure 7A). Besides, the liver SOD movement of 
the ANIT GT (75) or ANIT GT (100) faction did not vary 
from the liver SOD action  of  the  control  faction  (Figure  

 

 
Figure 4: Impacts of the BPWs and VCs applied on serum dimensions of T-Chol, 

triglycerides, and phospholipids in ANIT-treated rodents. T-Chol, triglycerides, and 

phospholipids in the serum were measured 24 hours after ANIT treatment. Each 

amount is an average Â± SD (𝑛 = 5 for the control faction, 𝑛 = 5 for each faction for 

every one of the factions treated with ANIT). ∗𝑃 <0.05 (contrasted with the control 

faction); +𝑃 <0.05 (versus ANIT faction). 

 

 
Figure 5: Impacts of controlled WGE and VC on liver load in ANIT-treated rodents. The 

liver load of each rodent was assessed utilizing its relative weight (g/100 g body 

weight) 24 h after ANIT treatment. Each amount is an average Â± SD (𝑛 = 5 for the 

control faction, 𝑛 = 5 for each faction for every one of the factions treated with 

ANIT). ∗𝑃<0.05 (contrasted with the control faction); +𝑃<0.05 (versus ANIT 

faction). 
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Figure 6. Impacts of the BPWs and VCs regulated on the LPO fixations in the serum (A) and liver (B) of 
rodents treated with ANIT. LPO in serum and liver tissues was tried 24 hours after ANIT treatment. Each 
amount is an average Â± SD (𝑛 = 5 for the control faction, 𝑛 = 5 for each faction treated with ANIT). ∗𝑃 <0.05 
(contrasted with the control faction); +𝑃 <0.05 (versus ANIT faction). 

 
 
 

 
 

Figure 7. Impacts of the BPWs and VCs applied on liver exercises SOD (A), catalase (B) and 
Se-GSH-px (C) in ANIT-treated rodents. SOD, catalase, and Se-GSH-px in liver tissues were 

evaluated 24 hours after ANIT treatment. Each amount is an average Â± SD (𝑛 = 5 for the 
control faction, 𝑛 = 5 for each faction for every one of the factions treated with ANIT). ∗𝑃 <0.05 
(contrasted with the control faction); +𝑃< 0.05 (versus ANIT faction). 

 
 
 
7A). The ANIT GT (50), ANIT GT (75) and ANIT VC 
factions had no noteworthy impact on liver catalase 
action; however, the compound action of the ANIT GT 
(100) faction was essentially decreased  (Figure 7B). The 

ANIT GT (50), ANIT GT (75) or ANIT GT (100) factions 
had no huge impact on liver Se-GSH-px movement, yet 
the ANIT VC amass had a noteworthy increment in this 
action (Figure 7C). 
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and Se-GSH-px (C) in ANIT-treated rodents. SOD, catalase, and Se-GSH-px in liver 

tissues were evaluated 24 hours after ANIT treatment. Each amount is an average Â± 

SD (𝑛 = 5 for the control faction, 𝑛 = 5 for each faction for every one of the factions 

treated with ANIT). ∗𝑃 <0.05 (contrasted with the control faction); +𝑃< 0.05 (versus 

ANIT faction). 

 



 

 

44          Afr. J. Pharm. Pharmacol. 
 
 
 

 
 

Figure 8. Impacts of applied GTAE and VC on hepatic GSH (A) and 𝛼 -Toc (B) fixations in ANIT-treated 
rodents. GSH and 𝛼 -Toc in liver tissues were evaluated at 24 h after ANIT treatment. Each amount is a mean 
± S.D. (𝑛 = 5 for Control faction; 𝑛 = 5 for each faction for all gatherings with ANIT treatment). * 𝑃 < 0.05 
(versus control faction); + 𝑃 < 0.05 (versus ANIT faction). 

 
 
 

 
 

Figure 9. Impacts of applied GTAE and VC on hepatic MPO action in 
ANIT-treated rodents. MPO in liver tissues was resolved at 24 h after 
ANIT treatment. Each amount is a mean ± S.D. (𝑛 = 5 for the control 
faction; 𝑛 = 5 for each faction with ANIT treatment). * 𝑃 < 0.05(versus 
Control faction); + 𝑃 < 0.05 (versus ANIT faction). 

 
 
 
Hepatic antioxidant concentrations affected by GT 
and VC 
 
The glutathione fixation in the ANIT faction was 
considerably higher than that in the control rats, in any 
case, there was no huge contrast in liver α-Toc focus 
(Figure 8). In the ANIT GT (50), ANIT GT (75) or ANIT 
GT (100) factions, ANIT-prompted increments in liver 
GSH fixations were generously diminished, while the 
ANIT VC mass had no critical impact on liver GSH 
focuses (Figure 8A). The  ANIT  GT  (50),  ANIT  GT  (75) 

and ANIT GT (100) factions had no noteworthy impact on 
liver α-Toc fixations; however, the liver α-Toc focuses 
were essentially and altogether expanded in the ANIT VC 
faction (Figure 8B). 
 
 
Effects of GT and VC on neutrophil infiltration 
 
Liver MPO action was essentially higher in the ANIT 
faction than in the control faction (Figure 9). In the ANIT 
GT (75) and ANIT VC factions, ANIT-actuated increments  
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in the liver MPO movement were fundamentally 
weakened, albeit neither the ANIT GT (50) faction nor the 
ANIT GT (100) aggregate had any critical impact on liver 
MPO action (Figure 9). The decrease in the ANIT-
initiated increment in hepatic MPO action was essentially 
less in the ANIT GT (75) faction than in the ANIT VC 
faction (P < 0.05) (Figure 9). Liver MPO impacts are a lot 
higher in ANIT totals than in the control faction (Figure 9). 
In the ANIT GT (75) and ANIT VC faction, the expansion 
in ANIT preparation in liver MPO practice was totally 
constricted, in spite of the fact that the ANIT GT (50) total 
and the ANIT GT (100) mass did not have any 
perceptible impact on the extension of liver MPO. (Figure 
9). In the ANIT GT (75) polymerization, the impact of 
ANIT-instigated increment in liver MPO action was 
commonly not as much as that of ANIT VC total (P < 
0.05) (Figure 9). 
 
 

DISCUSSION 
 

In the GT, epigallocatechin gallate (EGCG), quercetin 
(Qu), caffeine (Cf), theanine, theobromine, and catechin 
(C) are available in the investigation. The water extraction 
planning of green tea (C. sinensis) was affirmed by HPLC 
examination, and the substance of (EGCG) and catechin 
(C) were the most noteworthy among the substance of 
the six parts examined. This outcome is predictable with 
past reports (Kravchenko et al., 2011; Lan-Sook et al., 
2014; Lorenzo and Munekata, 2016; Fujiki et al., 2018).). 

It has been reported that rats treated with ANIT (75 
mg/kg, IP) have liver damage and cholestasis, as 
estimated by serum ALT and AST levels, hepatocyte 
damage file, γ-GTP, add up to bilirubin and aggregate 
bile acid, files of biliary cell harm and cholestasis at 24 h, 
yet not at 12 h of treatment (Ohta et al., 2006; Nakamura 
et al., 2013). In the present investigation, ANIT-treated 
rats were given a solitary oral portion of GT or VC 12 h 
after ANIT treatment, as this deferred application of GT or 
VC was viewed as valuable for giving the impact of the 
concentrate or close clinical conditions. On account of 
vitamins, there is cholestasis of ANIT-actuated liver harm. 
Changes in hepatocyte harm and serum ALT and AST 
action were diminished after the application of GT at a 
portion of 50, 75 or 100 mg/kg 12 h after ANIT treatment. 
Subsequently, GT can be utilized as a cell reinforcement 
against ANIT-initiated hepatocyte harm in rats. Be that as 
it may, the defensive impact of GT was higher at its 
portion of 75 mg/kg than at the portion of 50 or 100 
mg/kg, demonstrating that the defensive impact of GT on 
ANIT-incited hepatocyte damage was lessened at 100 
mg/kg. Rats regulated with ANIT at a rate of 12 h after 
treatment (250 mg/kg) diminished the expansion in serum 
ALT and AST action, and these impacts were like GT (75 
mg/kg). This outcome is like the outcomes announced by 
Nakamura et al. (2013) who detailed an expansion in ALT  
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and AST levels in VC after treatment with ANIT. The 
consequences of the present investigation demonstrate 
that ANIT causes an expansion in serum T-Chol, 
triglyceride and phospholipid focus 24 h after treatment, 
and a huge increment in serum phospholipid fixation in 
most treated rats, an outcome like that obtained by 

Yoshizumi et al. 2005; Wu et al., 2018). 

Liver LPO has appeared to add to the advancement of 
liver harm caused by cholestasis in rats treated once with 
ANIT. Also, it was reported that rat treated with ANIT (75 
mg/kg, IP) demonstrated a huge increment in liver and 
serum LPO fixations following 24 h of treatment, despite 
the fact that there was a huge increment in LPO focus in 
the liver, yet no critical increment in the liver. Serum of 
ANIT-treated rats was found to have occurred 12 h after 
treatment (Zimmerman et al., 1997; Guangjun et al., 
2002; Silvia et al., 2004; Ohta et al., 2006; Rahal et al., 
2014). In the present examination, a solitary oral portion 
of GT (75 or 100 mg/kg) regulated to ANIT following 12 h 
of treatment brought about a noteworthy decline in liver 
and serum LPO fixations, notwithstanding that the GT 
portion which was 75 to 100 mg/kg was increasingly 
viable. As detailed by Kaida et al. (2010), controlled VC 
(250 mg/kg) caused a huge decline in liver and serum 
LPO focuses 24 h after ANIT treatment. 

It has been shown in rats treated with ANIT (75 mg/kg) 
that liver SOD action diminished following 24 h, and 
otherwise without following 12 h of treatment, while liver 
CAT and Se-GSH-px movement expanded at 12 h in 
spite of an expansion. CAT and Se-GSH-px movement 
came back to the dimension of untreated control rats 
following 24 h (Ohta et al., 1999, 2001;Wu et al., 2018). 
In the present examination, a solitary oral application of 
GT (50, 75 or 100 mg/kg) for ANIT treatment 12 h after 
ANIT treatment brought about a critical decline in liver 
SOD movement found following 24 h, however with GT 
(75 mg/kg). The most astounding impact was 
accomplished and the decrease in hepatic SOD action 
was completely reestablished to the dimension of 
untreated control rats. The regulated GT (50 or 75 mg/kg) 
had no impact on liver CAT movement discovered 24 h 
after ANIT treatment, whereas the application of GT (100 
mg/kg) caused a huge decline in liver CAT action. All 
dosages of GT had no impact on liver Se-GSH-px 
movement discovered 24 h after ANIT treatment. 
Interestingly, the application of VC (250 mg/kg) to ANIT-
treated rats did not influence liver CAT movement, but 
rather caused a huge increment in liver Se-GSH-px 
action, despite the fact that application of VC somewhat 
lessened ANIT-incited liver decrease of SOD exercises. 
In this manner, the oral application of GT was found to 
enhance the SOD related disturbed hepatic enzymatic 
cancer prevention agent barrier framework in ANIT-
treated rats.  

Rats  treated  once  with  ANIT  (75 mg/kg,  IP)  had  an  
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expanded liver GSH focus 24 h after treatment, and liver 
α-Toc fixations did not change at 12 and 24 h (Ohta et al.,  
1999, 2001, 2006). Moreover, the liver GSH grouping of 
the ANIT-treated rats given GT (75 or 100 mg/kg) did not 
contrast from the untreated control rats. It has been 
recommended that liver GSH applies a causal or lenient 
impact in ANIT-incited rat cholestasis liver damage by 
shaping a reversible GSH conjugate of ANIT in 
hepatocytes and transporting the GSH conjugate of ANIT 
into bile. Separation of free ANIT and GSH was done 
according to Roth and Dahm (1997). As per Jean et al. 
(1995), an expansion in bile GSH and ANIT focuses 
occurred before an increment in liver GSH fixation in rats 
orally treated with ANIT (100 mg/kg). In this way, GT 
directed to ANIT-treated rats can possibly improve the 
discharge of GSH from liver tissue into the circulatory 
system, bringing about a decline in the expansion in GSH 
fixation in liver tissue (Basu et al., 2013). 

Green tea is a drink that is famous everywhere 
throughout the world and has numerous pharmacological 
impacts, for example, anti-proliferative, anti-cancer 
impacts, anti-mutagenic, and is increasingly imperative 
for this investigation. It is known to apply a mitigating 
activity by hindering neutrophil penetration and the 
creation of ROS in actuated neutrophils (Kwon et al., 
2015; Sharifzadeha et al., 2017; Torello et al., 2018; 
Miyata et al., 2018). It has been reported that the 
polyphenol segment in green tea extricates, along these 
lines, has a few times higher cancer prevention agent 
movement than vitamin C and E (Rice-evans et al., 1995; 
Sharifzadeha et al., 2017). Vitamin C has anticancer 
action in different tumor cell lines. Be that as it may, its 
particular system of activity stays obscure. Nonetheless, 
VC is known to go about as a mitigating specialist by 
restraining the generation of ROS in actuated neutrophils 

and neutrophil penetration (Alpekin et al., 1998; Bozonet 

et al., 2015). Penetrating neutrophils in rat liver tissue 
treated with ANIT have been shown to assume a key job 
in the improvement of ANIT-instigated cholestatic liver 
damage (Roth and Dahm, 1997; Kongo et al., 1999). 
Kongo et al. (1999) and Ohta et al. (2006) have 
demonstrated that neutrophil penetration in rat liver tissue 
treated with ANIT (75 mg/kg) is expanded 12 h after 
treatment, such as before the rise. 

Cholestatic causes liver harm and increments further 
following 24 h. In the present examination, a solitary oral 
application of ANIT-treated rat GT (75 mg/kg) at 12 h 
after treatment brought about a critical decline in liver 
MPO movement, which is a pointer of tissue neutrophil 
penetration (Krawisz et al., 1984). In spite of the fact that 
the equivalent regulated GT (50 or 100 mg/kg) had no 
huge impact on the expansion in liver MPO movement, it 
was found at 24 h (Mullane et al., 1985). As recently 
detailed by Kaida et al. (2010), regulated VC (250 mg/kg) 
likewise created a huge lessening of the expansion in 
liver   MPO   movement,   in   spite   of   the  fact  that  the  

 
 
 

 
controlled VC was more powerful than the GT applied at 
a quantity of 75 mg/kg. These outcomes are in great 
concurrence with the histological perceptions of the  
above hepatocytes. In this manner, the oral application of 
GT (75 mg/kg) was found to repress neutrophil invasion 
into the liver tissue of ANIT-treated rats, as on account of 
oral VC. Initiated neutrophils have been shown to 
intervene in lipid peroxidation by the generation of ROS 
by NADPH oxidase in cells (Zimmerman et al., 1997). It 
has additionally been demonstrated that MPO intercedes 
on lipid peroxidation within the sight of hydrogen peroxide 
and halide particles (Stelmaszynska et al., 1992; Han et 
al., 2018). Subsequently, these discoveries enable us to 
bring up that osmotic neutrophils in rat liver tissue treated 
with ANIT by the oral application of GT may work against 
oxidative harm related to intemperate ROS creation, 
potentially through mitigating within the sight of the oral 
VC impact. Orally controlled GT may add to its defensive 
impact against oxidative harm caused by neutrophils 
invaded in ANIT-treated rat liver by repressing the 
movement of MPO in penetrating neutrophils. During this 
investigation, GT (75 mg/kg) directed to ANIT-treated rats 
were shown to restrain neutrophil invasion, enabling it to 
deliver H2O2 into liver tissue by means of enacted 
NADPH oxidase, steady with different examinations 
(Ohta et al., 2001; Okado and Fridovich, 2001; 
Gottfredsen et al., 2013; Forester and Lambert, 2011). 

Epigallocatechin gallate (EGCG) is available as a 
noteworthy segment of GT utilized in this examination. 
EGCG has been responsible for application of cancer 
prevention agent impacts by searching ROS and 
hindering LPO (Senthil et al., 2008; Tachibana, 2009; 
Lambert and Elias, 2010; Fujiki et al., 2018). Along these 
lines, it was recommended that the lessening impact of 
GT application in the expansion of LPO fixation and SOD 
movement in ANIT-treated rat liver might be essential 
because of the oxidative activity of EGCG present in the 
concentrate. 
 
 

Conclusion 
 

The results shown in this study indicated that a single 
oral administration of GT to rats treated once with ANIT 
before the onset of apparent liver damage with 
cholestasis protects against liver damage with 
cholestasis, although this protective effect of GT 
diminishes at its high dose. The present results also 
suggested that the protective effect of GT against ANIT-
induced liver damage with cholestasis could be due to 
the antioxidant, anti-inflammatory, anti-hyperlipemic, and 
anti-hypertrophic actions of the extract. The orally 
administered GT (75 mg/kg) was found to be more 
effective in protecting against ANIT-induced liver damage 
with cholestasis than the similarly administered VC (250 
mg/kg). However, further investigation is needed to clarify 
the exact mechanism underlining the  protective effect  of 



 

 

 
 
 
 
GT against liver damage with cholestasis in rats treated 
with ANIT. 
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