Nitrous oxide versus pethidine with promethasine for reducing labor pain

Batool Teimoori¹, Nahid Sakhavar¹, Masoome Mirteimoori¹ and Behzad Narouie²*

¹Department of Obstetrics and Gynecology, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
²Clinical Research Development Center, Ali-ebne-Abitaleb hospital, Zahedan University of Medical Sciences, Zahedan, Iran.

Accepted 17 October, 2011

Systemic opioids are widely used for the relief of labor pain. Self-administered nitrous oxide with concentration of 50% is a new form of analgesia. The aim of this study was to compare the analgesic efficacy and side effects of the patient controlled inhaled nitrous oxide (50% “Entonox”) with systemic intramuscular pethidine, in reducing pain during normal vaginal labor in Iranian population. In a randomized controlled study, the analgesic efficacy of inhaled 50% nitrous oxide (Entonox) was evaluated as compared to intra muscular pethidine for reducing labor pain among 100 women undergoing normal vaginal delivery. Mean maternal age was 26.2 and 27.2 years in entonox and pethidine groups, respectively. Duration of first and second stages was significantly shorter in patients receiving nitrous oxide as analgesia as compared to pethidine group (P < 0.05). Pain severity according to visual analog scale (VAS) score was significantly lower in patient that received nitrous oxide (P = 0.0001). We also showed significantly higher satisfaction of pain reduction in nitrous oxide group during labor (P = 0.01). No significant difference was observed among the groups regarding neonatal complications. Although, nitrous oxide is certainly not a potent analgesic, we found that it has more beneficial effects than pethidine in parturient women which is yet to be cleared.

Key words: Entonox, labor pain, pethidine, nitrous oxide.

INTRODUCTION

Labor is one of the painful conditions that is considered to be the most intense and stressful experiences (Melzack, 1984). In the last decades, changes have occurred in the obstetric expectations and in their care. In developed countries, the number of women requesting labor analgesia is increasing, and in some communities, an effective pain relief for childbirth is in great demand (National Institute for Health and Clinical Excellence, 2008).

As it is cheap, simple to use and readily available, systemic pethidine is widely used for relief of labor pain (Hawkins and Beaty, 1999; Wilson et al., 1986; Morrison et al., 1987). Use of parenteral opioids was found to be between 39 and 56% in various hospital obstetrics units, in the United States (Hawkins and Beaty, 1999; Fairlie et al., 1999; Olofsson et al., 1996).

Systemic opioids lead to some adverse effects on both mother and baby including dysphoria, sedation, respiratory depression, nausea and vomiting and delayed gastric emptying for the mother (Douglas and Levinson, 2001). As pethidine crosses the placenta, it may accumulate in the fetal circulation (Gaylard et al., 1990) causing early neonatal respiratory depression and behavioral and feeding problems for even up to six weeks after delivery (Belsey et al., 1981; Belfrage et al., 1981; Nissen et al., 1997).

Self-administered 50% nitrous oxide “Entonox” is an effective and safe form of analgesia, which has been used by many emergency medical services for many years. Nitrous oxide is an odorless, tasteless and inhaled analgesic (Faddy and Garlick, 2005), and it was found to be an effective analgesia for many women while also being safe for the mothers and babies (Rooks, 2007).
Table 1. Descriptive data of entonox and pethidine subjects.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Entonox (n = 50)</th>
<th>Pethidine (n = 50)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>7.34 ± 26.2</td>
<td>6.02 ± 27.2</td>
<td>NS</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.38 ± 69</td>
<td>11.06 ± 73</td>
<td>NS</td>
</tr>
<tr>
<td>Gestation (week)</td>
<td>0.95 ± 38.44</td>
<td>0.92 ± 38.58</td>
<td>NS</td>
</tr>
<tr>
<td>Cervical dilation at Analgesic initiation (cm)</td>
<td>0.91 ± 4.46</td>
<td>0.89 ± 4.36</td>
<td>NS</td>
</tr>
</tbody>
</table>

Nowadays, nitrous oxide is widely used in many countries for relieving labor pain (Rooks, 2007).

Unlike opioids, it does not depress respiration (Rosen, 2002). Nitrous oxide rapidly takes effect (Latto et al., 1973) and is quickly reversible on discontinuation of therapy (Latto et al., 1973; Einarsson et al., 1996).

Despite its wide and popular use in many countries, nitrous oxide for the relief of labor pain is largely unknown in Iran. In the present study, we aimed to compare the analgesic efficacy and side effects of the patient controlled, inhaled nitrous oxide (50% “Entonox”) with systemic intramuscular pethidine (the most popular drug with opioid analgesic properties), in relieving pain during normal vaginal labor in Iranian population.

MATERIALS AND METHODS

In this randomized clinical trial study, we evaluated the analgesic efficacy of inhaled 50% nitrous oxide (Entonox) as compared to intra muscular pethidine for relieving labor pain among 100 women undergoing normal vaginal delivery in Ali-Ebne-Abitaleb hospital, in Iran, from March 2007 to 2008. The study was reviewed and approved by the ethics committee in Zahedan University of Medical Sciences, and informed consents were obtained from all participants. 100 pregnant women with gestational age ranging from 38 to 42 weeks, and who were referred to in the early phase of labor, were randomly enrolled in the study. Participants were selected among non-complicated, term pregnancies with a normal cephalic fetus, and were referred to in the active phase of labor with cervical dilation less than 7 cm. Women who could not keep their facial mask, have recent administration of local or systemic analgesics and opioids, patients with altered mental status, vitamin B12 deficiency receiving replacement therapy, any oxygenation abnormalities, hemodynamically unstable patients and women bearing any fetus abnormalities were excluded from the study.

Patients were randomly allocated in two groups. The number of nulliparous women was comparable in two groups. Participants of one group (Group A, n = 50) were medicated with entonox, where women in the other group (Group B, n = 50) received pethidine for relieving their labor pain. All women were trained for self administration of entonox in group A and women in group B received 1 mg/kg slowly intra-venous injection of pethidine combined with 25 mg promethazine.

Fifty percent nitrous oxide in 50% oxygen was premixed in a single cylinder called by the trade name “Entonox” (Lieberman and O‘Donoghue, 2002). Entonox was self-administered by the laboring woman using a face mask, when she determines that she needs it. Patients were trained to administer face mask of entonox with the initial of every uterine contraction and continue deep inspirations while the contraction and pain exists.

Entonox administration can be started and stopped at any point during labor, according to the needs and preferences of the woman. It takes effect in about 50 s after the first breath, and the effect is transient and gone when it is no longer needed (Rooks, 2007). The flow of gas into the mask is initiated by the negative pressure of inhalation, which opens a demand valve. This same demand valve flow of gas into the mask is initiated by the negative pressure of inhalation, which opens a demand valve. This same demand valve. Following different analgesic administrations, severity of labor pain was evaluated according to the VAS score, numbering from 0 to 10 (0 = no pain and 10 = severe and non tolerable pain). Parturients pain scored once before any analgesic administrations, and they were requested to score their maximum pain following each contraction. Total visual analog scale (VAS) score is the mean of scores rated during labor.

Patients satisfaction of analgesia method was also evaluated by verbal rating scale, scoring from 0 = not satisfied to 4 = complete satisfaction.

All parturients were monitored for vital signs, arterial O2 saturation and fetal heart rate each 30 min during labor and mothers were suggested to have left lateral position during labor for prevention of supine hypotension.

Mothers’ somnolence and sedation was also evaluated by a nurse in 10 min intervals according to Ramsy score, from 1 to 5. 1 = completely awake, 2 = somnolence, 3 = irritable to sound, 4 = irritable to touch and 5 = non responder.

Statistical analysis

Descriptive statistics were used to report demographic characteristics with SPSS statistics package version 15. The Chi-square test and Student t-test were used to compare the groups on qualitative and quantitative variables, respectively.

RESULTS

A total of 100 pregnant women, including 50 primi-gravid women were enrolled in the study. Mean maternal age was 26.2 and 27.2 in entonox and pethidine groups, respectively. Demographic data of the participants is summarized in (Table 1). Patient’s characteristics in entonox and pethidine groups, respectively. There were no differences in blood pressure, heart rate and respiratory rate before administration of any analgesic agent was statistically equal between groups; however, it shows significant difference at the end of both first and second stages of labor. Pain severity according to VAS score was lower in patient that received nitrous oxide as analgesia as compared to pethidine group (P < 0.05) (Table 2).

VAS score before administration of any analgesic agent was statistically equal between groups; however, it shows significant difference at the end of both first and second stages of labor. Pain severity according to VAS score was lower in patient that received nitrous oxide, (P = 0.00).

There were no differences in blood pressure, heart rate and respiratory rate before analgesia. Where, after the end of stage 1 and 2, nitrous oxide users had significantly lower heart rate and respiratory rate. Blood pressure still remained equal in both groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Entonox (n = 50)</th>
<th>Pethidine (n = 50)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>7.34 ± 26.2</td>
<td>6.02 ± 27.2</td>
<td>NS</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.38 ± 69</td>
<td>11.06 ± 73</td>
<td>NS</td>
</tr>
<tr>
<td>Gestation (week)</td>
<td>0.95 ± 38.44</td>
<td>0.92 ± 38.58</td>
<td>NS</td>
</tr>
<tr>
<td>Cervical dilation at Analgesic initiation (cm)</td>
<td>0.91 ± 4.46</td>
<td>0.89 ± 4.36</td>
<td>NS</td>
</tr>
</tbody>
</table>
Table 2. Comparison of labor outcomes in patients that received nitrous oxide and pethidine.

<table>
<thead>
<tr>
<th>Labor outcomes</th>
<th>Entonox</th>
<th>Pethidine</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First stage (h)</td>
<td>3.12 ± 1.37</td>
<td>2.24 ± 1.07</td>
<td>0.001</td>
</tr>
<tr>
<td>Second stage (min)</td>
<td>3.44 ± 1.73</td>
<td>1.18 ± 1.00</td>
<td><0.001</td>
</tr>
<tr>
<td>VAS mean score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before analgesia</td>
<td>0.98 ± 9.14</td>
<td>0.75 ± 9.40</td>
<td>NS</td>
</tr>
<tr>
<td>Over first stage</td>
<td>1.53 ± 6.02</td>
<td>1.25 ± 7.16</td>
<td>0</td>
</tr>
<tr>
<td>Over second stage</td>
<td>1.82 ± 5.70</td>
<td>1.05 ± 8.22</td>
<td>0</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before analgesia</td>
<td>8.95 ± 1.13</td>
<td>8.37 ± 1.14</td>
<td>NS</td>
</tr>
<tr>
<td>End of stage 1</td>
<td>8.70 ± 1.12</td>
<td>56.8 ± 1.11</td>
<td>NS</td>
</tr>
<tr>
<td>End of stage 2</td>
<td>7.87 ± 1.11</td>
<td>7.61 ± 1.11</td>
<td>NS</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before analgesia</td>
<td>9.4 ± 6.7</td>
<td>8.2 ± 66.2</td>
<td>NS</td>
</tr>
<tr>
<td>End of stage 1</td>
<td>7.87 ± 69.6</td>
<td>8.65 ± 66.6</td>
<td>NS</td>
</tr>
<tr>
<td>End of stage 2</td>
<td>7.8 ± 70.20</td>
<td>8.61 ± 68.2</td>
<td>NS</td>
</tr>
<tr>
<td>Heart rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before analgesia</td>
<td>6.84 ± 81.72</td>
<td>12.22 ± 84.22</td>
<td>NS</td>
</tr>
<tr>
<td>End of stage 1</td>
<td>11.81 ± 107.1</td>
<td>10.14 ± 81.9</td>
<td><0.001</td>
</tr>
<tr>
<td>End of stage 2</td>
<td>9.87 ± 109.90</td>
<td>9.24 ± 80.40</td>
<td><0.001</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before Analgesia</td>
<td>1.50 ± 13.92</td>
<td>1.51 ± 14.80</td>
<td>NS</td>
</tr>
<tr>
<td>End of stage 1</td>
<td>1.65 ± 14.16</td>
<td>1.37 ± 13.52</td>
<td>0.03</td>
</tr>
<tr>
<td>End of stage 2</td>
<td>1.32 ± 13.72</td>
<td>1.22 ± 12.92</td>
<td>0.002</td>
</tr>
</tbody>
</table>

(Table 2). There was no statistically significant difference in VAS score and labor duration among primi-gravid and multi gravid women (P > 0.05).

There were no significant differences in Apgar scores or neonatal survival between babies born to mothers who received nitrous oxide and pethidine.

Patient’s satisfaction of analgesia administered during labor was finally evaluated by the mean of verbal score. Our study showed significantly higher satisfaction of pain reduction in using nitrous oxide as analgesic agent during labor (P = 0.01) (Table 3).

DISCUSSION

This study demonstrated that, using nitrous oxide (Entonox) for analgesia, causes statistically significant and clinically important reduction in severity of labor pain during first and second stages of normal vaginal delivery as compared to pethidine. Duration of both first and second stages of labor was also reduced in using
entonox as analgesia. Thus, entonox led to women's higher satisfaction of their labor pain relief.

Our results were in line with previous studies (Douglas and Levinson, 2001; Faddy and Garlick, 2005; Rooks, 2007; Latto et al., 1973; Bishop, 2007; Evans et al., 1995; Jones et al., 1969; McAneny, 1963). However, in contrast, one prospective non-randomized study, labor pain was more severe in primi-gravid women that were administered nitrous oxide as compared to those that were given pethidine (Keskin et al., 2003).

A mixture of 50% nitrous oxide in oxygen “Entonox” is available in a single cylinder as a patient controlled inhaled analgesic (Faddy and Garlick, 2005). It has low solubility in blood and is transported in solution without binding to protein. Nitrous oxide rapidly takes effect (Latto et al., 2005), because it diffuses rapidly through the alveolar arterial membrane and is excreted unchanged, mainly through the lungs (Faddy and Garlick, 2005). As a result, it is quickly reversible on discontinuation of therapy (Latto et al., 1973; Einarsson et al., 1996; Bishop, 2007). It has shown that recovery from sedative effects of nitrous oxide is faster when compared with intravenous analgesia (Faddy and Garlick, 2005).

Rapid onset and quick reversibility, allows nitrous oxide to be administered throughout the second stage of labor without fear of effects on the newborn (Bishop, 2007). Supervised by physicians, nurses or midwives, nitrous oxide is widely used as a safe analgesic in many parts of the world including Canada, Australia, Finland, United Kingdom and New Zealand (43 to 49%) (STAKES, 2006; NSW Department of Health, 2005; Biró et al., 2000).

The maximum effect of nitrous oxide appears at a concentration of 70%, and it has been shown to relieve labor pain in approximately two-thirds of women (Rooks, 2007).

The precise mechanism of action of nitrous oxide analgesia remains uncertain. It may induce release of endogenous opioid peptides in the periaqueductal gray area of midbrain (Maze and Fuginaga, 2000).

Among various inhalation anesthetic agents studied for labor analgesia, only nitrous oxide is used to any great extent in modern obstetric practice. The reasons are probably related to the ease of administration of nitrous oxide, its lack of flammability, absence of pungent odor, minimal toxicity, minimal depression of cardio vascular system, lack of effect on uterine contractility and the fact that it does not trigger malignant hyperthermia (Rooks, 2007). Entonox is administered either intermittently, starting with the onset of pain with each contraction and discontinuing as the contraction pain eases or abates, or continuously, by inhaling both during and between contractions (Rooks, 2007).

Intermittent administration of entonox, as used in this study, is somehow problematic, because there is a lag of approximately 50 s after the onset of administration before the analgesic effect can be expected (Chan et al., 1996). However, entonox is significantly beneficial if administration initiates approximately 30 to 50 s before each contraction (Waud and Waud, 1970).

Side effects induced by nitrous oxide are nausea and vomiting reported in 5 to 36% (Rooks, 2007; Jones et al., 1969; McAneny, 1963; Bergsjo and Lindbaek, 1971; McGuinness and Rosen, 1984). Dizziness, dreams and drowsiness reported in 0 to 24%, dry mouth from breathing dry gas, buzzing in the ears and rarely, numbness are also reported (Rooks, 2007; Bishop, 2007; Jones et al., 1969; Bergsjo and Lindbaek, 1971; McGuinness and Rosen, 1984).

The greater maternal risk of inhalation of nitrous oxide is loss of consciousness. It is rare with 50% nitrous oxide. The alveolar concentration for wakefulness for nitrous oxide is between 50 and 70% in non-pregnant women and probably lower in pregnant. So it is important that the agent should be self-administered and not by anyone else. It is also important that a mask is kept by parturient and not fixed to the face. If it is not strapped, her hand will fall away from her face, when she became too drowsy rendering the device nonfunctional. Therefore, the nitrous oxide concentration wills rapidly decline (Rooks, 2007).

Nitrous oxide rapidly transfer placenta, however, as shown in our study, the fetus infants are clinically unaffected. There have shown no significant differences in Apgar scores or neonatal outcomes between babies born to mothers who received nitrous oxide (Rooks, 2007; McAneny, 1963; Abboud et al., 1981; Stefani et al., 1982).

When used intramuscularly, analgesic effect of pethidine, one of the most frequently used opiate agonists, starts within 10 to 20 min, and lasts for 2 to 4 h (Lee et al., 1993).

As it is cheap, simple to use and readily available, systemic pethidine is widely used for relief of labour pain. Use of parental opioids was found to be between 39 and 56% in various hospital obstetrics units, in the United States (Hawkins and Beaty, 1999). However, many studies have suggested that intramuscular pethidine may be ineffective at relieving labor pain (Wilson et al., 1986; Morrison et al., 1987; Fairlie et al., 1990; Olofsson et al., 1996) and it has been suggested that their use may even be unethical and medically incorrect (Fairlie et al., 1999).

Systemic opioids lead to some adverse effects on both mother and baby, including dysphoria, sedation, respiratory depression, nausea and vomiting and delayed gastric emptying for the mother (Douglas and Levinson, 2001). As pethidine crosses the placenta, it may accumulate in the fetal circulation (Gaylard et al., 1990), causing early neonatal respiratory depression and behavioral and feeding problems for even up to six weeks after delivery (Belsey et al., 1981; Belfrage et al., 1981; Nissen et al., 1997).

Consistent with ours, an uncontrolled, observational study on primi-gravid, showed that women judged nitrous oxide to be more effective than opioids (Harrison et al.,
1987). The study suggests that, nitrous oxide is a useful method for women who wish to cope with the earlier part of labor "drug free". Consistent with ours, this study showed that labor was more rapid in the nitrous group; however, it is unlikely that nitrous oxide causes more rapid labor, and it is unlikely that opioids significantly slow labor. It may be more effective for women whose labor is shorter (Harrison et al., 1987).

Although, nitrous oxide is certainly not a potent analgesic, it has more beneficial effects for many parturient women as compared to pethidine. It is easy to administer and safe for both mother and infant.

ACKNOWLEDGEMENTS

This study was supported by a dissertation grant from School of Medicine, Zahedan University of Medical Sciences, the authors would like to thank subjects who willingly participated in the study and would like to acknowledge the Clinical Research Development Center of Ali-ebne-abitaleb Hospital, Zahedan University of Medical Sciences for its help in preparing this manuscript.

REFERENCES

