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The determination of bioequivalence is very important in the pharmaceutical industries because the 
regulatory agencies like the Food and Drug Administration (FDA) allow a generic drug to be marketed 
only if its manufacturer can demonstrate that the generic product is bioequivalent to the brand-name 
product. Up to date, there is a lack of widely accepted statistical procedure for assessing population 
bioequivalence. We propose multilevel models (MLMs) for evaluating and estimating parameters to 
assess population bioequivalence (PBE), and compare statistical properties of PBE estimators between 
MLMs and current approaches recommended by the FDA-the method of moment (MOM) and REML. The 
approach developed is illustrated using a real data set from the FDA. Statistical properties of MLM 
estimators are further explored using simulation studies as compared with MOM and restricted 
maximum likelihood (REML) estimators. The performance of MLM appeared to be much comparable to 
the existing REML procedure. The results suggest that MLM estimators that are fully comparable with 
REML estimators can be an adequate approach for assessing PBE. The MLMs approach proposed in 
the study provides an alternative and yet more flexible and powerful method than existing methods in 
assessing bioequivalence (BE) for complex study designs and data structures.  
 
Key words: Population bioequivalence, multilevel models, simulation, estimation procedure, restricted iterative 
generalized least square (RIGLS), restricted maximum likelihood (REML), method of moments (MOM), food 
and drug administration (FDA). 

 
 
INTRODUCTION 
 
The goal of a bioequivalence study is to show that two 
formulations of a drug have similar bioavailability (Ashby, 
2006). The determination of bioequivalence is very 
important in the pharmaceutical industries because the 
regulatory agencies like the United States Food and Drug 
Administration (FDA) allow a generic drug to be marketed 
only if its manufacturer can demonstrate that  the  generic 

product is bioequivalent to the brand-name product. 
Thus, the design, performance and evaluation of 
bioequivalence studies have received major attention 
among the health authorities and pharmaceutical 
industry, as well as, statisticians (Ashby, 2006; Blume and 
Midha, 1993). 

During the last few decades, the assessment of average
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bioequivalence (ABE), which emphasizes comparing the 
means of two drug formulations has been well 
established (Ashby, 2006; Chen et al., 2000, 2001). The 
major concern was then of course how population 
bioequivalence (PBE) and individual bioequivalence (IBE) 
should be statistically assessed (Chow and Liu, 2008; 
Davit et al., 2008). In contrast to ABE, PBE requires 
equivalence on both the averages as well as variances, 
whereas IBE not only requires equivalence on similarity 
of averages and variances, but also on the homogeneity 
of subject-by-formulation interaction. In 2001, The FDA 
guidance recommended the use of the method of 
moments (MOM) for variance component estimation, as 
well as, the restricted maximum likelihood (REML) 
estimation of data including random missing records 
based on a two-sequence, four-period (2 × 4) cross-over 
design (Carrasco and Jover, 2003). 

During the last decade, although, ABE is now a 
relatively matured field and is theoretically well under-
stood, there is still a lack of widely accepted statistical 
procedure for assessing PBE. Many researchers have 
argued that the current FDA's statistical procedures are 
unsatisfactory in terms of their statistical properties 
(Endrenyi et al., 2003; FDA, 2001, 2003; Ghosh and 
Gönen, 2008; Ghosh and Ntzoufras, 2005). In addition, 
complete data sets are not common in bioequivalence 
studies, and MOM estimation is known to be limited in 
such situations. Furthermore, little information regarding 
the statistical test procedure is provided with the 
exception of 2 × 4 cross-over design, while for PBE and 
IBE, McNally et al. (2003) examined the generalized P-
value approach for making inferences concerning the 
FDA-recommended PBE and IBE criteria. Carrasco et al. 
(2003) introduced the structural equation model (SEM) 
approach for parameter estimation and constructing 
criterion to assess IBE. Dragalin et al. (2003) proposed 
the Kullback–Leibler divergence (KLD) approach for 
parameter estimation and defining criterion in evaluating 
PBE and IBE. In 2005, Bayesian methods of assessing 
IBE and PBE using the FDA criteria were proposed 
(Ghosh and Ntzoufras, 2005). However, none of these 
methods are robust and sensitive enough to be accepted 
as the standard approach by current FDA guidance. 
Moreover, since bioequivalence evaluations are often 
based on the logarithmic transformation of AUC and Cmax, 
the FDA consider two drugs to be bioequivalent only if 
they are similar in both AUC and Cmax. It would be better 
to consider a test which included several endpoints 
together. However, none of the proposed methods 
including MOM, REML, SEM or KLD gave examples in 
assessing ABE, PBE and IBE with multiple endpoints. 
Research in this area is almost blank. 

The theory by Harvey (2010) suggested that bioequi-
valence is a natural field to be assessed using MLMs. In 
principle MLMs can easily disentangle multiple variance 
components as well as covariance required by PBE 
assessment. To our knowledge, there was no thoroughly 
study discussing its applications in PBE studies. 
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This paper serves two purposes: (1) to introduce 
multilevel models using restricted iterative generalized 
least square (RIGLS) algorithm in estimating parameters to 
assess PBE, and (2) to compare the statistical properties 
of PBE estimators between multilevel models and two 
current approaches recommended by FDA. Our concern 
is not on the inference of the PBE criterion but merely 
estimating the components in the current FDA-proposed 
PBE criterion. 
 
 
MATERIALS AND METHODS 
 
Current methods for PBE 

 
The 2001 FDA guidance proposed the following aggregated, scaled 
moment-based one-sided null hypotheses as:  
 

   

Note that 
 
and , 

 
and 

 
are population means and 

variances in the logarithm scale. For convenience, we define 

 as mean difference,  as total variance 

of T,  as total variance of the R.  and  are 

between-subject variances,  and  are within-subject 
variances respectively for the T and R. The expression is linearised 
as:  
 

  
 

When
  

or 

,
 

. 
is the bioequivalent limit with a recommended value of 1.7448. If 
the upper bound of the 95% one-sided confidence interval of 
criterion for both ln (AUC) and ln (Cmax) are below zero, PBE can be 
claimed. The measure of PBE is a mixture of the mean and 
variance of the ln (AUC) and the ln (Cmax). In the guidance, FDA 
recommended MOM to estimate variance component for complete 
data, as well as, REML estimation for data including missing 
records. After the estimation of the mean difference and the 
variances has been completed, 95% one-sided upper confidence 
bound for a linearised form of the PBE criterion can be obtained. 
FDA indicated that the method for the upper confidence bound 
should be consistent with the method used for estimating the 
variances. 
 
 
Multilevel models (MLMs)  
 

Models and notations  

 
When measurements are repeated on the same subjects, as the 
data from 2 × 4 replicated cross-over design, a 2-level hierarchical 
structure is established. The measurement replicates are regarded 
as level 1 units, and subjects as level 2 units. Therefore, multilevel 
models (MLMs), proposed by Harvey Goldstein could be a powerful 
tool to analyze BE data. For the j

th
 subject at i

th
 replicate, we  can  fit 
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Table 1. Variance components for PBE criteria in multilevel model. 
 

Parameter Drug R Drug T 

Between-subject  (Level 2) 
2 2

0
( )

u BR
σ σ  

2 2

0 01 1
2

u u u
σ σ σ+ + 2( )

BT
σ  

Within-subject   (Level 1) 
2 2

4
( )

e WR
σ σ  

2 2

5
( )
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σ σ  

Total 
2

R
σ  

2

T
σ  

 
 
a two-level random slope model in which factors for sequence and period are included, and the variances for T and R groups are defined at 
level 1 as: 

 
 
 
X1 = 1 for drug T and 0 for drug R. 
Z4ij = 1 for drug R and 0 for drug T. 
Z5ij = 1 for drug T and 0 for drug R. 
 
The intercept term is denoted by β0 which estimates the mean of 

drug R, and the slope  estimates the difference of means 

between T and R, (that is, ). The ‘βs’ are 
always referred to as “fixed” parameters of the model, such as 
period and sequence effects. What makes the two-level model 
different from standard linear regression model are the additional 
random effect, ‘us’ and ‘es’. The ‘us’ parameters denote the residual 
in level 2, and the ‘es’ denote the residual in level 1.  

 
 
Variance components for PBE criteria 

 
To obtain variance components of PBE as shown in Equation 2, we 

can specify the level 2 variance as function of  as represented: 
 

  
Thus, the level 2 variance of between subjects for drug R (x1 = 0) is

, and   for drug T (x1 = 1). Since a 
subject cannot take both test and reference drug in each 

measurement, so . Hence, the level 1 variance 
(or within-subject) for drug R (Z4ij = 0, Z5ij = 1) is: 
 

  
for drug T (Z4ij = 0, Z5ij = 1) is: 

 

  
The total level 1 variance is: 

 

  
The total variance of R is: 

  

  
The total variance of T is: 

 

   
The variance components in the model above are summarized in 
Table 1. 

 
 
Parameter estimation methods in MLMs  

 
Goldstein and his colleagues developed the MLwiN software 
package (Version 2.23, Centre for Multilevel Modeling, University of 
Bristol, UK) for multilevel modeling (Rashbash et al., 2008). MLwiN 
uses the iterated generalized least squares (IGLS) and restricted 
iterated generalized least squares (RIGLS) algorithms to estimate 
parameters (Goldstein, 1986, 1989). In considering the small size of 
samples in both the illustrative example and our simulation data, we 
used RIGLS algorithm for all multilevel models presented in the 
paper. It is noted that we also use the term MLMs and RIGLS 
exchangeable for convenience throughout the paper.  
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Table 2. Parameter estimations (SE) from fitting multilevel models. 
 

Parameter ln (AUC) ln (Cmax) 

Fixed effect   

  0β intercept  7.823(0.325) 5.894(0.370) 

  1β treatment  -0.043(0.060) -0.109(0.074) 

2β sequence  -0.186(0.204) -0.302(0.231) 

3β period  0.047(0.020) 0.056(0.027) 

 

Random effect   

  Level 2 (subject)   

  2 2

0 ( )
u BR

σ σ  0.366(0.093) 0.478(0.126) 

  
2

1u
σ  0.053(0.034) 0.060 (0.053) 

  01u
σ  -0.009(0.039) -0.035(0.058) 

 

 Level 1 (replicate)   

  
2

WR
σ  0.065(0.015) 0.119(0.028) 

2

WT
σ  0.094(0.022) 0.165(0.038) 

 
 
 

Table 3.  Comparison of three methods in variance components estimates. 
 

Variance component 
ln (AUC) 

 

ln (Cmax) 

MOM REML MLM MOM REML MLM 

2

BTσ  0.400(0.096) 0.400 (0.107) 0.401(0.105) 0.472 (0.113) 0.468(0.133) 0.468(0.129) 

2

BR
σ  0.378(0.090) 0.366(0.095) 0.366(0.093) 0.515 (0.123) 0.478 (0.129) 0.478(0.126) 

2

WTσ  0.098 (0.024) 0.094(0.022) 0.094(0.022) 0.171 (0.041) 0.165(0.039) 0.165(0.038) 

2

WR
σ  0.067 (0.016) 0.065 (0.015) 0.065(0.015) 0.126 (0.030) 0.119 (0.028) 0.119(0.028) 

PBE
ν  -0.723 -0.686 -0.691 -1.106 -0.996 -1.019 

95 percent upper bound -0.360 -0.355 -0.431 -0.603 -0.524 -0.650 
 

* The MLM’s 95 percent one-sided upper bound was estimated using asymptotic normal procedure. 
 
 
 
An illustrative example 

 
To demonstrate the methods described in this paper, we acquired 
data set 17a for drug#17: Antihypertensive on the FDA website, 
http://www.fda.gov/drugs/scienceresearch/researchareas/biostatisti
cs/ucm081434.htm. It is a 2 × 4 cross-overdesign (RTTR and 
TRRT) with 19 and 18 subjects per sequence. Thus, there are two 
replications for each drug. The two response variables are the 
natural logarithm of the reported value for AUC and Cmax. We fitted 
two MLMs in MLwiN by using Equation 4 for ln(AUC) and ln(Cmax) 
respectively. The results obtained are presented in Table 2. Since 
total variance of the R group for both ln(AUC) and ln(Cmax) in this 

case were greater than 0.04, that is, , 
the reference–scaled (FDA, 2001) was used to test for the PBE 
criterion. We compared the  scale  calculated  based  on  parameter 

estimates from the MOM, REML and RIGLS in MLM. As shown in 
Table 3, the estimators of variance components in REML and MLM 
are similar, while MOM provided slightly larger estimations .Using 
all the aforementioned methods, the upper bounds of the 95% one-
sided confidence intervals for both ln(AUC) and ln(Cmax) are less 
than 0, so PBE can be claimed.  
 
 
Simulation study 

 
Study design  

 
The simulation study was designed to investigate the performance 
of RIGLS estimation in multilevel models in comparison to that of 
MOM and REML. We simulated log-transformed data for the two 
sequence (TRTR/RTRT), replicated design assuming a sample size  

2 2 2ˆ ˆ ˆ= >0.04
R BR WR

σ σ σ+
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Table 4. Parameter settings for simulations (n=36, 0.9ρ = , 500 runs per scenario). 

 

Scenario ∆  WT WR
σ σ=  

BT BR
σ σ=  

1 

0.05 

0.3 0.3 

2 0.3 0.6 

3 0.5 0.5 

4 0.5 1.0 

    

5 

0.223 

0.3 0.3 

6 0.3 0.6 

7 0.5 0.5 

8 0.5 1.0 

 
 
 
of 36 subjects, 18 per sequence. This sample size corresponded to 
the illustrative example earlier mentioned, which also represented a 
moderate study size suggested in the FDA guidance.  

 
 
Scenarios to be investigated  

 
Scenarios were assumed based on drugs with typical 
characteristics and statistical distributions in practice and in 
previous studies. Six different parameters are to be defined to 
generate sample datasets for the simulation: 

 and ρ. Following other examples, we 
assumed same standard deviation for the two formulations, namely 

 and (FDA, 2001; Endrenyi et al., 2000). 

We then considered the values for =0.05 and ln1.25 
(≈0.223), which corresponds to two prototypical situations in ABE 
studies, and were also used in the simulation research of PBE in 
the GlaxoSmithKline technical report by Patterson and Jones 
(2002).  

 The log-transformed parameters  and  can be 
calculated from the within-subject coefficients of variation (CV) on 
the original scale using the equation: 

 

 
 
A CV of 30% is generally considered the threshold for a highly 

variable drug or drug product (HVD). In 2003 to 2005, the FDA’s 
Office of Generic Drugs (OGD) reviewed 1010 acceptable 
bioequivalence studies of 524 different drug products. Among them, 
the highest CV was 55% (Davit et al., 2005). Since the topic of BE 
for highly variable drugs is one that has been intensely debated in 
many recent articles, conferences and meetings nationally and 
internationally (Haidar et al., 2008), our simulations were conducted 
for moderate high and very high variability products with CV of 30 

and 55% respectively, which derives the values for  and  
approximately 0.3 and 0.5. 

In many studies,  and  are generally larger than  

and (Riviere and Papich, 2009; Willavize et al., 2006), we 

considered scenarios including cases where the  and  

ranged from 1 to 2 times greater than the  and .This 
range was also used by the sample size determination tables for 
PBE given in the Appendix of the FDA guidance document, and it 
also appeared to correspond to some retrospective analyses of 
AUC in replicate cross-over bioequivalence studies.  

Finally, all scenarios considered a strong correlation ρ between R 
and T at 0.9. The reason for examining cases with such seemingly 
high correlation is that responses within a subject to different 
formulations of the same drug are still likely to have a strong degree 
of correlation even if the formulations are only borderline 
bioequivalent (Shao et al., 2000).  

In summary, given the consideration of six parameters, eight 
scenarios were generated (Table 4). The chosen parameter values 
were considered to be representative of typical bioequivalence data 
and these are quite natural and common in practice.  
 
 
Data generation and data analysis 

 
For each scenario, 500 samples were simulated using SAS 
(Version 9.1.3, Cary, NC). We used SAS to perform MOM and 
REML estimation procedures and fitted MLMs using RIGLS 
procedure in MLwiN. Performances of different estimation 
procedures were evaluated using the following quantities that are 
frequently regarded as benchmark accuracy and precision 
measures; bias, mean square error (MSE) and coverage of 95% 
confidence interval.  

 
 
SIMULATION RESULTS  
 
The summarized results of parameter estimates, bias, 
MSE and CI coverage from 500 run samples were shown 
in Table 5 and Figures 1 to 3. 
 
 

Parameter estimates  
 
From Table 5, we observed that all three estimation 

procedures yielded same values of  for all scenarios. 
The estimates of variance components are close to their 
true values from all three methods. In nearly every 
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Table 5. Parameter estimates of MOM, REML and MLM (RIGLS) from 500 runs. 
 

Scenario 
Parameter  

settings 

MOM 

. 

. 

REML 

 

MLM 

Mean 
estimation 

Standard 
error 

Mean 
estimation 

Standard 
error 

Mean 
estimation 

Standard 
error 

1 

0.05∆ =  0.052 0.046 0.052 0.046 0.052 0.046 
2 0.09
BR

σ =  0.095 0.034 0.092 0.033 0.093 0.032 

2 0.09
BT

σ =  0.092 0.036 0.090 0.035 0.092 0.033 

2 0.09
WR

σ =  0.091 0.021 0.088 0.020 0.087 0.019 

2 0.09
WT

σ =  0.093 0.022 0.090 0.021 0.089 0.019 

        

2 

0.05∆ =  0.052 0.055 0.052 0.055 0.052 0.055 
2 0.36
BR

σ =  0.375 0.101 0.364 0.098 0.364 0.098 

2 0.36
BT

σ =  0.369 0.103 0.359 0.100 0.359 0.100 

2 0.09
WR

σ =  0.091 0.021 0.088 0.020 0.088 0.020 

2 0.09
WT

σ =  0.093 0.022 0.090 0.021 0.090 0.020 

        

3 

0.05∆ =  0.054 0.076 0.054 0.076 0.054 0.076 
2 0.25
BR

σ =  0.264 0.095 0.257 0.093 0.259 0.088 

2 0.25
BT

σ =  0.256 0.099 0.249 0.096 0.255 0.091 

2 0.25
WR

σ =  0.252 0.058 0.244 0.056 0.241 0.053 

2 0.25
WT

σ =  0.259 0.060 0.251 0.057 0.246 0.054 

        

4 

0.05∆ =  0.053 0.092 0.053 0.092 0.053 0.092 
2 1
BR

σ =  1.041 0.279 1.012 0.272 1.011 0.271 

2 1
BT

σ =  1.026 0.286 0.997 0.278 0.998 0.278 

2 0.25
WR

σ =  0.252 0.058 0.244 0.056 0.244 0.056 

2 0.25
WT

σ =  0.259 0.060 0.251 0.057 0.250 0.057 

        

5 

0.223∆ =  0.225 0.046 0.225 0.046 0.225 0.046 
2 0.09
BR

σ =  0.095 0.034 0.092 0.033 0.093 0.032 

2 0.09
BT

σ =  0.092 0.036 0.090 0.035 0.092 0.033 

2 0.09
WR

σ =  0.091 0.021 0.088 0.020 0.087 0.019 

2 0.09
WT

σ =  0.093 0.022 0.090 0.021 0.089 0.019 

        

6 

0.223∆ =  0.225 0.055 0.225 0.055 0.225 0.055 
2 0.36
BR

σ =  0.375 0.101 0.364 0.098 0.364 0.098 

2 0.36
BT

σ =  0.369 0.103 0.359 0.100 0.359 0.100 

2 0.09
WR

σ =  0.091 0.021 0.088 0.020 0.088 0.020 

2 0.09
WT

σ =  0.093 0.022 0.090 0.021 0.090 0.020 

        

7 

0.223∆ =  0.227 0.076 0.227 0.076 0.227 0.076 
2 0.25
BR

σ =  0.264 0.095 0.257 0.093 0.259 0.088 

2 0.25
BT

σ =  0.256 0.099 0.249 0.096 0.255 0.091 

2 0.25
WR

σ =  0.252 0.058 0.244 0.056 0.241 0.053 

2 0.25
WT

σ =  0.259 0.060 0.251 0.057 0.246 0.054 
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Table 5. Contd. 
 

8 

0.223∆ =  0.226 0.092 

 

0.226 0.092 

 

0.226 0.092 
2 1
BR

σ =  1.041 0.279 1.012 0.272 1.011 0.271 

2 1
BT

σ =  1.026 0.286 0.997 0.278 0.998 0.278 

2 0.25
WR

σ =  0.252 0.058 0.244 0.056 0.244 0.056 

2 0.25
WT

σ =  0.259 0.060 0.251 0.057 0.250 0.057 

 
 
 
corresponding estimates from REML and RIGLS (we use 
the term exchangeable with MLMs), while the latter two 
showed similar results as expected because RIGLS 
provides REML estimators. In cases of scenarios 1, 3, 5 
and 7 where the between-subject variances are the same 
as within-subject variances, the between-subject 
variances estimated from MLMs are slightly larger than 
that of REML, while the within-subject variances from 
MLM are slightly smaller. This trend is not evident in 
scenarios 2, 4, 6 and 8.  
 
 

Assessment of bias 
 
Figure 1 graphically summarizes the bias of variance 
components versus their true population values. It can be 
scenario, estimates from the MOM were greater than 
seen that the biases for all three methods are rather 
small. However, MOM has the largest biases for both 
between-subject variances and within-subject variances, 
that is consistent with the previous simulation results 
(Patterson and Jones, 2002), whilst REML and RIGLS 
showed similar bias. In Figure 1, we can see that the bias 
for MOM is consistently larger (in magnitude), and 
increases steeply when the variance increases. This 
suggests that compared to RIGLS and REML, the MOM 
seems more prone to overestimate as the drug effects 
become more highly variable. RIGLS and REML 
estimates demonstrated less bias than MOM with similar 
patterns in bias as drug effects change in the simulation. 
 
 
MSE  
 
The MSE from three methods are quite small, suggesting 
good performance of all methods. Overall, the differences 
observed in MSE could be by chance in the simulation 
sample and ignorable in practice. MLM estimates are 
very close to REML with slightly better accuracy or less 
bias in some parameter estimates in certain scenarios 
based on the simulation samples. 
 
 

Coverage of 95% CI  
 
Three methods demonstrated differences in the CI 
coverage   and   those   differences  seemed  grouped  by 

scenarios 1, 3, 5 and 7, and scenarios 2, 4, 6 and 8. So 
we drew Figures 2 and 3 for these situations separately. 
Regarding the four variance components, although, the 
values are different among Figures 2 and 3, they showed 
the same patterns. The coverage of all the four variance 
components are constant, completely unaffected by the 
increasing drug variability. MOM gains the largest 
coverage, while MLM and REML showed similar results 

which are close to the nominated 95% for ,  and

, while for , MLM has the same coverage with 
MOM, which is slightly lower than REML. 

In summary, for the assessment of PBE, we can still 
conclude that the MLM and REML showed similar 
performance characteristics, and the latter two performed 
better than MOM.  
 
 
DISCUSSION 
 

This paper served two purposes; to propose multilevel 
models (MLMs) using the RIGLS algorithm for evaluating 
and estimating parameters to assess PBE, and to 
compare statistical properties of PBE estimators between 
MLMs and current approaches recommended by the 
FDA. To our knowledge, this paper is the first to present 
findings from simulation using the RIGLS algorithm in the 
software package MLwiN to analyze bioequivalence data. 
The results indicate that the performance of MLM 
(RIGLS) appeared to be much comparable to the existing 
REML procedure, because RIGLS is equal to REML in 
large sample (Goldstein, 1989). These two procedures 
are frequently indistinguishable and often provide better 
performance than MOM.  

However, MLM exhibits three advantages over the exis-
ting methods. First of all, it has the ability to decompose 
the total variance into components for complex data 
structure, that is, more than three levels of hierarchy, 
more than two treatment and more than two periods.  

The second advantage is its easy extension for 
assessing not only PBE, but also IBE and ABE. IBE is a 
criterion for deciding if a patient who is currently being 
treated with R can be switched to T. When IBE is con-
sidered, it assesses an aggregate measure involving the 
means and variance of T and R, as well as the subject-
by-formulation interaction. The key difference from PBE is  
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Figure 1. The mean bias in the estimates of four variance components by MLM, MOM and REML. BT 
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Figure 2. Coverages of 95% CI for four variances components according to MLM, MOM and REML on Scenario 
1, 3, 5, 7.  
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Figure 3. Coverages of 95% CI for four variances components according to MLM, MOM and REML on Scenario 

2, 4, 6, 8. 



 
 
 
 
that IBE assumed individual difference in responding to 
formulation. Such difference can be captured and 

measured by the subject-by-formulation interaction : 
 

  

Where  and  are the random subject effect for 
subject j on T and R especially. 

Multilevel model is readily expanded for assessing IBE. 
For instance, consider a two-level random slope model 
as an example, similar to the one we mentioned in 

simulation result. In Equation 4, the random effect is 
the slope residual in subject j, which measured the 
subject-specific increment to the treatment effect. It is 

easy to prove that , 

. Therefore the key ingredient 

in the IBE criteria  can be expressed as , which is 
a variance component in multilevel model. The extension 
of MLMs for assessing IBE is straightforward. A 
preliminary examination of MLMs in BE, including asses-
sing IBE by Shen et al. (2009), has been published most 
recently. As the study only illustrated the MLMs approach 
by applying it on real example, further simulation studies 
to demonstrate the performance of such model in 
assessing IBE will be helpful. 

The third advantage is the flexibility to cover multiple 
endpoints for simultaneous bioequivalence assessment. 
It should be noted that, in the example of FDA dataset 
illustrated in this paper, both AUC and Cmax met the 
criterion for establishment of PBE. However, in practice, it 
is not uncommon to pass AUC but fail Cmax. In this case, 
the regulatory authorities and researchers proposed 
several alternative measures (Wang et al., 1999; Ghosh 
and Gönen, 2008; Chen et al., 2001). One proposal was 
that for highly correlated AUC and Cmax, one should 
obtain a combined estimate of the drug effects by 
considering the two outcomes simultaneously. In a 
multilevel model framework, data with multiple outcomes 
at certain time period within-subject can be viewed as a 
3-level structure: the outcomes measured on each 
occasion are considered nested at the lowest level, within 
replicated measurement (now at level 2) within subject 
(now at level 3). MLMs approach can simply link the 
marginal models of AUC and Cmax through a variance-
covariance structure of the two at level 1 to form a 
simultaneous model to assess either ABE or PBE. 
Further simulation study should be conducted to examine 
performance of multivariate MLMs and the statistical 
features of the parameter estimates. 

This research offers many exciting new directions for 
future research. A number of issues in the proposed 
MLMs approach are the remaining debatable. First of all, 
the 95% upper bound of the linearised PBE criterion in 
this study was calculated based on asymptotically normal  
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assumption. The standard error for each variance 
component and function of a particular variance provided 
directly by the software MLwiN of RIGLS algorithm is 
based on asymptotic properties and may be unreliable 
when sample size is small. The advantage of MLM’s 
capacity to assess IBE or multivariate outcomes would be 
penalized by more complex variance-covariance struc-
ture, more complex criterion, hence more uncertainty in 
the upper bound of the criterion. Recently FDA becomes 
more accepting of Bayesian (Li and Xu, 2011; Ashby, 
2006). The use of the Bayesian approach allows us to 
obtain credible intervals and density plots for both 
random effect variances and standard deviations. The 
MLwiN was built in tools for MCMC and bootstrapping 
modeling. Hence, further research should explore those 
models within the MLMs framework in estimating upper 
bound of the PBE and its extendibility for IBE or 
multivariate MLMs criterion. Other methodological study 
in order to establish the MLMs approach in the BE field 
could be the rate of type 1 error over the effect size, 
sample size determination and the power of test. Further 
investigations in those areas are also suggested.  
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