Evaluation of the phytochemical and hemostatic potential of *Jatropha multifida* sap

Tamègnon Victorien Dougnon¹,²*, Jean Robert Klotoe¹,³, Julien Sègbo¹, Jean-Marc Atègbo³, Aléodjrodo Patrick Edorh²,⁴, Fernand Gbaguidi⁵, Armelle Sabine Hounkpatin², Carlos Dandjesso¹, Lauris Fah¹, Brice Fanou¹, Karim Dramane³ and Frédéric Loko¹

¹Polytechnic School of Abomey-Calavi, Research Laboratory in Applied Biology, University of Abomey-Calavi, 01 BP 2009 Cotonou, Benin.
²Interfaculty Center of Formation and Research in Environment for the Sustainable Development, Laboratory of Toxicology and Environmental Health, University of Abomey-Calavi (UAC), 01 BP 1463 Cotonou, Benin.
³Department of Animal Physiology, Faculty of Science and Technology, University of Abomey-Calavi (UAC), 01 BP 526 Cotonou, Benin.
⁴Department of Biochemistry and Cellular Biology, Faculty of Science and Technology, University of Abomey-Calavi (UAC), 01 BP 526 Cotonou, Benin.
⁵Laboratory of Pharmacognosy and Essential Oils (Porto-Novo), Benin.

Accepted 14 June, 2012

Jatropha multifida is a plant traditionally recognized for its medicinal properties. This study was undertaken not only to assess the hemostatic potential of the sap of *J. multifida*, but also to elucidate its chemical profile. Wistar rats were injured at various locations and time of bleeding was evaluated based on the addition of *J. multifida*s sap or distilled water. Phytochemical study was performed on sap. *J. multifida*’s sap significantly reduced bleeding time. Indeed, more blood flow was noticed on the side that received physiological water than the one which received the sap. This is even truer when the cut is deep with times of bleeding reduction of 39.06, 47.89, and 46.68%, respectively for superficial wounds, saphenous vein, and the femoral vein clippings. The phytochemical screening of *J. multifida* showed the presence of tannins, flavonoids, saponins, leucoanthocyanes, mucilage and reducing compounds. The power of the hemostatic sap is explained by the strong presence of tannins and flavonoids. All this proves that using the sap of *J. multifida* in traditional medicine is justified.

Key words: Hemostatic, Wistar rats, tannins, flavonoids, bleeding, *Jatropha multifida*.

INTRODUCTION

The World Health Organization has encouraged research on medicinal plants since 1978 in order to improve, secure and reduce the cost of medical products (OMS, 2002).

No less than 170,000 bioactive molecules have been identified from plants (OMS, 2002). Despite these results, it should be noted that few plants have been studied for their therapeutic properties, and some pharmacological activities such as hemostatic effects remain unexplored. In Benin, for example, only about 500 plants were studied among the 3000 species of plants (Adjanohoun et al., 1989; Akoègninou et al., 2006). No studies have looked specifically at the inventory of hemostatic plants. The few existing data are from ethnobotanical surveys on the flora as a whole (de Souza, 1988; Adjanohoun et al., 1989; Akoègninou et al., 2006). However, there are some hemostatic plants including *Jatropha multifida* which is used in Vodou ritual practices to stop external bleeding (Adjanohoun et al., 1989).

Interest for hemostatic plants is justified by the fact that hemorrhage is the first cause of early death in surgery bleedings (Sauaia et al., 1995). It is now a leading cause...
of maternal mortality worldwide (Goodburn and Campbell, 2001; Brücker et al., 2006; Fourn et al., 2007). Hemorrhages are unpredictable in 84% of cases (Cinat et al., 1999). Although, it often stops on its own (minor injuries), in many situations, the use of mechanical barriers, thermal and hemostatic drugs is essential (Kozen et al., 2008; Wedmore et al., 2006). Thus, the variability in the severity of bleeding today justifies the existence of a variety of hemostatic. Some hemostatics are human, animal, vegetable or synthetic. These substances are administered topically, orally or by injection (Abaut et al., 2008). It is important for African researchers to investigate African plants known for their therapeutic properties by the legends and traditions. The identification of efficient hemostatic could, for this purpose, improving the management of bleeding in all medical disciplines.

J. multifida, in traditional medicine, is used as a hemostatic, usually to treat wounds. It is also used as herbal tea to treat microbial infections (Adjanohoun et al., 1989). In Benin, no scientific study has, to date, proved hemostatic potential of this plant. However, preliminary studies and ongoing work has shown good results of this sap on in vitro tests (Dougnon, 2012); hence, the need to assess its potential phytochemical and its effects in vivo.

MATERIALS AND METHODS

Phytochemical tests were conducted at the Laboratory of Pharmacognosy and Essential Oils of Benin Center for Scientific and Technical Research. Hemostatic and biochemical tests were conducted at the Laboratory for Research in Applied Biology at the University of Abomey-Calavi (UAC).

Plant

The plant material is made from the sap of *J. multifida*. It was collected directly into Eppendorf tubes after leaf cutting. Samples were kept refrigerated at 4°C.

Animals

Seven male Wistar rats of 16 to 20 weeks and weighing between 240 and 270 g were kept in the Research Laboratory in Applied Biology at constant temperature of 22 ± 1°C with a 12 h light and 12 h in the dark. They were fed with pellets and water *ad libitum*.

Phytochemical tests

Phytochemical analysis is a qualitative test based on staining reactions and/or differential precipitation of the major groups of chemical compounds of plants. This analysis was performed on the sap using the methodology described by Houghton and Rama (1998). The different reactions of active compounds are summarized in Table 1.

Hemostatic potential of *J. multifida*’s sap

Minor cuts, deep cuts (type 1), and deep cuts (type 2) were performed in both legs simultaneously on seven Wistar rats. Wistar rats were intramuscularly anesthetized with ketamine (80 mg/kg). The anesthesia was supplemented by a local administration of 2% Xylocaine (10 mg/kg) on the chosen site for a total stunning of the animal.

Superficial cuts included carrying out the incisions of a millimeter in length and 3 mm deep at the plantar surface of rats localized at 1 cm below the knee. A sterile blade was used. The cuts were made simultaneously at the two legs. Deep cuts of type 1 consisted of sectioning saphenous vein (Figure 1) to two inches above the knee. The two veins of the animal were sectioned simultaneously after partial dressing of the rat. Deep cuts of type 2 consisted of severing femoral vein (Figure 1) which is an extension of the saphenous vein at the groin. The two veins of the animal were sectioned simultaneously after partial dressing of the rat.

After each cut, sap was applied topically to the wound located on one of the legs and the physiological water (0.9% NaCl) on the other leg. The volumes applied were 50, 150, and 200 µl for superficial cuts, deep cuts of type 1, and type 2, respectively. Bleeding time was determined in all three cases with a stopwatch. It was defined as bleeding time, elapsed time between the onset of bleeding (from the cut) and stopping blood flow.

Statistical analyses

Comparisons of comparing two by two the average using the Student t test, *p (T>t) = 0.05* were made. The softwares used are Microsoft Excel 2010 and 2011 XL Stat.

RESULTS

Chemical composition of the sap of *J. multifida*

The phytochemical tests carried out on the sap of *J. multifida* have revealed the presence of tannins (gallic and catechic), flavonoids, saponins, leucoanthocyanes, mucilage, and reducing compounds (Table 2).

Assessment of bleeding time

Averages are recorded as shown in Figure 2. The effect of applying the sap of *J. multifida* on bleeding time is reflected by Figure 3. The cavity marked by blue arrow received physiological water, while the one marked by the green arrow has received sap after section of the femoral vein. More blood flow toward the blue arrow has been noticed than the other. The blood clotted faster on the side receiving the sap.

To better explain the relationship between the depth of the wound and the bleeding time, the percentage reductions are summarized in Table 3.

DISCUSSION

The power of hemostatic sap is really explained by the strong presence of tannins and flavonoids. Indeed, the tannins can stop the bleeding and fight against infections. The tannins-rich plants are used to make
Table 1. Summary of specific reactions of the active plant.

<table>
<thead>
<tr>
<th>Classes of active substance</th>
<th>Specific reagent and reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Mayer → yellowish precipitate</td>
</tr>
<tr>
<td>Quinone derivatives</td>
<td>Born-Träger → purplish red color</td>
</tr>
</tbody>
</table>
| Cathelic and gallic tannins | Reagent of Stiasny → pink precipitate
Saturation by acetate of Na+ FeCl₃ → blue-dark green or black |
| Flavonoids | Shinoda → orange color, red or purple |
| Cyanogenic derived | Guignard (picric acide) → brown coloration |
| Steroids and triterpenoids | Libermann-Burchard → violet-blue or green
Kedde → reddish purple or red wine |
| Saponins | Determination of the foam index (MI): positive test if MI >100 |
| Anthocyanins | Red coloration of the filtrate increased in acid medium and blue-violet in alkaline medium |
| Leuco-anthocyanins | Chloridric alcohol → cherry red color |
| Muclages | Absolute alcohol → flocculent precipitate |
| Reducing compounds | Fehling’s hot → brick-red precipitate |
| Coumarins | Ammonia 25% → intense fluorescence |
| Anthracene derivatives | Ammonia 50% → intense red color |

Figure 1. Sections of saphenous and femoral veins.

tissues soft, as in the case of varicose veins, to drain the excess secretions and to repair tissue damaged by burns or eczema (Djabou, 2006). Rira (2006) has also shown that the biological properties of tannins are mainly related
Table 2. Result of reactions to characterize the sap of *Jatropha multifida*.

<table>
<thead>
<tr>
<th>Classes of active ingredients sought</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>-</td>
</tr>
<tr>
<td>Quinone derivatives</td>
<td>-</td>
</tr>
<tr>
<td>Cathetic and gallic tannins</td>
<td>+++</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+++</td>
</tr>
<tr>
<td>Cyanogenic derived</td>
<td>+++</td>
</tr>
<tr>
<td>Steroids and triterpenoids</td>
<td>+++</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
</tr>
<tr>
<td>Anthocyanins</td>
<td>-</td>
</tr>
<tr>
<td>Leuco-anthocyanins</td>
<td>+++</td>
</tr>
<tr>
<td>Mucilages</td>
<td>-</td>
</tr>
<tr>
<td>Reducing compounds</td>
<td>+++</td>
</tr>
<tr>
<td>Coumarins</td>
<td>+++</td>
</tr>
<tr>
<td>Anthracene derivatives</td>
<td>+++</td>
</tr>
</tbody>
</table>

to their ability to form complexes with macromolecules, especially proteins. Tannins have astringent properties. They are also anti-inflammatory in burns (Paris and Moyse, 1965). Nacoulma (1996) also showed that flavonoids are able to reduce bleeding. They are particularly active antioxidant substances in maintaining blood circulation. They contribute to the increased production of nitric oxide in blood platelets, which limits the formation of clots by preventing platelets from sticking together (Diallo, 2005).

The study of the hemostatic properties of the sap of *J. multifida* reinforces the potential of plants used in traditional hemostasis. According to Kerharo and Adam (1974), the decoction of the bark of *Entada africana*’s trunk is regarded as hemostatic, and tannins and flavonoids were found there. The decoction of its root or stem is also used to clean wounds and the powder of the same parts of the plant is applied on wounds (Sangaré, 2005). Flavonoids were also found in *Calandula officinalis*, a medicinal plant (Hussain et al., 2012).

The results of this study showed that the sap of *J. multifida* significantly reduced the bleeding time. This is even more true when the cut is deep, probably because the blood volume charged at this time is important. The effect of the sap of *J. multifida* on bleeding time is comparable to Ankaferd Blood Stopper, a mixture of traditional plants (*Thymus vulgaris*, *Glycyrrhiza glabra*, *Vitis vinifera*, *Alpinia officinarum*, and *Urtica dioica*) acting on hemostasis reducing bleeding time (Duz et al., 2010).

Traditional knowledge deserves to be appreciated. This enhancement involves the production of improved traditional medicines. After the study, it was proved that
the traditional use of the sap of *J. multifida* is justified as a hemostatic. Its effects on bleeding time were investigated. The different constituents of this substance have been revealed and its hemostatic potential has been well explained. This offers interesting perspectives in therapy, because the sap of *J. multifida* could be used as local hemostatic in both normal subjects as those with coagulation disorders such as hemophilia.

ACKNOWLEDGEMENTS

Authors give thanks to Dr. Paulin YOVO and Dr. Jacques DOUGNON for their scholarly contributions.

REFERENCES

Goodburn E, Campbell O (2001). What can a health system deliver if it can’t deliver a baby. B.M.J., 7(2): 12-17.

pp. 130-207.

