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Ternary mixtures of nitroaniline isomers have been simultaneously determined in synthetic and real 
matrix by application of genetic algorithm principal component artificial neural network model. All 
effective factors on the sensitivity were optimized. Also, the linear dynamic range for determination of 
nitroaniline isomers was found. The simultaneous determination of nitroaniline mixtures by using 
spectrophotometric methods due to spectral interferences is a difficult problem. A genetic algorithm is 
a suitable method for selecting wavelength for principal component-artificial neural network (PC-ANN) 
calibration of mixtures with almost identical spectra without loss prediction capacity. The experimental 
calibration matrix was designed by measuring the absorbance over the range of 200 to 500 nm for 21 
samples of 1.0 to 17.0, 1.0 to 15.0 and 1.0 to 18.0 µg/ml of m-nitroaniline, o-nitroaniline and p-
nitroaniline, respectively. The root mean square error of prediction for m-nitroaniline, o-nitroaniline and 
p-nitroaniline were 0.7848, 0.2864 and 0.1851, respectively. The proposed method was successfully 
applied for the determination of m-nitroaniline, o-nitroaniline and p-nitroaniline in synthetic and water 
samples. 
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INTRODUCTION 
 
Nitroanilines are important pollutants in water because of 
their wide use in many industrial processes such as the 
manufacture of pharmaceuticals, dyes and synthetically 
colors. Furthermore, they are of great environmental 
concern because of their high toxicity to living things 
(Gurten et al., 2006). Actually, they can be released into 
the environment either directly as industry waste or 
indirectly as breakdown products of herbicides and 
pesticides. Due to their  solubility  in  water,  anilines  can  
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readily permeate through soil and contaminate ground 
water. They can be taken up by humans via the skin, the 
respiratory tract and the gastrointestinal tract. Because of 
their toxicity, bioaccumulation and vast scale distribution 
in the ecological environment, their separation and 
determination have become one of the important studies 
of environmental analysis. A variety of analytical methods 
have been reported for the determination of selected 
anilines. Such analytical techniques have been included: 
gas chromatography (Farroha and Emeish, 1975; Lopez-
Aviia and Northcutt, 1981), pulse polarography (Wolff and 
Nürnberg, 1966), liquid chromatography (Scher and 
Adamo, 1993), voltammetry (Au Kuzmina et al., 2003; 
Grabaric et al., 1997; Isaeva et al., 1991; Faller et al., 
1996) and spectrophotometry (Ai-Ghabsha  et  al.,  1976;



136         Afr. J. Pharm. Pharmacol. 
 
 
 
Table 1. Parameters of the genetic algorithms. 
 

Population size: 30 chromosomes 

 

On average, five variables per chromosome in the original population 

 

Response: cross-validated percentage explained variance (five deletion groups; the number of components is determined by cross 
validation). 

 

Maximum number of variables selected in the same chromosome: 30 

 

Probability of mutation: 1% 

 

Maximum number of components: the optimal number of components determined by cross-validation on the model containing all 
the variables (not higher than 15). 

 

Number of runs: 100 

 

Backward elimination after every 100th evaluation and at the end (if the number of evaluations is not a multiple of 100). 

 

Window size for smoothing: 3 

 
 
 
Revanasiddappa et al., 2001; Ghasemi and Niazi, 2007; 
Rahim et al., 1987). A drawback of the techniques of 
feature selection when applied to spectral data is that 
usually the selected features (wavelengths) are scattered 
throughout the spectrum. It has already been shown that 
genetic algorithms (GAs) (Arcos et al., 1997; Depczynski 
et al., 2000; Lucasius and Kateman, 1993; Hibbert, 1993) 
can be successfully used as a feature selection technique 
(Leardi et al., 1992, 1998, 2002; Leardi, 1994, 1996, 
2000, 2007). Leardi and Gonzalez (1998) demonstrated 
that GAs, after suitable modifications, produce more 
interpretable results, since the selected wavelengths are 
less dispersed than with other methods. The algorithm 
used in this paper is an evolution of the algorithm 
described in Leardi et al. (1998), whose parameters are 
reported in Table 1. 

Simultaneous determination of components in a 
multicomponent drug formulation could be a difficult task, 
especially when characteristics of these components 
from analytical point resemble closely in addition to the 
presence of other pharmaceutical excipients. In recent 
past, multivariate chemometric methods for analysis of 
multicomponent systems have been reported in 
international journals mostly due to the advent of fast and 
affordable computers and rapid scanning spectropho-
tometers controlled by computer software. Artificial neural 
networks (ANNs) are a data processing system 
consisting of a large number of simple, highly intercom-
nected processing elements inspired by the biological 
system and designed to simulate neurological processing 
ability of human brain. Theoretical background 
information on ANNs can be found elsewhere (Rumelhart 
and McClelland, 1986; Fausett, 1994; Schalkoff, 1997). 

Applications of ANNs in the field of chemistry and 
pharmacy have been reviewed (Zupan et al., 1997; 
Bourquin et al., 1997; Despagne and Massart, 1998; 
Salari et al., 2005; Zupan and Gasteiger, 1999; Pan et al., 
2007; Zhang et al., 2005; Zhang, 2007; García-Reiriz et 
al., 2007; Tang et al., 2006; Absalan and Soleimani, 
2004; Balamurugan et al., 2003).  

Computationally, ANN is an approach for handling 
multivariate and multi-response data and hence suitable 
for modeling, that is, a search for an analytical function 
that will give a specified n-variable output for any m-
variable input (Zupan and Gasteiger, 1999). Unlike 
standard modeling techniques where the mathematical 
function is required to be known in advance, ANN models 
do not require the knowledge of the mathematical 
function in advance, and are called ‘soft models’, that is, 
the models are able to represent the experimental beha-
vior of the system when the exact description is missing 
or too complex. ANNs adapt to any relation between 
input and output data on the basis of their supervised 
training. The characteristics that make ANN systems 
different from traditional computing are: learning by 
example, distributed associative memory, fault tolerance 
and pattern recognition (García-Reiriz et al., 2007; Tang 
et al., 2006; Absalan and Soleimani, 2004). The flexibility 
of ANNs and their ability to maintain their performance 
even in the presence of significant amounts of noise in 
the input data are highly desirable (Fausett, 1994; 
Despagne and Massart, 1998). Since perfectly linear and 
noise free data sets are seldom available in practice, thus 
making it suitable for multivariate calibration modeling. 
There are reports on the application of ANNs for mixture 
analysis (Absalan and Soleimani, 2004;  Balamurugan  et 



 
 
 
 
al., 2003; Sathyanarayana et al., 2004; Yin et al., 2001; 
Ni et al., 2000).  

Though, most of them employ separate networks for 
estimation of each component and calibration involving 
synthetic binary mixtures for calibration. The current 
research work evaluates the performance characteristics 
of principal component-artificial neural network (PC-ANN) 
model trained by Levenberg-Marquardt algorithm (Hagan 
and Menhaj, 1994). The use of computed spectral 
datasets has been demonstrated of using spectra of 
synthetic mixtures for the calibration models. A method 
for routine pharmaceutical quality control of this tablet 
dosage form by multivariate calibration based on soft 
modeling using principal component based back-
propagation neural network has been presented. This 
method was used for simultaneous spectrophotometric 
determination of nitroanilines in different samples and 
results show the applicability of this procedure for 
analysis of real samples. 
 

 
THEORY 

 
The statistical package used for data analysis 
principal component analysis 

 
Principal component analysis (PCA) is a multivariate 
procedure that reduces dimensionality of data space 
while retaining as much information that is possible. It 
can be viewed as rotation of the existing axes of rotary 
positioning (RP) to a new position in it, such that 
maximum variability of data space is projected onto the 
axes (Hagan, 1966; Berzas et al., 1997; Marbach and 
Heise, 1990; Goodarzi et al., 2007; Jalali-Heravi et al., 
2004; Kalivas, 2001). The first principal component (PC) 
is the combination of variables that explains the greatest 
amount of variations. The second principal component 
defines the next largest amount of variation and is 
independent to the first principal component. There can 
be as many possible principal components as there are 
variables. A particular direction that defines a linear latent 
variable in RP is described by a vector b (b1, b2, ..., bp) 
which is usually scaled to length one. The value of the 
corresponding latent variable u for an object, x (x1, x2, ..., 
xp) is obtained by projecting the object points onto a 
straight line which is defined by the direction b. 
Mathematically, this is a linear combination of the 
features xj of the object and the vector component bi . 
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The vector components bi and xi are, respectively called 
loadings and scores are given by the eigenvectors of the 
covariance matrix.  
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Genetic algorithm 
 
A detailed explanation of the GAs can be found in 
previous researches (Hibbert, 1993; Leardi et al., 1992, 
1998; Leardi, 1994, 1996, 2000, 2007), and a brief 
introduction to the method will be given subsequently. GA 
is a simulated method based on ideas from Darwin’s 
theory of natural selection and evolution (the struggle for 
life). In GA for variable selection, an individual (or 
chromosome), that is, solution, represents a set of 
variables; they are the following basic steps in algorithms: 
(1) a chromosome is represented by a binary bit string 
and an initial population of chromosomes is created in a 
random way; (2) a value for the fitness function of each 
chromosome is evaluated; (3) according to the values of 
the fitness function, the chromosomes of the next 
generation are reproduced by selection, crossover and 
mutation operations. In this paper, the genetic algorithms 
follow Leardi’s method (Leardi et al., 1998) (Table 1). 

 
 
Artificial neural networks (ANNs) 

 
ANN is a computer based system derived from the 
simplified concept of the brain in which a number of 
nodes, called processing elements or neurons, are inter-
comnected in a netlike structure. The ANN characteristics 
have been found to be nonlinear making them suitable for 
data processing in which the relationship between cause 
and results cannot be linearly defined. Three components 
constitute an ANN: the processing elements, the topology 
of connection between the nodes and the learning rules. 
The PCA selected by loading plot were processed by 
ANN which was trained with the back-propagation of 
errors learning algorithm. Its basic theory and application 
to chemical problems can be found in the literature 
(Wythoff, 1993; Zupan and Gasteiger, 1991). The 
structure of the network comprised of three node layers: 
an input, a hidden and an output layer, represented by i, 
h and o, where they, respectively, indicate the number of 
nodes in the input layer, hidden layer and output layer. 
The absorbance data versus the time were centered and 
normalized as the input for ANN. The input nodes 
transferred the weighted input signals to the nodes in the 
hidden layer, and the same as the hidden nodes for the 
output layer (Table 2). 
 
 
EXPERIMENTAL 

 
Reagents and standard solutions 

 
All the chemicals used were of analytical reagent grade, sub-boiling 
distilled water was used throughout. Stock solutions of nitroaniline 
isomers were purchased from Fluka Company. Standards of 
working solution were made by appropriate dilution daily as 
required. A universal buffer solution (pH 7.0) was prepared by Lurie 
(1978). 
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Table 2. Architecture of the ANN models and their specifications. 
 

No. of nodes in the input layer 3+1
a
 

No. of nodes in the hidden layer 3 

No. of nodes in the output layer  3 

Performance ratio 0.5 

No. of iterations  10 

Transfer function eJIJJxx
TT

KK

1

1
][

−

+
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Figure 1. Typical spectrum of the individual nitroaniline isomers 

(concentration of (a) m-nitroanaline 9 µg/ml, (b) o-nitroanaline 8 

µg/ml and (c) p-nitroanaline 6 µg/ml) at pH 7.0.  
 
 
 
Instrumentation and software 
 

A Scinco (SUV-2120) spectrophotometer controlled by a Hewlett-
Packard computer and equipped with a 1 cm pathlength quartz cell 
was used for UV–vis spectra acquisition. A Metrohm 692 pH-meter 
furnished with a combined glass-saturated calomel electrode was 
calibrated with at least two buffer solutions at pH 3.00 and 9.00. 
The backpropagation neural network algorithm having three layers 
was used in Matlab (version 6.5, MathWork Inc.) using NNet 
Toolbox. It is worth mentioning that GA variable selection and PCA 
modeling were also written in the same software.  
 
 
Linear calibration range  
 
Individual calibration curves were constructed with several points as 
absorbance versus m-nitroaniline, o-nitroaniline and p-nitroaniline 
concentrations. For constructing the individual calibration lines, the 
absorbances   were  measured  at  251,  225  and  381  nm  against  

a blank for m-nitroaniline, o-nitroaniline and p-nitroaniline, 
respectively. The linear regression equation for the calibration 
graph for m-nitroaniline for the concentration range of 1.0 to 17.0 
µg/ml was A = 0.0726Cm-nitroaniline + 0.0451 (R

2 
= 0.996) and for o-

nitroaniline for the concentration range of 1.0 to 15.0 µg/m was A = 
0.0775Co-nitroaniline + 0.0772 (R

2 
= 0.999) and for p-nitroaniline for the 

concentration range of 1.0 to 18.0 µg/m
 
was A = 0.0769C p-nitroaniline + 

0.0206 (R
2 

= 0.9973). The limits of detection were 0.04, 0.07 and 
0.05 µg/m for m-nitroaniline, o-nitroaniline and p-nitroaniline, 
respectively, and these were calculated according to calibration line 
characteristics.  
 
 
Procedure of standard calibration set 
 

The concentrations of m-nitroaniline, o-nitroaniline and p-
nitroaniline varied between 1.0 and 17.0, 1.0 and 15.0 and 1.0 and 
18.0 µg/m, respectively. The mixed standard solutions were placed 
in a 10 ml volumetric flask and completed to the final volume with 
deionized water (final pH 7.0). The absorption spectra were 
recorded between 200 and 500 nm against a blank of universal 
buffer. The spectral region between 200 and 500 nm, which implies 
working with 301 experimental points per spectra (as the spectra 
are digitized each 1.0 nm), was selected for analysis, because this 
is the zone with the maximum spectral information from the mixture 
components of interest. All absorption data are preprocessed by 
standard mean centring and scaling. 
 
 

RESULTS AND DISCUSSION 
 

Selection of the optimum chemical conditions 
 
Figure 1 shows the absorption spectra in aqueous 
solution of individual nitroaniline isomers at pH 7.0. With 
the aim of investigation, the possibility of determining 
nitroaniline isomers in mixtures, the optimum working 
conditions were studied under the conditions previously 
established for each nitroaniline isomers. A universal 
buffer solution of pH 7.0 was selected. In order to select 
the optimum pH value at which the minimum overlap 
occurs, influences of the pH of the medium on the 
absorption spectra of nitroaniline isomers were studied 
over the pH range 4.0 to 10.0. Individual calibration 
curves were constructed with several points, as absor-
bance versus nitroaniline isomers concentration in the 
range 1.0 to 17.0, 1.0 to 15.0 and 1.0 to 18.0 µg/ml for m-
nitroaniline, o-nitroaniline and p-nitroaniline, respectively. 
The wavelengths  used  to  generated  calibration  curves 
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Table 3. Concentration data of the different mixtures used in the calibration set for 
determination of nitroaniline isomers. 
 

Sample Meta Ortho Para 

Training    

1 1 1 18 

2 17 1 4.4 

3 9 9.4 1 

4 1 9.4 7.8 

5 9 3.8 7.8 

6 5 9.4 4.4 

7 10.5 3 7.2 

8 9 1 11.2 

9 17 3.8 1 

10 1 15 1 

11 1 3.8 14.6 

12 5 6.6 7.8 

13 16 1.2 4 

14 7 5 8.5 

    

Validation    

15 13 1 7.8 

16 13 6.6 1 

17 1 12.2 4.4 

18 5 3.8 11.2 

19 9 6.6 4.4 

20 12 6.8 1.2 

21 2.3 11 4 
 

Unit: µg/ml. 

 
 
 

Table 4. Added and found results of synthetic mixtures of nitroaniline isomers by GA-PC-ANN method (µg/ml). 
 

Sample 
Added  Found  Recovery (%) and (RSD) 

Meta Ortho Para  Meta Ortho Para  Meta Ortho Para 

1 5.00 1.00 14.6  6.81 0.90 15.0  136.1 (0.05) 89.9 (1.02) 102.9 (0.7) 

2 5.00 12.2 1.00  4.62 11.97 0.98  92.38 (0.08) 98.08 (0.04) 98.0 (0.15) 

3 1.00 6.60 11.2  0.98 7.20 11.2  98.75 (0.02) 109.4 (1.01) 99.7 (0.09) 

4 13.0 3.80 4.40  12.5 3.90 4.50  96.12 (1.03) 105.2 (1.75) 102.0 (1.23) 

5 4.00 1.50 15.0  6.81 1.50 15.0  100.0 (0.03) 100.0 (0.07) 100.0 (0.03) 

6 9.00 6.00 4.50  9.14 6.01 4.48  101.5 (0.07) 100.2 (0.3) 99.6 (0.60) 
 

Unit: µg/ml
. 

 
 
 
were 251, 225 and 381 nm for m-nitroaniline, o-
nitroaniline and p-nitroaniline, respectively.  
 
 

Calibration and validation 
 

Calibration matrix of synthetic mixtures of nitroaniline 
isomers by genetic algorithm-principal component-
artificial neural network (GA-PC-ANN) method was 

designed. In Table 3, the compositions of the ternary 
mixtures used in the calibration matrices are 
summarized. For prediction set, six mixtures were 
prepared (Table 4). To ensure that the prediction and real 
samples are in the subspace of training set, the score 
plot of first principal component versus second was 
sketched and all the samples are spanned with the 
training set scores. 
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Table 5. GA-PC-ANN results applied on the real matrix samples (µg/ml). 
 

Type 
of 
water 

m-nitroaniline o-nitroaniline p-nitroaniline 

Added 
Found

a
 

SD
b
 

Recovery 

(%) 
Added Found

a
 SD

b
 

Recovery 

(%) 

Adde
d 

Found
a
 

SD
b
 

Recovery 

(%) 

River 4.0 3.9 0.75 97.5 1.5 1.46 0.4 97.3 1.0 1.1 0.35 110 

Waste 6.0 5.86 2.31 97.7 6.0 5.9 
1.2
1 

98.3 7.0 7.01 0.61 100.1 

Tap 5.5 5.45 1.63 99.1 8.0 7.87 
0.9
8 

98.4 9.8 9.6 1.20 97.9 

Tap 12 12.3 2.15 102.5 14 14.7 1.4 105 5.5 5.49 2.1 99.8 
 
a
Mean of three measurements. 

b
Relative standard deviation for n = 3. 
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Figure 2. Absorbance spectra for calibration set and wavelength selected for nitroaniline 
isomers. 

 
 
 

Prediction set and analysis of real samples 
 

For prediction set, 6 mixtures were prepared which did 
not include previous set and were used as an 
independent test (Table 4). The real samples in this study 
were collected in different waters (Table 5). The range 
concentrations were added to be 1.0 to 13.0, 1.0 to 12.0, 
and 1.0 to 15.0 µg/ml for m-nitroaniline, o-nitroaniline and 
p-nitroaniline, respectively. 
 
 

Variable selection 
 

We have given 140 variables for the calibration set. The 
data are presented in Figure 2. At the lower end, we see 
larger variation in the curves, while at higher end we see 
very small variation. We run GA for 140 variables using  a 

PC-ANN regression method of which the maximum 
number of factors allowed is the optimal number of 
components determined by cross-validation on the model 
containing all the variables, and we used the selected 
variables for the running of PC-ANN. The selected 
wavelengths are 244, 245, 246, 329, 330, 331, 332, 333, 
334, 335, 345 and 346 nm for m-nitroaniline and 224, 
225, 226, 227, 228, 229, 230, 231, 402, 403, 404, 407, 
408, 409 and 410 nm for o-nitroaniline and 228, 229, 230, 
231, 255, 256 and 257 nm for p-nitroaniline and is as 
shown in Figure 2. The present study shows that the GA 
can be a good method for feature selection in spectral 
data sets. The results obtained on data set of m-
nitroaniline, o-nitroaniline and p-nitroaniline mixture 
demonstrate that the predictive ability of the models 
obtained with the wavelengths selected by  the  algorithm 
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Table 6. Statistical parameters of the optimized matrix using GA-PC-ANN. 
 

 Training set validation set Prediction set 

m-nitroaniline    

R
2
 0.9959 0.9826 0.9611 

RMSE 0.3638 0.8525 0.7848 

RSEP (%) 3.7897 9.2517 10.796 

    

o-nitroaniline    

R
2
 0.9982 0.9874 0.9947 

RMSE 0.1708 0.7745 0.2864 

RSEP (%) 2.5758 10.0156 4.4724 

    

p-nitroaniline    

R
2
 0.9978 0.9862 0.9993 

RMSE 0.2299 0.4283 0.1851 

RSEP (%) 2.6842 7.2632 1.8441 

 
 
 
 is very often much better. 
 
 
Statistic parameters 
 
For the evaluation of the predictive ability of a multivariate 
calibration model, the root mean square error of 
prediction (RMSEP) and relative standard error of 
prediction (RSEP) can be used (Niazi et al., 2006): 
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where predy
 is the predicted concentration in the sample, 

obs
y

 is the observed value of the concentration in the 

sample and n  is the number of samples in the validation 
set. The RMSEP, RSEP and R

2
 results are summarized 

in Table 6. 
 
 

Determination of nitroaniline isomers in synthetic 
mixtures 
 
The predictive ability of method was determined using six 
three-component   nitroaniline   isomers   mixtures   (their 

compositions are given in Table 4). The results obtained 
by applying GA-PC-ANN algorithm to six synthetic 
samples are listed in Table 4. Also, Table 4 shows the 
recovery for prediction series of nitroaniline isomers 
mixtures. As can be seen, the recovery was also quite 
acceptable. The root mean square error of prediction and 
relative standard error of prediction results are 
summarized in Table 6. The plots of the predicted 
concentration versus actual values are as shown in 
Figure 3 for nitroaniline isomers (line equations and R

2
 

values are also shown). The results in this figure show 
the prediction ability of this model for calculation of three 
nitroanilines concentrations. 
 
 
Conclusion 
 
A GA-PC-ANN calibration model was proposed for the 
simultaneous determination of m-nitroaniline, o-
nitroaniline and p-nitroaniline. Modeling with ANNs is a 
more robust, simpler, practically applicable method, 
utilized for predicting the concentration of unknown 
samples than standard methods using calibration lines. 
Based on the results obtained in this work, application of 
GA-PC-ANN method, which was trained with the back 
propagation of errors learning algorithm can construct a 
powerful model for simultaneous determination of m-
nitroaniline, o-nitroaniline and p-nitroaniline in an effective 
and accurate way. A GA-PC–ANN was used to build an 
efficient model for predicting concentrations of m-
nitroaniline, o-nitroaniline and p-nitroaniline in mixed 
solutions. Non-linear effects resulting from analyte-
analyte interaction in this system can be modeled by 
artificial neural network. There is no need to know the 
exact form of the analytical function on which the model 
should be built, also it requires no  complex  pretreatment  
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     Actual concentration of m-nitroaniline Actual concentration of o-nitroaniline 

Actual concentration of p-nitroaniline 
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Figure 3. Plots of predicted concentration versus actual concentration for nitroaniline isomers by GA-PC-ANN Method. Concn: 
concentration. 

 
 
 
of the samples containing analytes. This technique is 
simple, fast and affordable. 
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