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Despite production of fertile transgenic plants through transformation mediated by Agrobacterium 
tumefaciens, transformation efficiency is still low. Apart from plant genotype, Agrobacterium strains, 
plasmid vectors, virulence (vir) gene inducing compounds, medium composition and tissue specific 
factors, some other factors are becoming important for improving transformation efficiency of plant 
species. Sucrose treatment of explant increased T-DNA delivery in rice while desiccation improved the 
T-DNA delivery and stable transformation of sugarcane, maize, wheat and soybean. Silver nitrate 
suppresses the Agrobacterium growth and facilitates plant cell recovery that resulted in increased 
efficiency of transformation in wheat. Inclusion of thiol compounds, L-cysteine, dithiothreitol and 
sodium thiosulphate in co-cultivation medium increased transformation efficiency as high as 16.4% in 
soyabean. A temperature of 220C was found to be optimal for T-DNA delivery in tobacco. The optimal 
temperature for both T-DNA delivery and stable transformation was 23-250C for wheat and ∼∼∼∼230C for 
maize. Surfactants Silwet 77, pluronic acid F68, Tween 20 enhanced T-DNA delivery in wheat. Evidence 
that Agrobacterium density, co-culture medium, antibiotic and selectable marker influence T-DNA 
delivery and integration and stable transformation of plants were also presented. 
 
Key words: Agrobacterium, stable transformation, T-DNA delivery, T-DNA integration, transformation 
efficiency. 

  
 
INTRODUCTION 
 
Agrobacterium tumefaciens causes crown gall disease of 
a wide range of plants, especially members of the rose 
family such as apple, pear, peach, cherry, almond, 
raspberry and roses. The discovery of the bacterial origin 
of crown gall disease (Smith and Townsend, 1907) 
sparked a number of studies with understanding the 
mechanisms of oncogenesis in general and applied it to 
study of cancer disease in animals and humans as 
objectives. The elegant work of Binns and Thomashaw 
(1988) which revealed that A. tumefaciens is capable of 
transferring a particular DNA segment Transfer (T)-DNA 
of the tumour-inducing (Ti) plasmid into the nucleus of 
infected cells where it is subsequently integrated into the 
host genome, changed the objectives of research on A. 
tumefaciens to transformation of plants. Early realization 
of this goal was brighten with the report that the T-DNA 
contains two types of genes: the oncogenic genes, 
encoding for enzymes involved in the synthesis of auxins 

and cytokinins and responsible for tumour formation; and 
the genes encoding for the synthesis of opines, a product 
resulted from condensation between amino acids and 
sugars, which are produced and excreted by the crown 
gall cells and consume by A. tumefaciens as carbon and 
nitrogen sources. Outside the T-DNA, are located the 
genes for the opine catabolism, the genes involved in the 
process of T-DNA transfer from the bacterium to the plant 
cell and for the bacterium-bacterium plasmid conjugative 
transfer genes (Zupan and Zambrysky, 1995).  

Virulent strains of A. tumefaciens contain a large 
megaplasmid (more than 200 kb) that plays a key role in 
tumour induction and for this reason it was named Ti 
plasmid. The transfer is mediated by the co-operative 
action of proteins encoded by genes determined in the Ti 
plasmid virulence region (vir genes) and in the bacterial 
chromosome. The 30 kb virulence (vir) region is a region 
organised in six operons that are essential for the T-DNA  
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Table 1. Agrobacterium-mediated transformation of some dicots plants 
 
Host plant  Strain plasmid marker Explant TF(%) Reference 

Pigeon pea (Cajanus cajan L.) 
   ICP787 LBA4404 (pdhdps-GUS) nptII CN 93.2 Thu et al.2002 

Broad bean Vicia faba L.) 
 Lobab lippoi C58C1 (pArA4b) none IS 92.5 Jelenic et al.2000 

Canola (Brassica napus L.) 
  Westars  GV3850 (pBinmGFP5-ER nptII H 17.0 Cardoza and Stewart 2003 
  Maplus GV3850 (pNK55-Resy.KCS) nptII MP 25.0 Wang et al.2005 

Chickpea (Cicer arientum L.) 
 Semsen AGL1 (pRM50) nptII CN 0.5 Sarmah et al 2004 

Soybean (Glycine max L. Merill) 
 Lambart LBA4404 (pCAMBIA 1303) hpt CN 16.4 Olhoft et al 2003 

Cotton (Gossypium hirsutum) 
Ekang 9 LBA4404 (pBin438) nptII EC 33.0 Wu et al.2005  

 

TF-Transformation frequency; nptII-neomycin phosphotransferase;CN-Cotyledonary node;EC-embryonic calli ;MP-Mesopyhll protoplast; H-
Hypocotyl; IS-Internodal segment 

 
 
 

Table 2. Agrobacterium-mediated transformation of some monocot plants 
 

Host plant Strain (plasmid) Marker Explant TF(%) Reference 
Banana(Musa spp.) 

Grand Nain        (AAA) LBA4404 
(pBI141) 

nptII MCS 2.0 May et al. 1995 

Barley (Hordeum vulgare L.) 
Winter (igri) LBA4404 (pSBI: 

VG35PAT) 
hpt PC 2.2 Kumlehn et al.2006 

Rice (Oryza sativa L.) 
Indica (basmati 370) EHA101 (pIGI21Hm) hpt EC 22 Rashid et al.1996 

Japonica (Taipei 309) LBA4404 (pTOK233) hpt PCIE 3.0 Uze et al.1997 
Rye (Secale cereale L.) 

Spring (L22) AGLO (pJFnptII) nptII PCIE 3.5 Popelka and 
Altpeter,2003 

Sugarcane (Saccharium officinarium L.) 
Ja60-5 LBA4404 (pBI141) hpt SC 0.94-1.15 Arencibia et al.,1998 

Sorghum (Sorghum bicolor L.) 
C401 EHA101 (pPZP201) pmi IE 3.3 Gao et al. 2005 

Pioneer 8505 EHA101 (pPZP201) pmi IE 2.8 Gao et al.2005 
Maize (Zea mays L.) 

A188 EHA101 (pTF102) Bar FIIE 5.5 Frame et al.2002 
A188 LBA4404 (pTOK233) hpt FIIE 11.8-30.6 Ishida et al.1996 

Wheat (Triticum aestivum L.) 
Spring(Bobwhite) ABI (pMON18365) nptII EC 10.5 Cheng et al.2003 
Winter(Candenza) AGLI (pAL151) Bar IE 1.7 Wu et al.2003 

 

TF-Transformation frequency; nptII-neomycin phosphotransferase; 
hpt-hygromycin phosphotranferase;pmi-phosphomannose isomerase 
Bar-bialaphos-resistant gene;PCIE-Precultured immature embryo 
EC-Embryogenic calluses;FIIE-Freshly isolated immature embryo;SC-suspension culture;IE-Immature embryo;MCS-
Meritem corm slices 

                PC-pollen culture 
 
 
transfer (virA, virB, virD, and virG) or for the increasing of 
transfer efficiency (virC and virE) (Zupan and Zambrysky, 
1995; Jeon et al., 1998). 

The initial results of the studies on T-DNA transfer 
process to plant cells demonstrate three important facts 
for the practical use of this process in plants 
transformation. Firstly, the tumour formation is a 

transformation process of plant cells resulted from 
transfer and integration of T-DNA and the subsequent 
expression of T-DNA genes. Secondly, the T-DNA genes 
are transcribed only in plant cells and do not play any role 
during the transfer process. Thirdly, any foreign DNA 
placed between the T-DNA borders can be transferred to 
plant cell, no matter where it comes from. These  well es- 
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tablished facts, allowed the construction of the first vector 
and bacterial strain systems for plant transformation 
(Rival et al., 1998; Opabode 2002)  

The first record on transgenic tobacco plant expressing 
foreign genes appeared at the beginning of the last 
decade. Since that crucial moment in the development of 
plant science, a great progress in understanding the 
Agrobacterium-mediated gene transfer to plant cells has 
been achieved. However, Agrobacterium tumefaciens 
naturally infects only dicotyledonous plants and many 
economically important plants, including the cereals, 
remained accessible for genetic manipulation by other 
methods. For these cases, alternative direct 
transformation methods have been developed such as 
polyethyleneglycol-mediated transfer, microinjection, 
protoplast and intact cell electroporation and gene gun 
technology (Rival et al., 1998). However, Agrobacterium-
mediated transformation has remarkable advantages 
over direct transformation methods, including preferential 
integration of defined T-DNA into transcriptionally active 
regions of the chromosome (Czernilofsky et al., 1986; 
Koncz et al., 1989, Le et al., 2001; Olhoft et al., 2004) 
with exclusion of vector DNA (Hiei et al., 1997; Fang et 
al., 2002), unlinked integration of co-transformed T-DNA 
(McKnight et al., 1987; Komari et al., 1996; Hamilton, 
1997; Olhoft et al., 2004). The transgenic plants are 
generally fertile and the foreign genes are often 
transmitted to progeny in a Mendelian manner (Rhodora 
and Thomas, 1996).  

Agrobacterium-mediated gene transfer into 
monocotyledonous plants was not possible until recently, 
when reproducible and efficient methodologies were 
established on rice, banana, corn, wheat, and sugarcane 
(Hiei et al., 1994; Cheng et al., 1998; May et al., 1995; 
Ishida et al., 1996; Enriquez-Obregon, 1998; Arencibia et 
al., 1998). Reviews on plant transformation using 
Agrobacterium tumefaciens and the molecular 
mechanisms involved in this process have been 
published during the last years (Hooykas and 
Schilperoort, 1992; Zupan and Zambrysky, 1995; Rival et 
al., 1998; Zupan et al., 2000; Cheng et al., 2004).  

The transfer of T-DNA and its integration into the plant 
genome is influenced by several A. tumefaciens and 
plant tissue specific factors. These include plant 
genotype, explant, vectors-plasmid, bacteria strain, 
addition of vir-gene inducing synthetic phenolics 
compounds, culture media composition, tissue damage, 
suppression and elimination of A. tumefaciens infection 
after co-cultivation (Alt-morbe et al., 1989; Bidney et al., 
1992; Hoekema et al., 1993; Hiei et al., 1994; Komari et 
al., 1996; Nauerby et al., 1997; Klee, 2000). Some of 
these factors are summarized in Tables 1 and 2 for 
selected plant species. Recently, some other factors 
have been found important in influencing the efficiency of 
Agrobacterium -mediated genetic transformation of crops. 
This review shall summarize those factors for further 
ptimization  of   existing   transformation   protocols   and 

 
 
 
 
establishment of new ones for recalcitrant plant species. 
 
 
OSMOTIC TREATMENT OF EXPLANT 
 
After the explant is chosen, in vitro manipulation of the 
explant may be necessary to enhance competency of 
plant cells to T-DNA delivery, and to facilitate plant cell 
recovery after infection. Unlike biolistic-mediated 
transformation, osmotic treatment enhancement of 
Agrobacterium-mediated transformation largely depends 
upon species.  Supplementation of co-culture medium 
with 68.5 gl-1 (200 m M) sucrose and 36 gl-1 (200 mM) 
glucose was extensively used in rice and maize 
transformation (Hiei et al., 1994; Zhao et al., 2001; Frame 
et al., 2002). However, the effect of osmotic medium on 
T-DNA delivery and stable transformation was not 
described. Uze et al., (1997) observed that plasmolysis 
with 65 gl-1 (292 mM) sucrose improved T-DNA delivery 
into precultured immature embryos rice. This treatment 
was extensively used to produce large numbers of 
transgenic plants for various projects (Ye et al., 2000; 
Lucca et al., 2001). However, osmotic treatment was not 
effective with precultured immature embryos of wheat 
(Uze et al., 2000). Osmotic treatment did not have a 
beneficial effect on T-DNA delivery in wheat (Cheng et 
al., 2003).  
 
 
PRECONDITIONING, CO-CULTIVATION TIME AND A. 
TUMEFACIENS DENSITY 
 
Optimizing the preconditioning time to 72 h and co-
cultivation time with A. tumefaciens to 48 h provided an 
increase in the transformation efficiency from a baseline 
4% to 25% in canola (Cardoza and Stewart, 2003). 
Zhang et al. (2000) reported that in Chinese cabbage, co-
cultivation for 72 h yielded the highest transformation 
frequency. Co-cultivation of explants with A. tumefaciens 
has made possible the use of some explants, which were 
hitherto recalcitrant for transformation experiment. 
Canola was transformed by co-cultivation of mesophyll 
protoplast with a strain of A. tumefaciens carrying nptII 
and KCS genes (Wang et al., 2005). Similarly, high 
efficient transformation of cotton was achieved by co-
cultured embryonic calli with A. tumefaciens (Wu et al., 
2005). Hiei et al. (1997) reported that transformation of 
rice was possible when the Agrobacterium density was 
between 1.0 x 106 and 1.0x1010 colony-forming units (cfu) 
ml-1, and the optimal concentration was approximately 1.0 
x 1010 cfuml-1 (Hiei et al., 1994). The same density of A. 
tumefaciens was successfully used later in maize (Ishida 
et al., 1996) and adopted by many other laboratories for 
various genotypes and explants in rice. A. tumefaciens 
densities higher or lower than 1.0 x 1010 cfuml-1 were 
evaluated systematically with N6-based medium in maize 
(Zhao et al., 2001), transient GUS activity increased  with  



 
 
 
 
higher A. tumefaciens density, but the callus initiation 
frequency was reduced and peak transformation 
frequency was achieved with A. tumefaciens at 0.5 x 1010 
cfuml-1. Similar results were reported with sorghum 
immature embryos (Zhao et al., 2000). Experiments with 
various explants of wheat showed that higher A. 
tumefaciens density could increase transient GUS 
expression, but was not correlated with higher stable 
transformation frequency (Cheng et al., 1997). With 
wheat suspension cells as a model system, an optimal A. 
tumefaciens density of around 0.5 x 1010 cfu ml-1 was 
identified. With higher or lower A. tumefaciens density, 
both transient and stable transformation decreased. A. 
tumefaciens density higher than 1 x 1010 cfu usually 
damaged the plant cells, and resulted in lower cell 
recovery that ultimately reduced the stable transformation 
frequency. Nevertheless, when a higher density of A. 
tumefaciens is necessary for recalcitrant explants or 
species, transformation frequency can be improved by a 
short inoculation time, gently rinsing the explants after 
inoculation with fresh inoculation medium as performed in 
dicot transformation, or addition of a bactericide agent 
such as silver nitrate in the co-culture medium (Zhao et 
al., 2000; 2001; Zhang et al., 2003). 
Although efficient T-DNA delivery is a prerequisite for 
achieving efficient stable transformation in most cases, 
under many conditions increased T-DNA delivery has not 
resulted in increased stable transformation. For example, 
when surfactant was included in the inoculation medium 
for freshly isolated immature embryos of wheat, T-DNA 
delivery (as measured by transient gene expression) was 
increased, but stable transformation frequency was not 
improved. The likely reason for the lack of correlation 
between T-DNA delivery and stable transformation in this 
case was the detrimental effect of surfactant on plant 
cell/tissue recovery (Cheng et al., 1997). T-DNA delivery 
has correlated well with stable transformation frequency 
inoculation and co-culture conditions favour both T-DNA 
delivery and plant cell recovery. One example is the 
desiccation treatment post A. tumefaciens infection for 
precultured immature embryos or embryogenic calluses 
of wheat (Cheng et al., 2003). When T-DNA delivery is 
not rate-limiting for a given explant, adjust the 
transformation parameters to favour plant cell recovery 
has been an effective means of achieving efficient stable 
transformation. 
 
 
DESICCATION OF EXPLANTS 
 
A significant factor that enhances transformation of crop 
species is dessication of explants prior to, or post, A. 
tumefaciens infection. Arencibia et al. (1998) reported 
that air-drying sugarcane suspension cells prior to 
inoculation under laminar flow conditions for 15-60 min 
slightly improved T-DNA delivery and subsequently 
increased    transformation   efficiency,   but   the   actual 
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desiccation stringency was not defined in this report. 
Similarly, air-drying calluses derived from rice suspension 
cultures for 10-15 min increased the transformation 
efficiency 10-fold or more as compared to the control 
without air-drying (Urushibara et al., 2001). It is unclear to 
the investigators what factors were affected by air-drying, 
but it is possible that plasmolysis or wounding may be 
important. The effect of air-drying on other explants of 
rice such as embryonic calluses and precultured 
immature embryos was not evaluated. Using the same 
air-drying conditions, it was shown that air-drying 
precultured immature embryos and embryogenic calluses 
in wheat prior to inoculation did not have the same effect 
as in sugarcane and rice. However, Cheng et al. (2003) 
reported that desiccation of precultured immature 
embryos, suspension culture cells, embryonic calluses of 
wheat, and embrogenic calluses of maize greatly 
enhanced T-DNA delivery and plant tissue recovery after 
co-culture, leading to increased stable transformation 
frequency. This treatment was not only effective in 
monocot species, but also improved T-DNA delivery in 
recalcitrant dicot species such as soybean suspension 
cells based on our preliminary study (Cheng and Fry, 
2000). Although the molecular mechanism of desiccation 
during co-culture remains unclear, it is known that 
desiccation suppresses the growth of Agrobacterium 
similar to the effect observed with silver nitrate. In 
addition, maize embryogenic calluses from the 
desiccation treatment recovered better than explants co-
cultured under non-desiccation conditions (with H2O), 
when co-culture plates were supplemented with 20 µM 
silver nitrate. Furthermore, osmotic treatments and 
abscisic acid (ABA) treatment before and during 
inoculation, and during co-culture, did not have the same 
effect on T-DNA delivery as the desiccation treatment. 
 
 
ANTINECROTIC TREATMENTS  
 
With respect to pretreatments, antinecrotic mixtures for 
pre-induction were shown to be important for reducing 
oxidative burst. Enrique-Obregon et al. (1998) treated 
merismatic spindle sections of sugarcane with a medium 
containing 15 mgl-1 (0.09 µM) ascorbic acid, 40 mgl-1(0.33 
µM) cysteine, and 2 mgl-1(0.01µM) silver nitrate. An 
efficient transformation system was developed using this 
pretreatment in sugarcane. Transformed calluses were 
obtained only when the mixture of these antinecrotic 
compounds was added in their previous study (Enrique-
Obregon et al., 1998). A similar protocol was applied to 
rice transformation using seedling explants (Enrique-
Obregon et al., 1999). Explant viability was significantly 
improved when the plantlet explant were treated with this 
mixture of compounds. Inclusion of cysteine in the co-
culture medium led to an improvement in both transient 
β-glucuronidase (GUS) expression in target cells and a 
significant increase in stable transformation  frequency  in 
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maize. In Olhoft and Somers (2001) and Olhoft et al. 
(2003), T-DNA transfer into cotyledonary-node cells and 
genomic integration were increased through the inclusion 
of thiol compounds in the solid co-cultivation medium, 
resulting in an increased production of transgenic plants. 
Hygromycin B selection combined with the inclusion of 
the thiol compounds L-cysteine, dithiothreitol (DDT) and 
sodium thiosulphate in the co-cultivation medium, further 
improved the production of transgenic plants, with 
transformation efficiencies as high as 16.4% of 
independent Southern-positive To plants produced per 
explants treated (Olhoft et al., 2003). Inclusion of silver 
nitrate in co-culture medium enhanced stable 
transformation in maize (Armstrong and Rout, 2001; 
Zhao et al., 2001). Silver nitrate significantly suppresses 
the Agrobacterium growth during co-culture without 
compromising T-DNA delivery and subsequent T-DNA 
integration. The suppressed Agrobacterium growth on the 
target explants could facilitate plant cell recovery and 
result in increased efficiency of transformation (Cheng et 
al., 2003). 
 
 
TEMPERATURE 
 
The effect of temperature during co-culture on T-DNA 
delivery was first reported in dicot species. A temperature 
of 22oC was found to be optimal for T-DNA delivery in 
tobacco leaves (Dillen et al., 1997). However, in another 
report, co-culture at 25oC led to the highest number of 
transformed plants of tobacco, even though 190C was 
optimal for T-DNA delivery (Salas et al., 2001). These 
results indicate that the optimal for stable transformation 
with a given species and explant. The optimal 
temperature for stable transformation should be 
evaluated with each specific explant and Agrobacterium 
strain involved (Salas et al., 2001). In monocots, the co-
culture temperature for most of the crops ranged from 24 
to 250C, and in some cases, 280C was used for co-
culture (Rashid et al., 1996; Arencibia et al., 1998; 
Enriquez-Obregon et al., 1998; Hashizume et al., 1999). 
The effect of lower temperature (≤ 230C) on T-DNA 
delivery and stable transformation was also evaluated. 
Kondo et al. (2000) tested the effect of four temperatures, 
namely 18, 20, 22 and 240C on T-DNA delivery with garlic 
calluses. The highest transient GUS expression was 
observed at 220C, in which 64% of the total calluse 
showed GUS activity. The ratio of GUS-stained calluses 
decreased by 85% at 200C  and by 69% at 240C. Higher 
transformation frequency was observed in maize 
immature embryo transformation at 200C than at 230C 
when using a standard binary vector (Frame et al., 
2002).Transgenic maize plants have also  been obtained 
from elite inbred lines PHP38 and PHN46 by co-culture of 
the immature embryos at 200C followed by 280C 
subculture (Gordon-Kamm et al., 2002). The effect of 
temperature on both transient  and  stable  transformation 

 
 
 
 
was extensively studied in other laboratories using 
suspension-cultured wheat (cv. Mustang) and maize (cv. 
BMS) cells as model systems. The optimal temperature 
for both T-DNA delivery and stable transformation was 
23-250C for wheat and ∼230C for maize (Rout et al., 
1996). 
 
 
SURFACTANTS 
 
Including surfactants such as Silwet L77 and pluronic 
acid F68 in inoculation medium greatly enhanced T-DNA 
delivery in immature embryos of wheat (Cheng et al., 
1997). Surfactants may enhance T-DNA delivery by 
aiding A. tumefaciens attachment and or by elimination of 
certain substances that inhibit A. tumefaciens 
attachment. The surfactant Silwet L77 was also shown to 
be useful to the success of the floral dip method of 
Arabidopsis thaliana transformation. Surfactant added to 
the inoculation medium may play a role similar to vacuum 
infiltration, facilitating the delivery of A. tumefaciens cells 
to closed ovules, the primary target for A. tumefaciens 
during in planta transformation of A. thaliana (Ye et al., 
1999; Bechold et al., 2000; Desfeux et al., 2000). 
 
 
INOCULATION AND CO-CULTURE MEDIUM 
 
Medium component, sugar, plant growth regulators, and 
vir induction chemicals are also important factors that 
affect transformation frequency. The modified N6 medium 
(Chu et al., 1995) containing 2,4-dichlorophenoxyacetic 
acid (2,4-D) and casamino acids was shown to be 
suitable for co-culture in rice. Several laboratories with 
different genotypes and explants adopted a similar 
medium recipe. MS (Murashige and Skoog, 1962) or a 
modified MS-based medium was shown to be suitable for 
inoculation and co-culture in several report of rice 
transformation (Dong et al., 1996; Enriquez-Obregon et 
al., 1999; Mohanty et al., 1999; Luca et al., 2001). Ishida 
et al. (1996) reported transformation of maize immature 
embryo using LS-based (Linsmaier and Skoog, 1965) 
medium, and N6-based medium failed to generate 
transformed plants. With additional component added in 
the mixture such as silver nitrate. Zhao et al. (2001) 
showed that N6-based medium was also suitable for 
inoculation and co-culture of immature maize embryos, 
resulting in transgenic plants. Similarly, the addition of 
CaCl2 in the medium increased transformation efficiency 
in barley (Kumlehn et al., 2006). 
Reducing the salt strength in the inoculation and co-
culture media was reported as beneficial for 
transformation of canola (Fry et al., 1987). Medium with 
reduced salts enhanced T-DNA delivery in wheat (Cheng 
et al., 1997). This treatment was used to regenerate 
stable transformed wheat plants from embryogenic callus 
with a superbinary vector in a recent study  (Khanna  and 



 
 
 
 
Daggard, 2003). Medium with reduced salts also 
enhanced T-DNA delivery in maize (Armstrong and Rout, 
2001), and half-strength MS salts in both inoculation and 
co-culture media have been used in maize transformation 
(Zhang et al., 2003). The impact of salt strength within 
the inoculation and co-culture medium on transient GUS 
expression was extensively assessed in barley with 
immature embryos as the target explants (Ke et al., 
2002). One-tenth MS salt strength enhanced transient 
GUS expression 10-fold over full-strength salts. 
Furthermore, the distribution of cells expressing the GUS 
gene within each set of immature embryos was clearly 
altered, showing significantly more cells on the scutellar 
surface expressing GUS. 
Chemicals such as acetosyringone for vir induction are 
recommended in most of crops transformation protocols 
(Hiei et al., 1994; Ishida et al., 1996; Cheng et al., 1997; 
Tingay et al., 1997; Zhao et al., 2000; Kumlehn et al., 
2006). When acetosyringone was omitted, the level of 
transient GUS expression was low and stable 
transformed plants could not be regenerated in rice, 
onion or barley (Rashid et al., 1996; Hiei et al., 1997; 
Zheng et al., 2001; Kumlehn et al., 2006). However some 
explants of monocot species could be efficiently 
transformed without the aid of external vir induction 
chemicals for special treatment. For example, 
meristematic sections of sugarcane pretreated with an 
antinecrotic mixture (Enriquez-Obregon et al., 1999), and 
precultured immature embryos and embryogenic calluses 
of wheat co-cultured under desiccation conditions could 
be efficiently transformed (Cheng et al., 2003). 
 
 
ANTIBIOTICS 
 
Antibiotics such as cefotaxime, carbenecillin and timentin 
have been used regularly in Agrobacterium-mediated 
transformation of crops following co-culture to suppress 
or eliminate Agrobacterium (Cheng et al., 1996; Bottinger 
et al., 2001; Sunikumar and Rathore, 2001). Although 
cefotaxime worked will in Agrobacterium-mediated 
transformation of rice and maize initially, it was later 
found that cefotaxime at a concentration of 250 mgl-1 
(Ishida et al., 1996) had a detrimental effect to maize Hi II 
callus, Callus formation was greatly reduced when 
cefotaxime (50 or 250 mgl-1) was added in the callus 
induction medium, and consequently transformation 
frequency was reduced 3-fold compared to that with 
carbenicillin (100 mgl-1). Carbenicillin at 100 mgl-1 was 
used for all the subsequent experiments (Zhan et al., 
2001). Carbenicillin has been the antibiotic of choice in 
reports of Agrobacterium-mediated transformation of 
wheat and maize (Cheng et al., 1997, 2003; Zhang et al., 
2003). On the other hand, 100 mg-l kanamycin was 
economical and improved the transformation efficiency in 
white spruce by enrichment of transformed tissue in bud-
forming callus (Le et al., 2001) and increased the 
proportion    of    positively    transformed    shots    during 
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subculture on kanamycin containing medium in peanut 
and pigeon pea (Sharma and Anjaiah, 2000; Thu et al., 
2003). 
 
 
SELECTABLE MARKER 
 
The most widely used selectable markers for 
transformation of crops are genes encoding hygromycin 
phosphotransferase (hpt), phosphinothricin 
acetyltransferase (pat or bar), and neomycin 
phosphotransferase (nptII). Use of these marker genes 
under the control of constitutive promoters such as the 
35S promoter from cauliflower mosaic virus, the ubiquitin 
promoter from maize, works as efficiently for selection of 
Agrobacterium-transformed cells as for biolistics-
mediated transformation. For Asparagus and banana, the 
npt II gene under the control of the nopaline synthase 
promoter has been used to successfully select stable 
transformants with kanamycin (May et al., 1995; 
Limanton-Grevet and Jullien, 2001). The positive 
selectable marker phosphomannose isomerase was first 
used for Agrobacterium-mediated transformation of sugar 
beet and was recently used to enhance transformation of 
sorghum (Joersbo et al., 1998; Lucca et al., 2001; Gao et 
al., 2005). To improve selectable marker genes for crops, 
Wang et al. (1997) inserted introns into the coding region 
of hpt as the strategy used in enhancing transgene 
expression in monocot species (Simpson and Filipowics, 
1996). The intoduction of introns into the hpt not only 
improved transformation frequency in rice Agrobacterium-
mediated transformation due to the elevated hpt 
expression, but also reduced copy numbers of the marker 
gene. Furthermore, inserting the introns into the marker 
gene also enabled better control of Agrobacterium growth 
during the transformation process (Wang et al., 1997). 
This modified selectable marker enhanced stable 
transformation with elite rice and barley cultivars as well 
(Upadhyaya et al., 2000; Wang et al., 2001). Glyphosate-
insensitive plant 3-enolpyruvylshikimate-5-phosphate 
synthases (EPSPS) genes, the bacterial CP4 gene or a 
bacterial gene that degrades glyphosate, i.e. glyphosate 
oxidoreductase (GOX) gene, have been used in some 
laboratories to generate transgenic plants in wheat and 
maize with biolistics-mediated transformation approaches 
(Armstrong et al., 1995; Zhou et al., 1995; Russell and 
Fromm, 1997; Howe et al., 2002). One of these genes, 
CP4, has been successfully used in Agrobacterium 
transformation of wheat (Cheng et al., 2003; Hu et al., 
2003).Transformation frequency was comparable to 
biolistics-mediated transformation in wheat (Hu et al., 
2003) when a desiccation-based protocol was used. 
 
 
CONCLUSION  
 
Efficient transformation systems using readily available 
explants are in high demand for agronomically important 
plants.  Though   fertile   transgenic   plants   have   been 
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generated from more than a dozen plants, yet the 
transformation frequency for most species is still low. In 
some cases, only a few transformed plants have been 
regenerated. Further optimizing the transformation 
parameter such as inoculation, co-culture condition and 
selectable marker could increase transformation 
frequency. Since indication that explant competency to 
Agrobacterium infection using techniques such as 
desiccation, antinecrotic mixture for pre-induction as well 
as plant growth regulation treatment is emerging. 
Understanding the molecular basis of several factors 
such as desiccation and antinecrotic treatments affecting 
both T-DNA delivery and stable transformation may 
facilitate application of these treatments to other species 
or transformation systems to further improved many 
published protocols. 
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