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There are many conflicting reports around the phenytoin (PHT)-induced genotoxic effect especially in 
the in-vitro studies. PHT was claimed to cause genotoxic effect by the oxidative stress of its metabolic 
intermediates. However, by reviewing the distribution and activity of the enzymes responsible for PHT 
metabolism, we found that PHT is rarely metabolized by human lymphocytes. So that, we will use 
isolated cultured human lymphocytes to determine which is genotoxic, PHT itself or its metabolites? 
PHT 60 μg/ml were added to lymphocytes before and after metabolic activation by S9. Also, this study 
will investigate the possible antioxidant genoprotective effects of Thymoquinone (TQ) 1 μM and 
Curcumin (CMN) 15 μM on the chromosomal injury induced by PHT or its metabolites. After the end of 
culture period, the effects of PHT on the lymphocytes were investigated by measuring levels of 
chromosomal aberrations (CAs); mitotic index (MI); reduced glutathione (GSH); malondialdehyde 
(MDA); and 8-hydroxydeoxyguanosine (8-OH-dG). Only PHT after metabolic activation caused oxidative 
genotoxic effects which were significantly ameliorated by TQ more than CMN. Hence, the present study 
is the first to record that PHT without metabolic activation in isolated human lymphocytes from non 
epileptic donors cause dose dependant direct toxic effect rather than genotoxic effect. 
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INTRODUCTION 
 
Genotoxins are compounds causing chemical or physical 
alterations in DNA structure leading to inaccurate 
replication of that region of the genome (Bajpayee et al., 
2005). Approximately 30% of all marketed drugs, exhibit 
genotoxic effect when tested by the standard genetic 
toxicology tests (Snyder, 2009). 

Phenytoin (PHT), the well known antiepileptic drug has 
been suspected for teratogenic and mutagenic effects 
during pregnancy (Kaul et al., 2001). However, there are 
many conflicting reports observed around its genotoxic 
effect especially in the in-vitro studies (NTP, 1993; IARC, 
1996; Snyder and Greenb, 2001; Snyder, 2009). PHT was
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claimed to cause genotoxic effect by the oxidative stress 
of its metabolic intermediates. However, by reviewing the 
distribution and activity of the enzymes responsible for 
PHT metabolism, we found that PHT is rarely metabolized 
by human lymphocytes (Basta-Kaim et al., 2008). 

For testing indirect chemical mutagens, human 
lymphocyte was exposed directly to an Ames-type 
microsomal (S9) activation system (Sbrana et al., 1984). 

Many naturally occurring compounds have been 
reported to have anti-mutagenic activities (El Hamss et 
al., 2003). Curcumin (CMN), the active constituent in the 
rhizomes of Curcuma longa, is a nutriceutical compound 
with antioxidant (Iqbal et al., 2009) and antimutagenic 
effects (Corona-Rivera et al., 2007). In addition, 
Thymoquinone (TQ), is another known antioxidant 
(Badary et al., 2003) have been reported to exert 
antimutagenic activity in few studies (Badary et al., 2007; 
Abou Gabal et al., 2007). However, neither TQ nor CMN 
were tried yet to protect against PHT-induced genotoxicity 
in isolated human lymphocytes. 

The aim of the present study is to use isolated cultured 
human lymphocytes to determine which genotoxic, PHT 
itself is or its metabolites after metabolic activation by 
S9? Also, this study will investigate the possible 
antioxidant genoprotective effects of Thymoquinone and 
Curcumin on the chromosomal injury induced by either 
PHT or its metabolites. 
 
 
MATERIALS AND METHODS 

 
Human blood samples 

 
10 ml fresh venous blood samples were taken from 30 adult donors 
after consent. All donors were of either sexes between the ages of 
20-45 years, apparently healthy, non-smoking, non-alcoholic and 
they did not take any medications recently. The donors were 
obtained from the blood-banking Center of Mansoura University 
Hospital, Mansoura Faculty of Medicine, Egypt. All blood samples 
were taken on heparin to prevent clotting. 
 
 

Chemicals 

 
All chemicals and reagents used in this study were of the highest 
analytical grade from Sigma-Aldrich (St. Louis, MO, USA). 
Phenytoin was purchased as sodium salt ≥ 99%, 25 g soluble in 
water. 

 
 
Isolation and culture of human lymphocytes 

 
Lymphocytes were isolated from whole blood samples and cultured 
as described by Durante et al. (1998) with minor modification. All 
blood samples were collected in an isolation tube for blood cells. 
The sample was centrifuged at 1600 g (2900 rpm) for 20 min, and 
the layer of mononuclear cells and platelets was collected by a 
pipette and transferred to 10 ml centrifuge tube. PRMI 1640 
medium was added up to 10 ml. and the sample was centrifuged at 
390 g (1500 rpm) for 10 min. After the removal of the supernatant, 
the cell pellet was re-suspended in 10 ml RPMI 1640 medium at a 
density of 1.0 X 106 cells/ml. Isolated lymphocytes from each blood 
sample were cultured in  10 ml  RPMI  1640  culture  medium  for  a 

 
 
 
 
total period of 72 h at 37°C in the dark in a 5% CO2 humidified 
atmosphere (Watson, 1992). 
 
 

Plan of the study and grouping of isolated lymphocytes 
 

Isolated lymphocytes from each blood samples were divided 
randomly into 5 groups, each of 6 samples: the 1st group was none 
treated; the 2nd treated with PHT 60 ug/ml (Ponnala et al., 2009); 
the 3rd treated with PHT 60 ug/ml plus S9 (Sbrana et al., 1984, 
Ponnala et al., 2009); the 4th treated with PHT 60 ug/ml (Ponnala et 
al., 2009) + S9 + TQ (Khader et al., 2009); the 5th treated with PHT 
60 ug/ml + S9 + CMN (Siddique et al, 2010). The potential 
genotoxic drugs were added twice, at 24 and 48 h from the start of 
culture period and after stimulation of mitotic division with 
phytohaemagglutinin that was added at the start of culture period to 
induce mitosis within 24 h according to standard protocol of Poddar 
et al. (2004). The genoprotective drugs were added as a 
prophylactic therapy 2 h prior to addition of the genotoxic drug. 

In a pilot study we tried to increase PHT dose above 60 ug/ml (90 
& 120), but these doses were very toxic and fatal to isolated 
lymphocytes as indicated by MI, so that we did not include these 
fatal doses in this study. 
 
 

Evaluation of the drug effects 
 

To investigate the chromosomal effect induced by PHT before and 
after metabolic activation cells were harvested at the end of the 
culture period (72 h) for screening CAs following the standard 
protocol (Carrano and Natarajan 1988) in order to avoid 
heterogenecity of cycle stage of the treated cells and to score only 
the first division mitotic cells. Colcemid 0.1 ml was added to stop 
mitosis and prevent spindle formation and was left 1.5 h. The 
isolated lymphocytes after recovery from the incubator were 
investigated for chromosomal aberrations (CAs), mitotic index (MI), 
8-hydroxy-2'-deoxyguanosine (8-OH-dG), reduced glutathione 
(GSH) and malondialdehyde (MDA). 
 
 

Assay of chromosomal aberrations (Karyotype) in isolated 
lymphocytes using Gimsa stain 
 

It was done according to the protocol of Poddar et al. (2004). Cells 
were stained using 10% Giemsa for 12 minutes immersed in 
distilled water for washing and air-dried. Analysis of cytogenetic 
data was performed using light microscopy. Slides were scored 
blind and individual aberrations were recorded. Fifty metaphases 
were examined for each sample in the different groups (300 
metaphase for each group), searching for any chromosomal 
anomalies either structurally or numerically. 
 
 

Determination of mitotic index (MI) as a measure of 
cytotoxicity 
 

The mitotic index (MI) was used as indicators of adequate cell 
proliferation. Its inhibition could be considered as cellular death, or 
delay in the cell proliferation kinetics (Eroğlu, 2011). The mitotic 
index evaluates the cytotoxicity of chemical agents (Calderón-
Ezquerro et al., 2007). MI, is easily assessed when CAs are 
performed. The number of lymphocytes in metaphase was counted 
in 2000 lymphocytes per sample to determine the mitotic index 
(Kannan et al., 2006). 
 
 

Measurement of intracellular reduced glutathione (GSH) 
 

Intracellular    reduced    GSH   in   the   isolated   lymphocytes  was 
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Figure 1. In vitro effects of PHT 60 µg/ml alone; PHT + s9 combined with either TQ 1 µM or CNM 15 µM on 
mitotic index (MI) in isolated human lymphocytes after 72 h of incubation (one way ANOVA, mean ± SD). 
Each group consists of 6 samples, 50 metaphases were examined for each sample = 300 metaphase for 
each group, c SD = standard deviation, d MI was obtained for each sample by counting metaphases in 2000 
cells. P = significant difference when compared with control normal group, P1 = significant difference when 
compared with PHT + S9 group, P2 = significant when compared with PHT 60 + S9 + CMN 

 
 
 
extracted according to the method described by Anderson, (1985), 
and then reduced GSH was measured according to the method 
described by Beulter et al. (1963) employing colorimetric method 
using spectrophotometer determination method (JENWAY 6405, 
spectrophotometer). 

 
 
Measurement of malondialdehyde level (MDA) 

 
Lipid peroxidation products (MDA) were released from isolated 
lymphocytes by sonication according to the method described by 
Stacey and Klaassen (1981). Then MDA was measured by 
thiobarbituric acid (TBA) test according to the method described by 
Draper and Hadley (1990), employing colorimetric method using 
spectrophotometer determination method (JENWAY 6405, 
spectrophotometer). 

 
 
Measurement of 8-hydroxy-2-deoxy Guanosine (8-OH-dG) 

 
The 8-OH-dG was assayed using Cayman 8-hydroxy-2-deoxy 
Guanosine enzyme-linked immunosorbent assay (elisa = EIA) Kit 
(Cayman Chemical’s ACE™, USA). Cayman’s 8-OH-dG EIA is a 
competitive assay that can be used for the quantification of 8-OH-
dG in urine, cell culture, plasma, and other sample matrices. This 
assay is based on the competition between 8-OH-dG and 8-OH-dG-
acetylcholinesterase (AChE) conjugate (8-OH-dG Tracer) for a 
limited amount of 8-OH-dG Monoclonal Antibody (Pradelles et al., 
1985; Maclouf et al., 1987). 

Statistical analysis of the data 

 
All statistical calculations of the data were performed with SPSS 
version 21. Multiple comparisons of the data for each biochemical 
parameter were performed using one-way analysis of variance 
(ANOVA) followed by post-Hoc test for comparing the different 
groups with each other. P-value of ≤ 0.05 was considered 
significant. 

 
 

RESULTS 
 

The assessment of the types of chromosomal aberrations 
(CAs) in the isolated cultured human lymphocytes in all 
groups of this study caused only structural CAs and no 
numerical CAs were found. 
 
In vitro effects of Phenytoin (PHT) 60 μg/ml: There 
were insignificant changes in the CAs, MI, MDA, GSH, or 
8-OH-dG levels when compared to the non-treated 
normal group (Figures 1, 2, 3, 4, 5). 
 
In vitro effects of Phenytoin (PHT) 60 μg/ml plus S9: 
They caused significant increase in the structural CAs 
when compared to control normal group (Figure 2). They 
caused also cytotoxicity and decrease in lymphocyte 
proliferation  indicated  by  significant  decrease  in the MI  
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Figure 2. In vitro effects of PHT 60 µg/ml alone; PHT + s9 and PHT + s9 combined with either TQ 1 µM or CMN 
15 µM on structural chromosomal aberrations (CAs) in isolated human lymphocytes after 72 h of incubation (one 
way ANOVA, mean ± SD). P = significant difference when compared with control normal group, P1 = significant 
difference when compared with PHT + S9 group, P2 = significant when compared with PHT 60 + S9 + CMN 

 
 
 

when compared to control normal group (Figure 1). In 
addition, there was significant increase in the MDA level, 
8-OH-dG level and significant decrease in the GSH level 
when compared to control group (Figures 1, 2, 3, 4, 5). 
 
The effects of combined use of PHT +S9 with 
Thymoquinone (TQ) or Curcumin (CMN): The 
combined use of PHT +S9 with TQ 1 μM, or CMN 15 μM 
caused significant decrease in the structural CAs when 
compared to PHT +S9 treated group (Figure 2). It caused 
also improvement in lymphocyte proliferation indicated by 
significant increase in the MI when compared to PHT + 
S9 group (Figure 1). In addition, there was significant 
decrease in the MDA and 8-OH-dG levels together with 
significant increase in the GSH level when compared to 
PHT + S9 group alone (Figures 3, 4, 5). However, the 
protective effects of PHT + S9 with TQ treated group on 
CAs, MI, MDA, GSH, and 8-OH-dG were more significant 
than the protective effects of PHT + S9 with CMN 
(Figures 1, 2, 3, 4, 5). This means that PHT + S9 -
induced toxic changes were significantly ameliorated by 
TQ more than CMN. 
 
 
DISCUSSION 
 
In vitro effects of phenytoin (PHT) and PHT + S9 on 
the isolated cultured human lymphocytes 
 
To the best of our knowledge, this study  was  the  first  to 

record that PHT is only genotoxic in isolated human 
lymphocytes after its metabolic activation by S9, and 
without this activation genotoxicity doesn't occur. This 
result was collaborated by other studies that reported 
PHT genotoxic effect after metabolic activation in the 
presence of an exogenous metabolic activation system 
(S9) in bacteria (Sezzano et al., 1982) and Chinese 
hamster ovary cells (Galloway et al., 1987). In addition 
this result was consistent with some other studies that 
hold PHT without metabolic activation is not genotoxic. 
Witczak et al. (2008) assessed the potential 
genotoxic effect of PHT therapy in pregnancy on DNA of 
umbilical cord blood lymphocytes using Micronucleus 
(MN) assay. They did not show any significant differences 
between the MN rates of PHT-treated patients and 
controls, indicating a lack of genotoxicity of the PHT. In 
addition, Schaumann et al. (1990), tested the potential 
genotoxic effect of PHT using sister chromatid exchange 
(SCE) assay in isolated cultured lymphocytes from adult 
epileptic patients treated with PHT. He did not show any 
significant differences between the SCE rates of PHT-
treated patients and controls, indicating a lack of 
mutagenicity of the PHT.  Also, the negative tests for 
PHT genotoxicity were observed in germ cells of male 
Drosophila melunogaster (Woodruff et al., 1985), many 
strains of Salmonella typhimurium (Leonard et al., 1984), 
and cultured Chinese hamster ovary cells (Kindig et al., 
1992). Large body of evidence supports this notation.  

But in contrary to our study, there were other studies 
that    reported     PHT   genotoxicity    without   metabolic 
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Figure 3. In vitro effects of PHT 60 µg/ml alone; PHT + s9 and PHT + s9 combined with either 
TQ 1 µM or CMN 15 µM on malondialdehyde (MDA) in isolated human lymphocytes after 72 h 
of incubation (one way ANOVA, mean ± SD). P = significant difference when compared with 
control normal group, P1 = significant difference when compared with PHT + S9 group, P2 = 
significant when compared with PHT 60 + S9 + CMN 
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Figure 4. In vitro effects of PHT 60 µg/ml alone; PHT + s9 and PHT + s9 combined with either 
TQ 1 µM or CMN 15 µM on glutathione (GSH) in isolated human lymphocytes after 72 h of 
incubation (one way ANOVA, mean ± SD). P = significant difference when compared with 
control normal group, P1 = significant difference when compared with PHT + S9 group, P2 = 
significant when compared with PHT 60 + S9 + CMN 

 
 
  
activation in Chinese hamster ovary cell (Winn et al., 
2003),  rodents  (Kim  et   al.,  1997),  and  some  isolated 

human cells (Ponnala et al., 2009; Al-Jassabi and Azirun, 
2010). This  debate  around  the  ability of  PHT to induce   
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Figure 5. In vitro effects of PHT 60 µg/ml alone; PHT + s9 and PHT + s9 combined with either 
TQ 1 µM or CMN 15 µM on 8-hydroxy-2’-deoxyguanosine (8-OH-dG) in isolated human 
lymphocytes after 72 h of incubation (one way ANOVA, mean ± SD). P = significant difference 
when compared with control normal group, P1 = significant difference when compared with PHT 
+ S9 group, P2 = significant when compared with PHT 60 + S9 + CMN. 

 
 
 
genotoxic effects was not observed only by our group, 
but was also observed in many other reports (NTP, 1993; 
IARC, 1996; Snyder and Greenb, 2001; Snyder, 2009).  

This debate may be solved if we can understand the 
mechanism of PHT induced-genotoxic effects. Most of 
the genotoxic effects of PHT were due to PHT metabolic 
intermediates not the PHT itself, mainly the para 
hydroxyphenyl phenyl hydantion (p-HPPH) metabolite 
(Kaul et al., 2001). These metabolic intermediates induce 
production of ROS leading to exhaustion of the cellular 
antioxidant systems (Jacobsen et al., 2008) with 
subsequent oxidation of DNA, proteins, and lipids 
(Zegura et al., 2004). This toxic effect will lead to 
oxidative DNA base modification with DNA strand breaks, 
lipid peroxidation and decreased GSH-mediated 
cytoprotection (Al-Jassabi and Azirun, 2010). Our study 
supports this explanation because when we used PHT 
without metabolic activation by S9, its genotoxic effect 
was insignificant. However, when S9 was added to PHT, 
its genotoxic effect was significant indicating that PHT 
genotoxic effect could be achieved only after metabolic 
activation to reactive metabolic intermediates. This 
conclusion may be true if we were able to prove that the 
isolated lymphocytes do not contain any of the enzymes 
responsible for PHT metabolism. 

There  are   three   main   metabolic   pathways  for  the  

conversion of PHT to reactive metabolic intermediates. 
The first include the bioactivation of about 80% of PHT to 
para hydroxyphenyl phenyl hydantion (p-HPPH) (Soga et 
al., 2004), a process catalyzed mainly by the CYP2C9 
and to much lesser by CYP2C18 and CYP2C19 (Al-
Jassabi and Azirun, 2010). The second pathway includes 
the hydroperoxidase component of Prostaglandin 
endoperoxide synthetase pathway (Parman et al., 1998). 
Last pathway included the bioactivation of PHT to 
reactive free radical intermediates through the 
myeloperoxidase enzyme commonly present in 
leukocytes (Mays et al., 1995). However, by reviewing 
the distribution and activity of the enzymes responsible 
for PHT metabolism, we found that the CYP450s present 
in lymphocytes are mainly CYP1A1, CYP1B1, CYP 2E1 
and CYP3A4 (Anzenbacher and Anzenbacherová, 2001) 
while those included in PHT metabolism are CYP2C9, 
CYP2C18 and CYP2C19 (Al-Jassabi and Azirun, 2010). 
The prostaglandin endoperoxide synthetase was found in 
relatively high concentrations in lymphocytes (Dailey and 
Imming, 1999), but this enzyme can not metabolize PHT 
without metabolic activation through addition of high 
amounts of arachidonic acid (Kubow and Wells, 1989). 
The last enzyme myeloperoxidase was found to be 
distributed unequally between leucocytes where it is 
excess in  neutrophils  and  very little in lymphocytes (Tay  
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et al., 1998). These facts about the metabolism of PHT in 
isolated human lymphocytes support the results of our 
study and previous studies with similar results and give 
an alert for contrary studies to reconsider their results 
specially when used PHT in isolated non liver cells 
without metabolic activation. 

Poojan et al. (2015) hold that curcumin combined with 
selenite in utero may prevent the disruption of Skin Stem 
Cell through different mechanisms including de novo 
GSH biosynthesis. In the same direction, Sankar et al. 
(2014) support protective effects of curcumin on 
genotoxic effects exerted by Arsenic in bone marrow cells 
through attenuation of its drawbacks on chromosomal 
aberrations, micronuclei formation and DNA damage. 
Tawfik et al. (2013) studied protective effects of curcumin 
on irradiated mice and found that it had significant radio-
protective and radio-recovery activities. 

Malhotra et al. (2012) reported that combined treatment 
with curcumin and resveratrol stimulate apoptosis and 
hence, they modulates mitotic injury in benzo(a)pyrene -
treated mice. Curcumin normalize mRNA expression 
levels and ameliorate progression of diabetic nephropathy 
(Ibrahim et al., 2016). Nicotinamide phosphoribosyl 
transferase and sirtuin proteins play crucial roles in 
threshold of cell death modulation and curcumin can 
increase their levels, so it can be potentially used to 
reduce chemotherapy-induced nephrotoxicity (Ugur et al., 
2015). 

Badary et al. (2007) studied daily intake of TQ to rats 
after and before benzo(a)pyrene exposure, that 
significantly reduced the frequencies of CAs and 
damaged cells. Aboul-Ela (2002) also found that TQ can 
protect against chromosomal aberrations in mouse cells 
infected with schistosomiasis. El-Sheikh et al. (2016) 
found that TQ can reverse intestinal microscopic changes 
induced by methotrexate and improve oxidative/ 
nitrosative stress, inflammatory and apoptotic markers in 
intestine. Gökce et al. (2016) stated that TQ improved 
decreased levels of oxidative products Like MDA and 
proinflammatory cytokines, and reduce motor neuron 
apoptosis. Hepatic level of MDA in mice exposed to 
Aflatoxin B1, was reduced by TQ pre-treatment (Daba et 
al., 1998). 

In conclusion, TQ more than CMN can significantly 
ameliorate oxidative genotoxic effects exerted by PHT. 
PHT without metabolic activation in isolated human 
lymphocytes from non-epileptic donors cause dose 
dependant direct toxic effect rather than genotoxic effect. 
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