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Polyox
TM

 coagulant (molecular weight 5 × 10
6
 Da) and hydroxypropyl methylcellulose (HPMC) K4M (USP 

substitution type 2208) were used to identify the composition variables that ensure the production of 
polyethylene oxide (PEO) matrix tablets with the same dissolution characteristics as those containing 
HPMC. Based on the dissolution results obtained using Apparatus 3, a 53% concentration of PEO 
polymer in the matrix tablet generates comparable drug release as matrix tablets containing 37% HPMC. 
During the dissolution test, several conditions simulating mechanical stresses in the gastrointestinal 
tract were investigated, in order to assess the robustness of the gel layer formed in selected PEO and 
HPMC matrix tablets. Increased mechanical stresses enhanced gel erosion from both matrix tablets 
evaluated and increased the drug release rate by approximately 10% regardless of the polymer type 
used. The HPMC gel layer formed was more resilient to mechanical stress and resulted in significantly 
slower drug release when compared to PEO matrix tablets with the same polymer concentration (37%). 
The research showed that gel robustness and the PEO polymer percolation threshold are dependent on 
the mechanical stresses applied. The percolation threshold changed from 30 to 37% when different 
mechanical stress was applied on Apparatus 2 and 3, respectively. The study revealed that the 
selection of in vitro dissolution method as well as polymer concentration is important for the evaluation 
of gel mechanical robustness. 
 
Key words: Polyethylene oxide (PEO), hydroxypropyl methylcellulose (HPMC), drug release, percolation 
threshold, matrix tablets. 

 
 
INTRODUCTION 
 
Matrix systems are generally designed with a drug, 
standard tableting excipients, and the most important 
ingredient: water-swellable polymers. The most 
commonly  used  hydrophilic   polymer  is   hydroxypropyl 

methylcellulose (HPMC) (Kojima et al., 2008) that could 
be replaced by semi crystalline polymers such as 
polyethylene oxide (PEO) or polyvinyl alcohol (PVA), 
which  have  similar  water  solubility,  drug  compatibility, 
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and gelation ability (Kim, 1995, 1998; Kojima et al., 2008; 
Ganji and Vasheghani-Farahani, 2009). For semicrystalline 
polymers, the solid phase transition depends on the 
degree of crystallinity, which is connected to solvent 
transport into the solid phase and crystallite unfolding 
(Trotzig et al., 2007). Although it is hydrophilic, HPMC is 
an ion-sensitive polymer, whereas PEO is unsusceptible 
to ionic strength and pH. PEO generally provides faster 
drug release and greater water uptake, and it forms a 
weaker gel that is more sensitive to erosion compared to 
HPMC (that is, it hydrates slowly and forms a thick and 
strong gel layer). With a combination of both polymers, it 
is possible to obtain matrix systems with optimal 
dissolution properties (Katakam et al., 2013; Hu et al., 
2017). With increasing PEO content in the matrix tablet, it 
is possible to improve its gel strength and therefore 
simulate HPMC gel behavior. With increased polymer 
concentration and its viscosity, the drug release 
mechanism can be changed from mainly erosion-
dependent to diffusion-dependent (Maggi et al., 2002; 
Tajiri et al., 2010; Katakam et al., 2013; Hu et al., 2017, 
Wen et al., 2018). 

Generally, the mechanism of drug dissolution is the 
same for all hydrophilic polymers: they hydrate in gastric 
media and form a viscous gel layer, functioning as a 
diffusional barrier, controlling further water penetration 
into the tablet, drug release rate, and therefore 
bioavailability. Simultaneously, an erosion barrier is 
formed on the matrix surface; this is the part of the matrix 
system that is removed quickly, and therefore drug 
release from this part is faster (Harland et al., 1988; 
Timmins et al., 2014). In this manner, the drug release 
mechanism from matrix systems is governed by drug and 
gel layer characteristics (Kim, 1998). The potential critical 
material attributes that regulated drug dissolution from 
matrix systems are: polymer content and viscosity, ratio 
of selected polymers in the blend, particle size of polymer 
and drug substance, tablet size, and surface area (Kim, 
1995; Li et al., 2008; Moodley et al., 2012; Siepmann and 
Peppas, 2012; Wang et al., 2017; Wen et al., 2018). 

To form robust matrix systems, suppliers of matrix 
agents recommend the use of at least 20% polymer in 
the matrix formation to maintain a homogenous gel layer 
(Colocon, 2009; POLYOX 

TM
 water soluble resins 

combining flexibility with consistency, 2013). For better 
understanding of drug release from matrix systems, the 
effect of tablet composition based on percolation theory is 
generally applied (Caraballo, 2010). The percolation 
threshold is the critical polymer concentration at the gel-
solvent boundary, which overcomes the polymer 
entanglement forces under hydrodynamic stresses, 
making the polymers free to diffuse into the solution 
(Kaunisto et al., 2010). Moreover, it is a critical 
concentration point of the polymer at which one of the 
components undergoes sudden change and alteration in 
the release rate noticed (Bonny and Leuenberger, 1991, 
1993; Leu and Leuenberger, 1993; Miranda et al., 2006; 
Caraballo, 2010). Therefore, it is  important  to  determine  

 
 
 
 

the percolation threshold for a formulation containing 
hydrophilic polymer because it ensures the formation of a 
robust gel layer barrier around the tablet core and 
prevents a burst effect (Bonny and Leuenberger, 1991, 
1993; Aharony and Stauffer, 2003; Caraballo, 2010). The 
application of percolation theory has been studied on 
binary systems (Bonny and Leuenberger, 1991; Leu and 
Leuenberger, 1993) and some multicomponent systems 
(Choi et al., 2003; Gonçalves-Araújo et al., 2008; 
Colorocon, 2009). 

To obtain the bioequivalent generic drug, the in vitro 
dissolution should have adequate in vivo predictability. 
Mechanical stresses along the gastrointestinal tract 
should be considered to ensure constant drug release 
from matrix systems, avoiding a burst effect (Siepmann 
and Peppas, 2000). One proposed dissolution test used 
to assess matrix systems’ resistance under mechanical 
stresses is Apparatus 3 (a reciprocating cylinder, BIO-
DIS III) (Rohrs et al., 1995; Mu et al., 2003; Klein et al., 
2008) according to United States Pharmacopoeia (USP) 
(United States Pharmacopeia and National Formulary 
(USP 41-NF 36) Rockville, MD: United States 
Pharmacopeial Convention, 2016), and its modification 
using plastic beads offers a good in vitro–in vivo 
correlation (Klančar et al., 2013). 

The objective of the study was to investigate the 
formulation factors of PEO matrix tablets that ensure the 
same mechanical and drug release characteristics as 
HPMC. The dissolution testing of selected HPMC and 
PEO formulations was performed in different dissolution 
media with the following instruments: Apparatus 2 
(paddle method), Apparatus 3 (BIO-DIS III) according to 
USP, and modified USP Apparatus 3 (BIO-DIS III) with 
plastic beads. Based on the dissolution method results, 
the gel layer robustness of selected PEO and HPMC 
formulations was estimated and the PEO matrix system 
with a gel strength and drug release comparable to the 
HPMC system was determined. 

 
 
MATERIALS AND METHODS 
 

The excipients used in the formulation of the proposed matrix 
tablets were the following: PEO Polyox

TM
 coagulant (Dow-

Colorcon, Dartford, UK) with Mw of 5 × 10
6
 Da, HPMC USP Type 

2208, grade K4M (Dow Chemical Company, Midland, MI, USA), 
lactose monohydrate 200 mesh (Friesland Campina, the 
Netherlands), and microcrystalline cellulose (MCC) Avicel PH 200 
(FMC BioPolymer, Norway). Selected excipients were blended with 
levofloxacin as a highly soluble and permeable drug with water 
solubility of 25 mg/ml at room temperature (Koeppe et al., 2011). 
All other chemicals and solvents were of analytical grade and were 
used without further purification. The levofloxacin working standard 
used was a gift sample from Lek Pharmaceuticals d.d. with a 
standard purity of 100%. 
 
 

Preparation of standard stock solution 
 

An accurately weighed quantity (around 22 mg) of levofloxacin 
working standard was dissolved in a 200 ml volumetric flask using a 
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Table 1. Composition of PEO and HPMC matrix tablets. 
 

Composition (%) 
Test formulations 

A B 1 2 3 6 7 8 9 10 11 

HPMC 80         37 37 

PEO  80 40 33 33 30 30 37 37   

Levofloxacin 20 20 33 33 33 33 33 33 33 33 33 

MCC   27 33 33 37 37 30 30 30 30 

Tablet mass (mg) 500 500 250 250 300 250 300 250 300 250 300 

Tablet diameter (mm) 12 10 

 
 
 

Table 2. Compositions of PEO matrix tablets prepared to obtained drug release comparable to HPMC TF 11. 
 

Composition (%) 
Test formulations 

M1 M2 M3 M4 M5 M6 M7 M10 M11 M12 

PEO 38 40 42 37 33 30 43 53 57 60 

Levofloxacin 33 33 33 33 33 33 33 33 33 33 

MCC 29 27 25 33 33 37 24 14 10 7 

Tablet mass (mg) 250 

Tablet diameter (mm) 10 

 
 
 
water-ethanol mixture in a 1:1 ratio. The aliquot portion of standard 
stock solution was then diluted with selected dissolution media to 
obtain a 100% concentration of levofloxacin in prepared samples 
within selected dissolution test. The solutions were scanned in a 
range of 400-200 nm against blank to find the absorbance 
maximum. The levofloxacin absorbance maximum in water 
dissolution media and potassium phosphate buffer with a pH of 6.8 
was found at 287 nm, and in pH 1.2 the absorbance maximum was 
detected at 294 nm. 
 
 
Preparation of matrix tablets 
 
Two 500 mg test formulations (TFs) were prepared, containing only 
matrix system polymers-HPMC (TF A) and PEO (TF B)-with the 
addition of 20% levofloxacin as a model drug. The selected polymer 
and model drug were mixed and manually sieved through 1.0 mm 
mesh. The dry blend was then compressed into round flat 500 mg 
tablets 12 mm in diameter and with an average hardness around 90 
N. 

TFs were also prepared using direct compression of prepared 
blends containing PEO polymer (Polyox

TM
 coagulant) with the 

model drug and MCC as the filler in various ratios (Table 1: TFs 1–
7) to determine the percolation threshold. The prepared samples 
were then blended and sieved manually through 1.0 mm mesh and 
compressed into 250 mg and 300 mg round tablets 10 mm in 
diameter and with an average hardness around 90 N. The 
percolation threshold was defined as the critical polymer 
concentration at which the drug release kinetics significantly 
changed. After determining the percolation threshold, the gel 
strength at percolation thresholds was evaluated. Therefore, 250 
mg and 300 mg round tablets 10 mm in diameter were prepared 
containing 37% PEO (TF 8 and TF 9) and 37% HPMC polymer (TF 
10 and TF 11). 

Finally, 250 mg round tablets 10 mm in diameter were prepared 
with PEO using various polymer filler ratios (Table 2; TF M1–M12). 
The main aim of the proposed compositions was to determine  PEO 

formulations with the same gel strength as the selected HPMC TF 
11, set as the target for matrix tablet gel strength evaluation, for 
which after 2 h not more than 30%, after 4 h not less than 50 %, 
and after 8 h more than 85% of levofloxacin is dissolved (250 ml of 
water, USP Apparatus 3, 20 DPM). 
 
 
Dissolution media for in vitro testing 
 
For evaluating drug release, the following dissolution media were 
utilized: deionized water, a 0.05 M phosphate buffer with a pH of 
6.8 (USP) (United States Pharmacopeia and National Formulary 
(USP 41-NF 36) Rockville, MD: United States Pharmacopeial 
Convention, 2016), and simulated gastric fluid (SGF) with a pH of 
1.2. The SGF medium was prepared by adding NaCl and 1M HCl 
to the water, adjusting the pH value to 1.2, and degassing (Table 
3). 
 
 
Apparatus used for in vitro testing 

 
Drug release from matrix tablets was evaluated using Apparatus 2 
(paddle method) in accordance with USP (United States 
Pharmacopeia and National Formulary (USP 41-NF 36) Rockville, 
MD: United States Pharmacopeial Convention, 2016). The 
dissolution tests were performed using a dissolution tester (VanKel 
Dissolution Apparatus, model VK 7000, USA). Standard vessels 
with paddles were utilized at a stirring rate of 50 revolutions per 
minute (rpm) with 900 ml of selected dissolution media at a 
temperature of 37 ± 0.5°C and at least three repetitions (n = 3). The 
tablets were put into a string sinker to prevent floating of the 
swollen matrix tablets several hours after commencing the test and 
to prevent tablet adhesion to the beaker wall. The dissolution 
medium was not replaced because sink conditions were ensured 
after sampling. The robustness of the gel layer was evaluated using 
Apparatus 3, a reciprocating cylinder (Varian Vankel BIO-DIS III, 
USA). In addition, gel robustness was tested using the  dissolution- 
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Table 3. Compositions of used dissolution media per liter. 
 

Media Water SGF Phosphate buffer pH 6.8 

Composition Deionized water 
0.034 mol NaCl 0.05 mol KH2PO4 

0.08 mol HCl 0.022 mol NaOH 

pH 7.0 1.2 6.8 

 
 
 
testing method principle adopted by Klančar et al. (2013), in which 
a standard testing station with 10 dips per minute (DPM) and 20 
DPM was used together with 10 mm round plastic beads (density 
1.1 g/cm

3
). For the pH change simulation test, USP Apparatus 3 

was used, whereby the tablets were first dipped in the SGF medium 
for 2 h, and then in the phosphate buffer medium with a pH of 6.8. 
For each time point, 5 ml of sample was automatically collected, 
filtered through 1.0 μm Full Flow filters (P/N FIL001-EW; Erweka, 
Germany), and diluted accordingly (1/5 or 1/10). 
 
 
The UV spectrophotometric method 
 
A Varian Cary 50 UV-vis spectrophotometer with a 1.5 nm spectral 
bandwidth and 10 mm matched quartz cells was used to develop 
the analytical assay method over a range of 190 to 1,100 nm. The 
UV-vis wavelengths for levofloxacin were dependent on the media 
used. The levofloxacin absorbance maximum in water dissolution 
medium and a potassium phosphate buffer with a pH of 6.8 was at 
287 nm, and with a pH of 1.2 at 294 nm. 
 
 
Similarity factor calculation 
 
The drug release profiles of selected formulations were compared 
using a similarity factor (f2) in Eq. 1, where n is the number of 
dissolution sample times and Rt represents the percent of drug 
dissolved at each sample point t of the reference and Tt in the test 
product, respectively. The drug release profiles of the two 
dissolution profiles are similar if f2 ≥ 50. 
 

                   (1) 
 
 
Statistical data analysis 

 
The values reported are means and standard deviations (SD) of 
experiments carried out at least three times. Data were analyzed a 
one-way ANOVA analysis of variance (a t-test), and p < 0.05 was 
considered significant using Minitab

®
 software. 

 
 
RESULTS AND DISCUSSION 
 
Impact of polymer type on drug release 
 
A comparison between TFs A and B was made in order 
to evaluate how the polymer type (HPMC vs. PEO) 
influences drug release. Dissolution in water, using 
Apparatus 2 at 50 rpm, showed no difference in average 
drug release (f2 > 50). Based on the results  (f2 = 78),  the 

gel layer strengths at 80% of the polymers used are 
comparable. 

The difference between selected TFs A and B (Table 4) 
had significantly higher relative standard deviations 
(RSDs) of PEO (TF B) when compared to HPMC (TF A) 
matrix tablets. Higher variability of the results (RSD > 
10%) at the beginning of the dissolution profile can 
indicate lower robustness of the PEO gel layer due to a 
faster and greater swelling rate and consequently higher 
erosion of the PEO gel layer (Kim, 1995b; Maggi et al., 
2000, 2002) related to uncontrolled disentanglement of 
polymer chains (unpublished data). After 12 h, a constant 
and robust gel layer is formed, which controls drug 
release from matrix tablets and leads to lower RSD 
values. Based on the dissolution results obtained (Table 
4), it was confirmed from previously published data  that 
HPMC gel layers are more resistant than PEO, leading to 
constant drug release (Colombo et al., 2000; Maggi et al., 
2000; Hewlett et al., 2012; Hu et al., 2017). 
 
 
Effect of PEO polymer concentration on drug release 
 
For evaluation of the selected PEO Mw percolation 
threshold, the concentration range of PEO between 30 
and 40% was tested (TFs 1, 2, and 8; Figure 1), using 
900 ml SGF, USP Apparatus 2, and using a paddle 
speed of 100 rpm. No effect on drug release was noticed; 
confirming that 30% PEO with a Mw of 5 × 10

6
 Da 

(Polyox
TM

 coagulant) for selected formulation is already 
above its percolation threshold, which results in the 
constant drug dissolution profile. Above the determined 
percolation threshold, a gel layer with comparable 
robustness and consequently similar drug release of the 
model drug is attained using USP Apparatus 2. 
 
 
Matrix tablet gel strength evaluation 

 
USP Apparatus 3 (SGF) 

 
The impact of different mechanical stresses applied with 
USP Apparatus 3 was evaluated for the HPMC TF 11 
and PEO TF M10 in SGF medium with 10 DPM and 20 
DPM. Due to higher discriminatory power (Figure 2), 20 
DPMs were chosen as the dipping speed for the 
robustness test at USP Apparatus 3. 

The results showed (Figure 2)  that  both  polymers  are 
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Table 4. Dissolution profile comparison between HPMC (TF A) and PEO (TF B) matrix tablets using apparatus 2, 50 rpm, 900 ml of 
water, and its similarity factor (f2). 
 

Time (hthes) 

TF A TF B 

Average % of dissolved 
levofloxacin (n = 3) 

RSD 
Average % of dissolved 

levofloxacin (n = 6) 
RSD 

8 28.0 4.8 23.9 16.2 

12 40.1 1.9 38.5 5.5 

16 47.2 1.6 48.3 3.0 

20 56.0 1.2 58.4 1.2 

24 64.5 1.1 67.2 1.4 

f2   78  
 
 
 

 
 

Figure 1. Dissolution profile comparison between 250 mg PEO TFs (TF 1 (40% PEO), TF 2 (33% 
PEO), TF 6 (30% PEO), TF 8 (37 % PEO)) using USP Apparatus 2, 100 rpms, 900 ml of SGF (n=3). 

 
 
 

sensitive to mechanical stresses, resulting in enhanced 
drug release after increased mechanical stress (DPM). 
The drug release rate is faster in the case of a higher 
dipping speed (20 DPM) due to destruction of gel layers. 
It is interesting, that drug release rate is fastened for the 
same rate regardless polymer type, showing that 
mechanical stress affect the gel layer to the same extend 
in case of PEO matrix tablet than in case of HPMC matrix 
tablet. Drug release rate is faster in case of PEO matrix 
tablets, showing the formation of more sensitive gel layer. 
 
 
USP Apparatus 3 (water) 
 
To improve the mechanical robustness of the gel layer  in 

250 mg PEO matrix tablets, TFs with increased polymer 
concentration were produced (M1–M12, Table 2). Based 
on f2 calculations (f2 > 50; Table 5), all selected PEO TFs 
have dissolution profiles comparable to HPMC TF 11 
(Figure 3), regardless of the polymer concentrations.  

Moreover, the comparable mechanical robustness of 
PEO and HPMC TFs were determined from dissolution 
profile. In the case of PEO TFs with less than 37% 
polymer (TFs M5 and M6, Table 2), the dissolution is 
significantly faster after 2 h compared to HPMC TF 11 
(Figure 3), still within dissolution profile similarity (f2 close 
to 65; Table 5), but with lower mechanical robustness of 
the gel layer according to faster dissolution results. 
Based on f2 close to 75 (Table 5), it can be concluded that 
a  37%  PEO  concentration  (TF  M4)  is  the  percolation  
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Figure 2. Dissolution profiles from PEO (TF M10) and HPMC (TF 11) TFs were analyzed under 
different mechanical stresses (10 DPM vs. 20 DPM) in 250 ml of SGF, USP Apparatus 3 (n = 6). 

 
 
 

Table 5. Similarity factor (f2) calculation of PEO M1–M12 TFs to HPMC TF 11 in 250 ml of water, USP Apparatus 3, 20 DPM (n = 3). 
 

Composition (%) 
Test formulations 

11 M1 M2 M3 M4 M5 M6 M7 M10 M11 M12 

f2 NA 77 74 76 73 66 65 84 78 68 63 
 
 
 

threshold for selected PEO formulation, since all higher 
polymer concentrations (TFs M1, M2, M3, M7, M10, M11 
and M12) have similar drug release rate. Based on the 
results, PEO TF M10 was selected for further mechanical 
robustness evaluation.  

Moreover, the results demonstrated that the PEO 
percolation threshold depends on the dissolution method 
used. With increased mechanical stress using USP 
Apparatus 3, the detected percolation threshold for the 
selected PEO is higher (37%, Figure 3) when compared 
to USP Apparatus 2 (30%, Figure 1), again raising the 
question which method is suitable for predicting the in 
vivo behavior of PRTs though the gastrointestinal tract 
(GIT) (McAllister, 2010; Lu et al., 2011; Kostewicz et al., 
2014; Schneider et al., 2017; Hribar et al., 2018; 
Milanowski et al., 2020) when in vivo data are not 
available. 
 
 

USP Apparatus 3 (SGF + potassium phosphate buffer 
with a pH of 6.8) 
 

To   simulate   the   influence   of  GIT  conditions  on  gel 

robustness, PEO TF M10 and HPMC TF 11 were 
dissolved first for 2 h in SGF and then in potassium 
phosphate buffer with a pH of 6.8 for the next 10 h, using 
USP Apparatus 3 with 10 DPM. Regarding the dissolution 
results (Figure 4), similar behavior to TF 11 under 
simulated gastric conditions was also determined for 
PEO TF M10, containing 53% PEO polymer (f2 = 64). 
According to the results, similar drug release and 
therefore gel robustness between PEO and HPMC TFs 
can be obtained with increased PEO concentration. 
 
 

USP Apparatus 3 with the addition of plastic beads 
(SGF + potassium phosphate buffer with a pH of 6.8) 
 

The assessment of gel robustness for selected PEO TF 
M10 and HPMC TF 11 was further tested by using USP 
Apparatus 3 with different dipping speeds (10 or 20 DPM) 
and with the addition of plastic beads (Klančar et al., 
2013) without changes in the dipping speeds after the 
transportation of matrix tablets to a medium with a 
different pH.  As can be observed from Figure 5, increased 
mechanical stress (addition of plastic beads) insignificantly  
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Figure 3. Dissolution profiles of TFs with different PEO polymer concentrations (M4 = 37%, M5 = 33%, 
M10 = 53%) compared to HPMC TF 11 (37% HPMC) in 250 ml of water, USP Apparatus 3, 20 DPM (n 
= 3). 

 
 
 

 
 

Figure 4. Dissolution profiles of PEO TF M10 (53% PEO) and HPMC TF 11 (37% HPMC) gel layers 
in 250 ml, simulated gastric media (2 h pH 1.2 + 10 h pH 6.8), USP Apparatus 3, 10 DPM (n = 3). 
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Figure 5. Comparison of HPMC TF 11 gel robustness using different mechanical stresses without 
(10 or 20 DPM) and with plastic beads (10 DPM KR; 20 DPM KR) in simulated gastric media (2 h 
pH 1.2 + 10 h pH 6.8), 250 ml, USP Apparatus 3 (n = 3). 

 
 
 
accelerates drug release rate and gel erosion of HPMC 
TF 11. The gel layer is non-susceptible to the addition of 
beads at 10 DPM, but the increased dipping speed of 20 
DPM insignificantly enhanced erosion of the gel layer for 
HPMC matrix tablets. 

In the case of PEO TF M10 (Figure 6), the addition of 
plastic beads already accelerated the drug release rate at 
10 DPM, and erosion of the gel layer is significantly faster 
when the dipping speed is increased to 20 DPM. The 
results thus demonstrated that an increase in mechanical 
stress (20 DPM) decreases gel robustness of PEO matrix 
tablets (Figure 6), while in case of HPMC matrix tablets 
the effect is insignificant (Figure 5). This observation is in 
agreement with the results obtained with USP Apparatus 
3 without plastic beads. Moreover, even in a formulation 
comprised of 53% PEO, significant differences in gel 
strength exist (Kim, 1995b; Kojima et al., 2008; Li et al., 
2008; Park et al., 2010; Tajiri et al., 2010) between 
HPMC and PEO, confirming the polymer hydration 
differences (Colombo et al., 2000; Maggi et al., 2000; 
Hewlett et al., 2012; Hu et al., 2017). 

The HPMC gel layer is less susceptible to mechanical 
stress than PEO regardless of the dissolution method 
used (Maggi et al., 2000). The differences in gel 
robustness are the result of polymer type interactions, 
which in the case of HPMC matrices are dependent on its 

substitution type and the ratio between hydroxypropyl 
and methyl groups, defining its hydrophilic/hydrophobic 
properties and gel hydration abilities (Viriden et al., 2010; 
Joshi, 2011). On the other hand, PEO polymer chains 
during hydration disentangle and hydrogen bonds are 
formed between water molecules and oxygen in the 
polymer chain, leading to complete polymer 
disentanglement. Subsequently, hydrophobic intrapolymer 
interactions are established between other parts of the 
PEO chain, forming polymer agglomerates (Ho et al, 
2002; Hammouda et al,  2004). This defines the 
robustness of the gel layer under mechanical stress 
(Maggi et al., 2000), which is dependent on polymer Mw 
(Maggi et al., 2000; Maggi et al., 2002; Körner et al., 
2010; Gupta et al., 2013; Choi et al., 2014) and 
formulation composition (Reynolds et al., 1998; Jamzad 
et al., 2005; Tajarobi et al., 2009; Caraballo, 2010; Wang 
et al., 2017; Wen et al., 2018). 

The results confirmed the data described because 
increased mechanical stresses applied with dissolution 
methods enhanced water penetration into the PEO matrix 
system, causing its accelerated swelling rate and 
consequently lower gel consistency after swelling under 
mechanical stress. Therefore, polymer chain unfolding is 
accelerated, resulting in faster matrix erosion and drug 
release.  Moreover,  the  HPMC  matrix  system  contains  
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Figure 6. Comparison of dissolution profiles for PEO TF M10 using different mechanical stresses 
without (10 or 20 DPM) and with plastic beads (10 DPM KR; 20 DPM KR) in simulated gastric 
media (2 h pH 1.2 + 10 h pH 6.8), 250 ml, USP Apparatus 3 (n = 3). 

 
 
 
more hydrophobic substituents, reducing water 
penetration and polymer water connections in the matrix 
system, leading to a slower hydration rate and higher 
robustness of the gel layer formed, appearing in slower 
drug release (Hu et al., 2017). 

When the mechanical stress is increased, the 
interaction between polymer and water is disrupted and a 
transient viscoelastic gel is formed, leading to polymer 
disentanglement and release into the medium (Hewlett et 
al., 2012). The mechanical susceptibility of the gel layer 
can correlate with intrinsic polymer viscosity and shear 
stress, under which both polymers undergo a shear 
thinning effect; this is lower for PEO than for HPMC (Inc., 
2009; Mastropietro et al., 2013).  

This was also confirmed by the previous research 
(unpublished data), in which no erosion of the gel layer 
was noticed under any mechanical stress, and the drug 
release was dependent only on drug diffusion through gel 
layers formed regardless of PEO Mw. When mechanical 
stress is applied, erosion is increased, causing 
inconsistent disintegration of the gel layer; this is most 
pronounced for PEO with a lower Mw (Maggi et al., 2000; 
Narasimhan, 2001; Maggi et al., 2002; Dhawan et al, 
2005; Körner et al., 2005, 2010; Wu et al., 2005; Wang et 
al., 2017). 

The research demonstrated that in the case  of  directly 

compressed PEO matrix tablets increased mechanical 
stresses within dissolution methods affect the 
discriminatory power of its gel robustness. For selected 
PEO and HPMC matrix tablets containing at least 37% 
polymer, the most discriminatory dissolution method for 
gel robustness evaluation was modified USP Apparatus 3 
with plastic beads using 20 DPM. The dissolution results 
obtained with the selected method clearly demonstrated 
the gel strength differences between formed gels in PEO 
and HPMC matrix tablets. In addition, the percolation 
threshold for the selected PEO polymer was also 
detected, and it depended on the dissolution method 
used. When USP Apparatus 2 was utilized, the 
percolation threshold was set at 30% PEO polymer, and 
USP Apparatus 3 was used at 37%. At the same time, it 
was shown that the same PEO matrix system 
characteristics as HPMC containing 37% polymer can be 
obtained when the PEO polymer concentration is 
increased to 53%, which is well above the set percolation 
threshold (37%). These results show that the polymer 
concentration at the percolation threshold does not 
ensure mechanical robustness of the gel layer. To attain 
mechanical robustness, the polymer concentration should 
be substantially increased in the case of PEO. Finally, the 
study demonstrated how the choice of dissolution method 
affects the difference in detection between matrix polymer  
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types, their concentration, and formulation characteristics; 
confirming the importance of proper dissolution method 
selection during matrix tablet development. 
 
 
Conclusion 
 
In this study, the percolation threshold of the selected 
PEO coagulant (Mw = 5 × 10

6
 Da) was set at 30% with 

the dissolution test using USP Apparatus 2 and at 37% 
when USP Apparatus 3 is used. the study demonstrated 
the possibility of formulating PEO matrix tablets having a 
similar drug release rate and robustness as HPMC matrix 
tablets containing 37% polymer. This was attained with a 
PEO concentration increase to 53%. The polymer 
concentration ensuring mechanical gel robustness is well 
above the set percolation threshold concentration, 
showing that the polymer concentration at the percolation 
threshold does not provide the mechanical robustness of 
the PEO gel layer formed. To obtain this, the PEO 
polymer concentration should be higher. It was confirmed 
that increased mechanical stress enhances gel layer 
sensitivity and therefore drug release regardless of the 
polymer type. The results suggest that the choice of 
dissolution method and related mechanical stresses 
affect gel robustness, which increases with polymer 
concentration. The study also draws attention to open 
issues regarding the choice of dissolution test for matrix 
tablets’ gel robustness evaluation because with different 
dissolution methods different results can be obtained. 
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