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Alzheimer’s disease (AD) is a neurodegenerative confusion associated with dementia. AD is indicated 
by progressive loss of memory. It is having characteristic evidence of β-amyloid extracellularly and 
neurofibrillary tangle’s development intracellularly. Neurons lose the capability of cell division after 
they attain full development. Cyclin dependent kinase 5 (Cdk5) is a kinase protein which is neuron 
specific and plays a vital role in the movement of newly developed neurons. When Cdk5 is 
dysregulated, then several diseases like AD, Parkinson’s disease (PD), amyotrophic lateral sclerosis 
(ALS) may occur. The Cdk5 phosphorylation takes place as a result of change of N-methyl-D-aspartate 
(NMDA) receptor activity and expression, neurotransmitter release, degradation of synaptic proteins, or 
in-gene expression modulation, which leads to the activation of Cdk5. The activated calpain proteins 
convert p35 activator of Cdk5 into p25, which causes remarkable  activation  of the Cdk5. This highly  
activates Cdk5-p25 complex hyperphosphorylates, the Tau protein, which causes the release of 
microtubules and gathers as cytoplasmic filaments. This leads to  tangle formation that leads to 
neuronal cell death. In AD brain, the Cdk5 is present in a highly activated form. This review article 
emphasizes the role of cyclin dependent kinase 5 in AD. 
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INTRODUCTION 
 
AD is one of the main causes of dementia. The 
occurrence of AD increases with age (James et al., 2008; 
Kang et al., 1987). AD is characterized by the progres- 
sive loss of memory related to the decline in language, 
visuospatial function, estimation and decision. Finally, it 
leads to major behavioral and functional disability (James 
et al., 2008; Chung, 2009). AD was originally defined as 
presenile dementia, but it now appears that the same 
pathology underlies the dementia irrespective of the age 
of onset (Rang and Dale, 2007). AD is characterized by a  
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common functional disorder of the brain of humans (Kang 
et al., 1987). The dementia is mainly due to AD in 60% 
and vascular reasons (VaD) in 20% (Beghi

 
et al., 2004). 

In addition to marked neuronal loss, AD is pathologically 
characterized by deposition of β-amyloid (Aβ) in senile 
plaques (SPs) extracellularly and development of 
intracellular NFTs (Garga et al., 2011). The NFTs are 
primarily composed of hyperphosphorylated tau protein 
associated with microtubules (Rademakers et al., 2005; 
Sun et al., 2009; Liu et al., 2006). Normally, the formation 
of the neurons in the hippocampus of mammals occur 
throughout life and is  vital for the  functioning of the brain 
while in the persons having the disease like AD, PD, and 
epilepsy, the capability of hippocampus to form neurons 
is decreased (Albert et al., 2009; Crews et al., 2010). 
Neurogenesis is the process in which the division of 
neural stem cells (NSCs) and progenitor cells into 
daughter cells occur  which   migrate  to  other  sites  and  



 
 
 
 
gives rise to new neurons (Jessberger et al., 2009). Cdk5 
is involved in the movement of newly born neurons of the 
granule cell layer (GCL). Cdk5 also takes part in exact 
targeting of dendrites from newly born granule cells (GC) 
into the molecular layer (ML) of the dentate gyrus (DG). 
Throughout life the newly born neurons are added to 
dentate circuitry, with the hippocampal neural progenitor 
cells NPCs (Albert et al., 2009). Permanent production of 
new neurons is vital for brain function. The newly formed 
cells play two distinct roles, firstly the new neurons take 
part in maintenance of tissue in the olfactory system and 
secondly they are essential for the development of 
memory like associative and spatial memory in the 
hippocampus (Imayoshi et al., 2008). The role of cdk5 in 
guiding new neurons to their proper place has been 
discovered, which has increased the understanding of 
adult neurogenesis, improved understanding of its 
involvement in cognitive function and brightened the 
expectations for brain cell therapy (Albert et al., 2009). 
Also, scarcity in hippocampal neurogenesis has been 
related with a number of neurological diseases, including 
AD, epilepsy, major depressions (Albert et al., 2009) and 
neuropsychiatric illnesses, such as addiction (Hawasli et 
al., 2009). The abnormal insoluble fibrous proteins are 
deposited with different proportion inside brain. The 
localization of fibrous insoluble proteins inside the brain is 
a characteristic features of several disorders, including 
AD, PD and Lewy body dementia (LBD) (Mierczak

 
et al., 

2011). 
 
 
PATHOGENESIS OF AD 
 
AD is a progressive and slowly occurring disorder which 
degrades the central nervous system (CNS) character-
rized by impairment of cognitive function and appearance 
of neuropathological characters, including amyloid 
plaques. These amyloid plaques are composed of Aβ, 
NFT and linked to cholinergic neuronal loss in selective 
brain parts (Nakdooka et al., 2010). The major compo-
nent of amyloid plaques is Aβ, which is considered as a 
key molecule in AD pathogenesis (Uetsuki et al., 1999). 
Inflammation is the third significant pathological feature in 
AD, apart from  NFTs and amyloid plaques (Muyllaert et 
al., 2008). The oxidative stress hypothesis of AD patho-
genesis is based on Aβ peptide, which initiates oxidative 
stress in both in vitro and in vivo studies (Sultana et al., 
2009). In a normal physiological pathway, amyloid 
precursor protein (APP) is converted and secreted as 
amyloid precursor protein (sAPP) which is responsible for 
the function of growth factor. However, in amyloidogenic 
pathway, the mutation in APP and presenilin increases 
the formation of Aβ40 and Aβ42 (Chen et al., 2012). They 
form aggregates due to mutation in lipid transport protein, 
that is ApolipoproteinE4 (ApoE4) gene. The production of 
Aβ40 usually occurs in small amounts, while Aβ42 is 
produced in higher  amounts  as  a  result  of  the  genetic 
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genetic mutations mentioned above (Mann et al., 2011). 
Both Aβ40 and Aβ42 proteins aggregate to form amyloid 
plaques, but Aβ42 shows a stronger affinity than Aβ40 to 
do so, and appears to be the main cause in amyloid 
formation (Rang et al., 2007). The Aβ40 and Aβ 42 are 
formed by proteolytic cleavage of a much larger (770 
amino acid) APP (Figure 1). The Aβ accumulation is the 
cause of neurodegeneration, but whether the damage is 
done by soluble Aβ monomers or by amyloid plaques 
remains uncertain. Appearance of Alzheimer mutations in 
transgenic animal results in development of plaque and 
neurodegeneration (Rang et al., 2007). The aggregation 
of Aβ40 and Aβ42 also activate the kinase that causes 
the phosphorylation of Tau protein (Figure 1). Tau, a 
usual part of neurons, is intracellular microtubules binding 
protein (Chatterjee et al., 2009). In AD and other tauo-
pathies, phosphorylated tau protein is deposited within 
the cell as paired helical filaments which have typical 
microscopic features. After the destruction of cells, these 
filaments are combined as extracellular neurofibrillary 
tangles (Crews and Masliah, 2010). It may be possible, 
but not proven, that the phosphorylation of tau protein is 
improved by the presence of Aβ plaques. However, it is 
not sure that hyperphosphorylation and intracellular 
deposition of tau harm the cells. Although it is known that 
tau phosphorylation damage fast axonal transport, which 
depends on microtubules (Rang et al., 2007). Nineteen 
specific amino acid sequences throughout its 441 amino 
acids have been recognized in tau, for its phosphor-
rylation, (Augustinack et al., 2001) associated with paired 
helical filaments. CDK5 has been considered a main tau 
kinase that takes part in tau pathology (Alvarez et al., 
1999), the other most important tau kinases that takes 
part in tau pathologies are GSK3α, GSK3β and Casein 
kinase 1α (CK1α) (Martin et al., 2013). 
 
 
NEURONAL CELL CYCLE IN PATHOGENESIS OF AD 
 
There are four main successive phases in a eukaryotic 
cell cycle: G1 phase (first gap), S phase (DNA synthesis), 
G2 phase (second gap) and M phase (mitosis) (Figure 2). 
Change between the various phases and consecutive 
progression through the mitotic cycle is modulated by a 
group of protein kinases whose activity is essential to this 
process. The cyclin-dependent kinase (CDKs) requires 
the binding of their activating partner cyclins; whose 
levels of appearance vary throughout the cycle. Two im-
portant checkpoints (G1/S and G2/M) direct CDKs activity 
and manage the order and timing of cell-cycle transitions 
to ensure that DNA replication and chromosome segre-
gation are finished correctly before allowing additional 
progress throughout the cycle (Currais et al., 2009). 
Neurons are born throughout the entire life in limited 
brain areas of mammals, including humans (Jessberger 
et al., 2009). After the formation of a neuron, it loses the 
capability for cell division  and  differentiation, contributing
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Figure 1. Processing of APP in Pathogenesis of AD. The main 'physiological' path gives rise to sAPP that exerts 
a number of trophic functions. Cleavage of APP at different places gives rise to Aβ, the major form typically being 
Aβ40, which is faintly amyloidogenic. Mutations in APP or presenilins raise the amount of APP, which is spoiled 
via the amyloidogenic pathway, and also raise the proportion changed to the much more powerfully 
amyloidogenic form Aβ42. Aβ aggregation is occurred by mutations in the apoE4 gene followed by Aggregation of 
Aβ and forms amyoloid plaque, which causes neuronal death. Aβ aggregation activates the kinase which 
phosphorylates tau to phosphorylated tau, ultimately form neurofibrillary tangles and cause neuronal death. The 
figure represents the APP’ role in AD  
Source: Rang and Dale (1999). 

 
 
 

individually to the plasticity of the basic wiring model that 
defines a neuronal system. The conservation of this 
pattern is essential for the overall generation and storage 
of memories, as well as for gaining of other ad-vanced 
brain skills. Some researcher have reported that neuronal 
apoptosis is accompanied by the appearance of cell cycle 
markers. Mainly, cyclins and cyclin-dependent kinases 
(CDKs) take part in cell cycle machinery (Figure 2). The 
cell cycle may be up regulated after exposure to severe 
conditions, like oxidative stress and trophic factor 
deficiency (Currais et al., 2009; Zhang et al., 2008). 
 
 
THE CDK FAMILY 
 
The 9 small serine/threonine kinases take part in the 
formation of Cdk family. They are numbered based on 
their discovery, that is from Cdk1 to Cdk9. The biological 
functions of Cdks are many which ranges from mitosis to 
the regulation of cellular processes (Cardone et al., 2010). 

2010). Cdks are involved in functions like differentiation, 
senescence and programmed cell death, via modification 
of gene transcription. In proliferating cells, the tumor 
production is mainly linked with Cdk dysregulation 
(Zafonte et al., 2000). The disappearance or inhibition of 
neuronal precursors takes place with terminal 
differentiation (Okano et al., 1993). Normally, in order to 
be activated, Cdks require connecting with regulatory 
subunits named cyclins. Although specific Cdks are 
linked to various phases of the cell cycle, sometimes their 
activities overlap, depending on the association with 
different cyclins. Cdk action can also be regulated by two 
other distinct mechanisms. A set of phosphorylation and 
dephosphorylation actions make ready Cdks for 
activation by regulatory subunits, as in the case of the 
Cdk4/cyclin D1 complex, which are activated only after 
phosphorylation by the Cdk-activating kinase (CAK).  

Additionally, a family of Cdk-inhibitory subunits (CKIs) 
can   bind to it and inactivate the Cdk–cyclin  complex 
(Lopes and Agostinho, 2011). 
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Figure 2. Schematic representation of the eukaryotic cell cycle – Cyclin A-CDK2 phosphorylates a 
variety of substrates throughout S phase, allowing DNA replication. When S phase completed, DNA 
replication ceases and then cells enter the G2 phase of the cell cycle. Then CDK2 is replaced by CDK1 
that linked with cyclin A and control the phosphorylation of G2 and M phases specific proteins together 
with cyclin B-CDK1, that appears in late G2 phase and triggers the G2/M transition. Cyclin A is ruined 
and the cycle is reorganized, re-establishing the condition for mitogenic cues to provoke D-type cyclins 
for the next cell cycle. In M phase, cells physically divide and originate two separate daughter cells 
Source: Currais et al. (2009). 

 
 
 

CDK5 IN CELL CYCLE REGULATION 
 
Initially, it was said that Cdk5 had no role in the cell cycle 
(Jessberger et al., 2009). In an abnormal position, the 
expression of Cdk5 does not encourage development of 
a cell cycle in yeast or in mammalian cells (Jessberger et 
al., 2009). It can regulate several cell cycle proteins, 
mostly, phosphorylating retinoblastoma (Rb) protein, 
which is an important step in cell cycle exit. The absence 
of Cdk5 activity in dividing cells in the CNS indicates that 
it does not have a typical role in cell cycle regulation, 
which is clearly a significant step in embryonic and also in 
adult neurogenesis (Jessberger et al., 2009). In the cell 
cycle, initially the phosphorylation of the Rb protein by 
Cdk4/cyclin D1 and Cdk6/ cyclin D1-3 and further by 
Cdk2/cyclin E takes place. A complex is formed by Rb, 
E2F-1, histone deacetylases (HDAC) between other 
proteins, at the G1/S check point and blocks’ protein 
transcription and in this way arrest- the cell cycle 
(Vermeulen et al., 2003). Due to phosphorylation, Rb be-
comes free from this transcription-blocking complex and 
allows the transcription of S phase-associated proteins. 
Sometimes strong stimuli, including excitotoxi- city, 
oxidative stress, ischemia or DNA damage forces the ma-
ture neurons to leave a steady G0 state and re-enter the 
cell cycle (Bonda et al., 2011; Kim et al., 2009; Klein et 
al., 2003). Cell cycle re-entry has been observed in 
different neurodegenerative conditionslike  AD,  PD  and 

amyotrophic lateral sclerosis (ALS) or stroke (Raina AK 
et al., 2004; Currais et al., 2009; Wang et al., 2009). In 
these neurons, the G1 phase is directly related to the re-
expression of a cell cycle Cdks, namely Cdk2, 4 and 6. A 
very important role is played by Rb protein in the 
unsuccessful cell cycle re-entry. The phosphorylation/ 
inactivation of Rb causes recycling neurons to rise above 
the G1/S checkpoint and DNA synthesis will occur. 
However, these neurons never reach to the M phase and 
degenerate by apoptosis anywhere between the S and 
the G2 phases (Lopes and Agostinho, 2011). 
 
 
LOSS OF NEURONAL CELL CYCLE CONTROL IN AD 
 
Exposure to stress may cause an unsuccessful cell cycle 
in neurons. AD brain is characterized by the presence of 
cyclins, CDKs and additional cell cycle proteins (Currais 
et al., 2009). It is well known that oxidative stress and 
free radicals play role in pathogenesis of AD. The state of 
cell cycle is also controlled by free radicals, free radical 
generators and antioxidant functions. The accumulation 
of p35 in AD inhibits the cell cycle at G1 phase of cell 
cycle, which is secondary to oxidative stress. The 
mitochondria are powerful sources of free radicals and 
redox dysfunction. Therefore an increase in the number 
of mitochondria in the same neurons show cell cycle 
related abnormalities  and  undergo successive  oxidative  
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harm and cell death in AD. Thus, when the mitochondrial 
mass is highest, the cell cycle arrest at a point, poses an 
elevated, chronic, oxidative damage to the cell (Raina et 
al., 2004). 
 
 
THE NEUROGENESIS PROCESS 
 
In the adult brain, new neurons are frequently being 
generated in controlled areas of the mammalian brain, 
from endogenous pools of neural stem cells during life 
(Lledo et al., 2006). The process of neurogenesis can be 
divided into three different phases in the dentate gyrus in 
mammals. First, neural precursor cells that are located at 
the border between the hilus, and the granule cell layer 
(GCL) undergo cell division. Second, newborn cells start 
to migrate into the GCL and extend neuronal processes. 
Third, the cells add into the GCL and begin to express 
the neuronal marker neuron specific enolase (Kuhn et al., 
1996). The dentate gyrus (DG) is a precise brain region 
to which newly formed neurons are added during 
adulthood (McDonald and Wojtowicz, 2005). 
 
 
THE CDK5 
 
Cdk5 is a most versatile kinase, and its activity is not 
stimulated by an associated cyclin but is activated by its 
specific activators, p35 and p39 (Albert et al., 2009; Valin 
et al., 2009; Kanungo et al., 2009; Pareek et al., 2010; 
Changa et al., 2011). Cdk5 is considered as a multi-
functional kinase whose activity is limited to the nervous 
and muscular system (Pareek et al., 2010; Zheng et al., 
2010). Cdk5 is a serine/threonine kinase which is 
governed by proline (Pareek et al., 2007; Hawasli et al., 
2009; Takahashi et al., 2010; Hisanaga et al., 2010; Arif 
et al., 2011). Unlike the other kinases, the cell cycle is not 
directly controlled with this serine–threonine kinase. Cdk5 
can phosphorylate the Rb proteins, which have a major 
intervenient role in cell cycle development. Like the other 
members of this group, Cdk5 requires to combine with a 
regulatory subunit for its activation. Although, Cdk5 does 
not combine with cyclins (Zhang et al., 2012), it combines 
with the neuron specific activators p35 and p39 which are 
structurally similar to cyclins (Dhavan et al., 2002; Crews 
et al., 2011). Further, Cdk5 does not require any 
additional phosphorylation for its activation. However, the 
phosphorylation at tyrosine 15 (Tyr15) by enzyme 
tyrosine kinases-Src can increase the action of this 
protein (Cancino et al., 2011). The enzymatic activity of 
Cdk5 is more important in the CNS, since the 
appearance of this kinase and its activators is maximum 
in postmitotic neurons (Lopes and Agostinho, 2011; 
Kusakawa et al., 2000). Cdk5 activators p35 and p39 are 
degraded easily. The levels of these proteins are 
governed by their synthesis and degradation, and the 
appearance  of   p35   is  exposed   to  be   induced by an  

 
 
 
 
extracellular stimulus. Neurotrophic factors, like nerve 
growth factor (NGF) also cause an enhancement of p35 
appearance. The phosphorylation condition of p35 as 
well affects the membrane association of the Cdk5/p35 
complex. The communication of this complex with the 
membrane is a possible regulatory method of Cdk5. It 
has been shown that when the Cdk5/p35 complex binds 
with membrane; it becomes inactive, while the complex in 
the free form in the cytoplasm is the active form (Lopes 
and Agostinho, 2011). Cdk5 appearance was found 
mainly in the brain, and Cdk5 activity, found only in the 
nervous tissues (Ohshima et al., 1996). Cdk5-null mu-
tants indicate a more accurate disturbance in the cerebral 
cortex, cerebellum and hippocampus (Ko et al., 2001). 
 
 
ROLE OF CDK5 IN NEUROBIOLOGICAL PROCESS 
 
Normally, the Cdk5 is essential for proper movement of 
nerve cells, synapse formation, and survival of neuronal 
cells. However, the severe neurodegenerative disorders 
like AD, ALS, PD and HD are mainly linked with hyper-
activation of Cdk5 (Pareek et al., 2010; Shukla et al., 
2011). Cdk5 takes part in different neurobiological pro-
cesses; such as homeostatic synaptic plasticity, 
dopamine signaling, neuronal degeneration, and learning 
and memory. Cdk5 has also been concerned in normal 
adult neurophysiology, and its inhibition in the 
hippocampus leads to marked disturbance in associative 
learning and memory (Albert et al., 2009). Cdk5 plays a 
significant role in distinct aspects of cortical growth, which 
includes neuronal migration, neurite development, and 
axonal path finding. Different from other Cdks which are 
major regulators of cell-cycle progression, Cdk5 mainly 
causes phosphorylation of tau proteins in neurons. If the 
Cdk5 gene is deleted from neurons of the forebrain, by 
expression of cre-recombinase (Type 1 Topoisomerase), 
then this approach leads to generation of viable mice with 
decreased expression of Cdk5 in the forebrain. The 
expression of cre-recombinase is governed by the 
supporter of the CaMKII (calcium/calmodulin dependent 
kinase II) (Takahashi et al., 2010). It can be suggested 
that when neuronal Cdk5 from the developing forebrain is 
removed, it may result in the complex neurological loss, 
growth retardation, and premature mortality in mice 
(Takahashi et al., 2010). Recently, Cdk5-p35 has been 
linked with the initiation of disease in nonneuronal 
lineages for example malignant alteration in cancer; 
stimulation of inflammatory pain, and other pain mediated 
disorders. Cdk5–p35 activity has been, reported in 
human leukemic cell and supposed to play a role in 
monocytic differentiation (Pareek et al., 2010). The 
Cdk5–p35 complex is important for activation of T cell 
and for the initiation of experimental autoimmune ence-
phalomyelitis (EAE) (Pareek et al., 2010). In the absence 
of Cdk5 mice show perinatal lethality due to having ab-
normal positioning of neurons in the brain (Hisanaga  and 
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(Hisanaga and Endo, 2010). Cdk5 phosphorylation of tau 
inhibits its binding to microtubules and promotes 
microtubule disassembly. The Cdk5 phosphorylates tau 
at two major sites like Thr231 and Ser262, which are 
followed by GSK-3 that prevents binding of tau to MT 
(Sengupta et al., 2006). The surface expression of NMDA 
receptors (NMDARs) regulated by Cdk5, are the most 
important group of ionotropic glutamate receptors, which 
contains various heteromeric complexes like NR1, NR2, 
and NR3 subunits. These NMDARs are also concerned 
in development of neurons, learning and memory, 
synaptic plasticity and addiction in addition to psychiatric 
and neurodegenerative disorders (Zhang et al., 2008; Li 
et al., 2001). 
 
 

CDK5 IN NEURODEGENERATION 
 
CDK5 dysregulation 
 
Dysregulation of this Cdk5 is responsible for the 
neurodegenerative processes of several diseases, like 
AD, PD, prion-related encephalopathies (PRE), 
amyotrophic lateral sclerosis (ALS) or acute neuronal 
injury, which are produced by ischemia or stroke (Figure 
3). The activity of Cdk5 increases in various 
neurodegenerative disorders like AD, PD, PRE, ALS, etc. 
(Lopes et al., 2009). 
 
 
Role of Cdk5 in AD 
 
AD brain is identified by three main markers, that is 
amyloid plaque deposition, neurofibrillary tangle 
production and severe selective neuronal loss. Cdk5 act 
as an attractive candidate for preventing Aβ toxicity, tau 
pathology and neurodegeneration. In AD affected brains 
of human, the activity of Cdk5 increases appreciably as 
compared with same age control brains of human 
(Tandon et al.,2003). In AD brains, the levels of p25 and 
activated calpain are increased (Tandon et al., 2003; 
Muyllaert et al., 2008). 
 
 
Cdk5 in Aβ generation 
 
All the mutations which cause AD are situated either in 
the APP gene or in the genes encoding presenilins 1 
(PS1) and 2 (PS2). PS1 and PS2 are the two proteins 

which are part of the -secretase (-sec) complex in which 
one of the secretases is responsible for APP cleavage to 
Aβ. Further it is also proved that Aβ can activate Cdk5 
dysregulation (Lopes and Agostinho, 2011). In vivo, study 
of Aβ established that the production of Aβ involves 
enhancing intraneuronal calcium levels, that mainly 
cause calpain activation and enhancement of Cdk5 
activity because of the cleavage of p35 to p25 (Dolan and 
Johnson, 2010). 
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Cdk5 in Tau pathology 
 
Tau is associated with proteins known as microtubule 
associated proteins (MAP) so tau is referred as a 
member of MAP family (Sergeant et al., 2004). The main 
function of tau proteins are binding and stabilization of 
the cellular microtubular network (Mandelkow and 
Mandelkow, 1995). So, tau is necessary to vital 
processes like axonal transport (Torroja et al., 1999), 
cytoskeletal organization or mitotic division (Preuss and 
Mandelkow, 1998). Phosphorylation of tau protein is con-
trolled by numerous kinases, mainly glycogen synthase 
kinase 3β (GSK-3β), cAMP-dependent protein kinase 
(PKA), Cdk5 and c-Abelson (c-Abl) kinase or Abl-related 
gene (Arg) kinase (Martin et al., 2013). GSK-3β is re-
ferred as tau kinase І and Cdk5 is referred as tau kinase 
ІІ (Liu et al., 2006). Tau is a phosphoprotein and the fetal 
brain tau is more heavily phosphorylated than adult brain 
tau (Goedert et al., 1993). It is confirmed that any change 
in hyper phosphorylation of tau is critical to neurofibrillary 
degeneration (Liu et al., 2006). Tau hyper phosphory-
lation may be associated with decrease in phosphatase 
activity while the tau phosphorylation is associated with 
an increase in protein kinase activity (Buee et al., 2000).  
GSK-3α, GSK-3β and Cdk-5 are the members of the 
MAP kinase family and GSK-3β-mediates the phosphory-
lation of tau and reduce its affinity for microtubules 
(Wagner et al., 1996). 
 
 
Role of CDK5 in Parkinson disease 
 
PD is the second most common neurodegenerative 
disease, which is due to loss of dopamine neurons 
(Cookson, 2009). The dysfunctioning of the dopaminergic 
and glutamatergic neurotransmitter systems results in 
Parkinson’s disease. In the striatum, CDK5 decreases 
the postsynaptic release of dopamine. CDK5 inhibitors 
increase evoked dopamine release. The glutamatergic 
transmission is also controlled by the presynaptic action 
of CDK5. In fact, CDK5 inhibition increases the activity 
and phosphorylation of N-methyl-D-aspartate (NMDA) 
receptors. On other hand, these effects are reduced by 
dopamine D1 receptor antagonist.  Inhibitors of CDK5 
enhance dopaminergic transmission at both presynaptic 
and postsynaptic locations. The ability of CDK5 inhibitors 
to prevent degeneration of dopaminergic neurons, 
indicate that the compounds of this class could potentially 
be used as a new treatment for disorders connected with 
dopamine deficiency, such as Parkinson’s disease 
(Chergui et al., 2004). 
 
 

ROLE OF CDK5 IN AMYOTROPHIC LATERAL 
SCLEROSIS 

 
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 
disease, an adult-onset disease. It leads to selective  loss
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Figure 3. Dysregulation of CDK5 through activation of Calpains and hyperphosphorylation of Tau 
protein.The activator proteins like p35 and p39 are broken in the process of Cdk5 dysregulation by 
calpains. Calpains are the group of Ca

2+
 activated cytosolic proteases. The production of p25 and p29 

occurs through the cleavage of p35 and p39 by calpains, respectively. These reduced Cdk5 activators 
show different features from their original precursors. The half-life of p35 and p39 are significantly shorter, 
around the 3-fold than p25 and p29 and the binding affinity of these newly formed activators to the kinase 
is stronger than previous activators. Finally the Cdk5 activity increases as compared to Cdk5/p35 (or p39) 
.The formation of Cdk5/p25 complex are self regulated.  After dysregulation, Cdk5 hyperphosphorylates 
the cytoskeleton protein tau, then this cause the release of tau protein from the microtubules and 
gathering in the form of cytoplasmic filaments and tangles occurs (Martin et al., 2013; Zhang et al., 2008). 

 
 
 

of motor neurons in the spinal cord, brainstem and 
cerebral cortex, ultimately resulting in paralysis and death 
over 1 to five year time course. Approximately, 10% of 
ALS patients are familial cases, 20% of which are caused 
by missense mutations in the enzyme Cu/Zn superoxide 
dismutase 1 (SOD1) (Patzke and Tsai, 2002). Nguyen et 
al. (2001) developed a mechanism to explain the degene-
ration of motor neurons caused by mutant SOD1. For this 
purpose  SOD1

G37R
, mice were used; they observed 

myslocalization and hyperactivation of the Ser/Thr kinase 
cdk5. The increase in the p25/p35 ratio in SOD1

G37R
 mice 

indicates an up regulation of calpain activity, suggestive 
of elevated Ca

2+
 levels in the affected cells. Motor 

neurons expressing mutant SOD1 are more susceptible 
to glutamate-mediated cell death than are wild-type 
neurons (Patzke and Tsai, 2002; Nguyen et al., 2001). 
The increased Cdk5 activity in SOD1

G37R
 mice was 

associated with hyper phosphorylation of tau and NF 
proteins, which  are  Cdk5  cytoskeletal  substrates.   The  

hyperphosphorylation of these proteins  has been 
associated with Alzheimer’s disease (Nguyen et al., 
2001). 
 
 
ACTIVATION OF CDK-5 
 
The activation of Cdk5 occurs with tunable activation 
threshold-p25 (TAT-p25) which is Temporal Activator of 
Cdk5 in Primary Neurons. TAT-p25 is formed by fusion of 
TAT sequence with p25, which cause temporal activation 
of Cdk5, which is not dependent on other stimuli (Sun et 
al., 2008). 
 
 
CDK5 IN DIFFERENT PATHWAY OF 
NEURODEGENERATION 
 
The Cdk5 dysregulation depends  on  the  disturbance  of  



 
 
 
 
intracellular calcium homeostasis. Normally, disturbance 
of intracellular calcium homeostasis is caused by an 
extreme activation of ionotropic glutamate receptors 
(Lopes and Agostinho, 2011). The glutamate receptor 
over activation occurs due to various triggering stimuli. 
Over activation of Cdk5 results in too many phosphory-
lation of the cytoskeleton protein tau, which correlates 
with the synaptic loss and production of neurofibrillary 
tangles in AD, ultimate results are neuronal death 
(Kerokoski et al., 2002). Cdk5 also phosphorylates α-
synuclein and parkin, two proteins, which take part in the 
pathogenesis of PD (Avraham et al., 2007; Duka et al., 
2006). Cdk5 furthermore, regulates an event that causes 
synaptic dysfunction via the phosphorylation of 
Postsynaptic density-95 (PSD-95) which results in the 
internalization and degradation of NMDA receptors 
(Roselli et al., 2005). Caspase-3 activation also results in 
neuronal death (Samuel et al., 2007). The capacity of the 
cells to bear oxidative stress is also affected by Cdk5 
dysregulation, which is confirmed by the inactivation of 
the peroxidase Prx2, via Cdk5 phosphorylation, in PD 
and ALS (Shukla et al., 2011, Rashidian et al., 2009). All 
these events clearly indicate that Cdk5 dysregulation is a 
major step in the neurodegeneration pathways of various 
neurological disorders (Shukla et al., 2011). 
 

 
RECENT ADVANCES AND FUTURE ASPECTS OF 
THE CDK5 IN AD 

 
Cdk5 is an important target for CNS disease. It may 
become possible that by inhibition of Cdk5, the phosphor-
rylation of tau and formation of neurofibrillary tangles is 
prevented in both AD and tauopathies. There are various 
potent Cdk5 chemical inhibitors discovered, but they  
mostly compete with the ATP binding site which may 
cause lack of specificity in other Cdks and other ATP de-
pendent kinases (Glicksman et al., 2007). It is assumed 
that specific inhibitors may inhibit the interaction of tau 
and Cdk5, which binds to a site other than ATP binding 
site (Glicksman et al., 2007). The calpain also convert the 
Cdk5-p39 to Cdk5-p25, which is more active than Cdk5-
p39 (Zhang et al., 2008). Therefore, it may be possible to 
treat the AD by inhibition of calpains through calpain inhi-
bitors, which inhibit the change of Cdk5-p39 to Cdk5-p25. 
Very recently three drugs have been developed by two 
companies, i.e.; cysteyl-leucyl-argininal (Trade name: 
Neurodur) from CepTor Corp., aminocarnityl-glutaryl-
leucyl-argininal (Trade name: Myodur) from CepTor 
Corp., in the USA and BDA- 410 from Mitsubishi-Tokyo 
Pharmaceuticals in Japan (Rosa et al., 2002). 
 
 

DISADVANTAGES OF CDK5 ACTIVITY 
 
It is found that the overactive Cdk5 cause neuronal death 
under oxidative stress from a variety of sources, such as 
amyloid-β-peptide   and   the   increase  of  intra-neuronal  
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calcium level. It is due to p25, which is a more powerful 
activator of Cdk5 as compared to p35 and causes Cdk5 
over activation with neuronal apoptosis (Lin, 2009). 
 
 

CONCLUSION 
 

In this review, it is concluded that the Cdk5 plays a vital 
role in the brain development through its involvement in 
the processes of neuronal migration. This review not only 
focused on development of AD, PD, and ALS as a result 
of Cdk5 dysregulation, but also framed the role of Cdk5 in 
other neurodegenerative pathologies, such as prion 
encephalopathies or PD. Overactivation and myslocaliza- 
tion of Cdk5 due to Ca

2+ 
induced calpain activation me-

diates tau hyperphosphorylation and apoptotic neuronal 
death. In different neurodegenerative disorders, it may be 
assumed that Cdk5 can be a superior pharmacological 
target to prevent these pathologies. The normal activity of 
Cdk5 is essential to provide neuropro- tection. It includes 
cognition and memory, neuronal survival, neuronal 
development and migration, etc. For these purposes, two 
main strategies have been used, first is direct inhibition 
by using Cdk5 inhibitors to prevent over activation of 
Cdk5 and second is indirect action by preventing the 
excessive production of the pathogenesis-associated 
activator p25 by using the calpain inhibitors. 

Therefore, finally we assume that over activation of 
Cdk5 and calpains enhance neurodegeneration and can 
become a major cause of memory loss. However, the 
inhibition of Cdk5 overactivation and calpains through 
specific inhibitors prevent neurodegeneration and help in 
memory development. 
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