Standard Review

The large-scale use of feruloyl esterases in industry

Ahmed E Fazary and Yi-Hsu Ju*

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106-07, Taiwan, ROC.

Accepted 8 September, 2008

Presently industrial enzyme companies sell enzymes for a wide variety of applications. The estimated value of world enzyme market is presently about US \$ 4.3 billion and it has been forecasted to grow to almost US \$ 5.1 billion by 2009. Detergents (37%), textiles (12%), starch (11%), baking (8%) and animal feed (6%) are the main industries; totally these industries use about 74% of industrially produced enzymes. Enzymes are also indirectly used in biocatalytic processes involving living or dead and permeabilized microorganisms. This review concentrates on the use of isolated feruloyl esterases enzyme preparations in large scale and speciality applications and chemical manufacturing.

Key words: Feruloyl esterases, industry, biotechnology.

Table of contents

- 1. Introduction
- 2. What is Feruloyl Esterases?
- 3. Feruloyl Esterases; Research and Industry
- 4. Feruloyl Esterases applications in Pulp and Paper Industry
- 5. Feruloyl Esterases in Food and Pharmaceutical Industry
- 6. Feruloyl Esterases in Bio-fuel Industry
- 7. Conclusion
- 8. References

INTRODUCTION

There is an increased interest in feruloyl esterases (FAEs) production which has considerable roles in biotechnological processes for various industrial and medicinal applications. As reported by us in 2007 (Fazary et al., 2007, 2008), the quantum of research carried out in FAEs has incre-ased dramatically since 1990. For example, during 1990 – 2000 and 2001–mid 2008, the average number of re-fereed papers involving FAEs as a major component was 24 and 60, respectively. It is interesting to note that the dramatic increase in publications concerning to FAEs

between 2001 (four papers) and mid 2008 (20 papers) coincides with the most recent discoveries on isolation, purification, and characterization of FAEs including fungal and bacterial FAEs (Figure 1).

Results of search for feruloyl esterases in US Patent Collection data base, US Patent applications, European Parliament documents (EP) and in World Intellectual Property Organization-Patent Cooperation Treaty (WIPO-PCT) reveal 29, 50, 11, and 75 patents, respectively (Figure 2) (Table 1).

There was also remarkable increase in the number of publications concerned with ferulic acid (the related compound to FAEs). The average number of documents was 242 paper for the period (1990 – 2000), while for the period 2001–2008, the average number was 575 paper

^{*}Corresponding author. E-mail: yhju@mail.ntust.edu.tw. Tel: +886 2 2737 6612. Fax: +886 2 2737 6644.

Table 1. Summary of Patents on feruloyl esterases

No.	Patent No.	Patent Title			
1	US20080145903	Process of Producing			
2	US20080138872	Fermentation Products Processes for Producing Fermentation Products			
3	US20080138862	Enzymatic Hydrolysis of Biomasses Having a High Dry Matter (Dm) Content			
4	US20080138856	Enzymatic Enantioselective Ester or Amide Hydrolysis or Synthesis			
5	WO/2008/064025A2	Cloning and sequencing of the ferulate esterases gene from lactobacillus buchneriln4017			
6	WO/2008/061982A1	Novel Method to Reduce Compounds Involved in Maillard Reactions in Thermally Processed Plant-Based Food Products			
7	US20080118491	Xylanase gene sequences from the genomic DNA of unpurified rumen microorganisms			
8	7374925	<i>Penicillium funiculosum</i> mutant strain			
9	US20080115241	Cloning and Sequencing of the Ferulate Esterase Gene from Lactobacillus Buchneri LN4017			
10	7371423	Method for preparing flour doughs and products made from such doughs using lipase			
11	US20080096253	Methods of making nanotechnological and macromolecular biomimetic structures			
12	WO/2008/039353A2	Novel pectate lyase and method of. use for bio-scouring			
13	US20080076821	Intranasally administering curcumin prodrugs to the brain to treat alzheimer's disease			
14	WO/2008/028300A1	Oral polymeric membrane feruloyl esterase producing bacteria formulation_			
15	US20080050321	Formulations with Feruloyl Glycerides and Methods of Preparation			
16	US20080026101	Food products			
17	US20080025921	Conductance of Improperly Folded Proteins Through the Secretory Pathway And Related Methods For Treating Disease			
18	WO/2008/008070A2	Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose			
19	WO/2008/003090A2	Formulations with Feruloyl Glycerides and Methods of Preparation			

Table 1 Continued

21	US20070254336	Transcription Factors
22	WO/2007/115723A2	Fusion fungal proteins between plant-wall degrading enzymes and a swollenin and their uses
23	US20070238155	Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose
24	US20070232495	Compositions and methods to add value to plant products, increasing the commercial quality, resistance to external factors and polyphenol content thereof
25	US20070224668	Process for producing 4- vinylguaiacol by biodecaroxylation of ferulic acid
26	US20070202566	Hydrolases, Nucleic Acids Encoding Them And Methods For Making And Using Them
27	WO/2007/092314A2	Esterases and Related Nucleic acids and methods
28	US20070184175	Continuous production of cereal flour and whole-cereal flour for grain-based foods, using a low- moisture precooking
29	US20070179076	Detergent composition
30	WO/2007/076436A2	Continuous production of cereal flour and whole-cereal flour for grain-based foods, using a low- moisture precooking
31	US20070154591	Chewing gum comprising biodegradable polymers and having accelerated degradability
32	EP1309674B1	Stereo-selective esterase from Aspergillus oryzae
33	7226770	Lipolytic enzyme variant
34	WO/2007/055735A2	Hydrolyses, nucleic acids encoding them and methods for making and using them
35	US20070077636	Methods of making compositions comprising a uv-absorbing chromophore
36	US20070072185	Carbohydrate-binding modules of a new family
37	WO/2007/019949A1	Fusion proteins between plant cell-wall degrading enzymes, and their uses
38	US20070037259	Integration of alternative feedstreams for biomass treatment and utilization
39	EP1752533A1	Fusion proteins between plant cell-wall degrading enzymes, and their uses
40	US20070031953	Treatment of biomass to obtain ethanol
41	US20070031919	Treatment of biomass to obtain a target chemical
42	US20070031918	Treatment of biomass to obtain

Table 1 Continued

43	US20070029252	fermentable sugars System and process for biomass				
43	0320070029252	treatment				
44	7172997	Lipolytic enzyme variant				
45	WO/2006/136161A2	Amylases for pharmaceutical use				
46	WO/2006/136160A2	Proteases for pharmaceutical use				
47	WO/2006/136159A2	Lipases for pharmaceutical use				
48	EP1726213A1	Soluble coffee product				
49	7132589	Manipulation of the phenolic acid				
		content and digestibility of plant cell walls by targeted expression				
		of genes encoding cell wall				
		degrading enzymes				
50	US20060229223	Lipolytic enzyme variant				
51	7091023	Stereoselective esterase from				
52	US20060035800	Aspergillus oryzae Detergent composition				
53	WO/2006/003009A2	NEW ESTERASES FROM				
00	W0/2000/000003/12	RUMEN				
		Manipulation of the phenolic acid				
54	US20060005270	content and digestibility of plant cell walls by targeted expression				
		of genes encoding cell wall				
		degrading enzymes				
55	WO/2005/115445A1	ENZYMES FOR				
		PHARMACEUTICAL USE				
56	US20050227344	Mixture obtained from penicillium funiculosu				
57	US20050181446	Protein variants having modified				
		immunogenicity				
58	EP1555322A1	Lipolytic enzyme variant				
59	US20050118665	Methods for conducting assays for enzyme activity on protein				
		for enzyme activity on protein microarrays				
60	WO/2005/042735A1	A carbohydrate-binding module of				
		a new family				
61	WO/2005/040107A2	Methods for Making Simvastatin and Intermediate				
62	US20040266883	Conductance of improperly folded				
02	0020010200000	proteins through the secretory				
		pathway and related methods for				
		treating disease				
63	6828136	Esterase enzymes, DNA encoding esterase enzymes and vectors				
		and host cells incorporating				
		same				
64	US20040231060	Methods to enhance the activity of				
0.5		lignocellulose-degrading enzymes				
65	WO/2004/081185A2	Methods to enhance the activity of lignocellulose-degrading enzymes				
67	US20040152180	Lipolytic enzyme variant				
68	WO/2004/053039A2	Detergent composition				
		comprisingEndoglucanase				
69	6750051	Compositions and methods for				
70	ED0004206D1	enhancing fiber digestion				
70	EP0904396B1	Production of vanillin				

Table 1 Continued

·	NIO (000 1/000					
71	WO/2004/009804A2	Feruloyl esterases and uses thereof				
72	US20040005674	Methods for enzymatic hydrolysis of lignocellulose				
73	US20040002136	Transformation system in the field of filamentous fungal hosts				
74	US20030236300	Conductance of improperly folded proteins through the secretory pathway and related methods for treating disease				
75	6664088	Production of vanillin				
76	WO/2003/093420A2	Methods enzymatic hydrolysis of lignocellulose				
77	US20030199048	Stereoselective estarase from aspergillus oryzae				
78	US20030175384	Method for the extraction of aleurone from bran				
79	US20030167511	Production of p-hydroxybenzoic acid				
80	US20030149113	acid Conductance of improperly folded proteins through the secretory pathway and related methods for treating disease				
81	6602700	Phenolic acid esterases, coding sequences and methods				
82	US20030144165	Lipolytic enzyme variant				
83	6589760	Methods of separating a corn fiber lipid fraction from corn fiber				
84	6586212	Corn fiber for the production of advanced chemicals and materials: derivatizable cellulose and cellulose derivatives made therefrom				
85	WO/2003/049717A2	Conductance of improperly folded proteins through the secretory pathway and related methods for treating disease				
86	US20030108642	Penicillium funiculosum strain useful for the production of enzymes				
87	WO/2003/046163A2	Multifunctional Caffeic Acid O- methyltransferase				
88	6573086	Transformation system in the field of filamentous fungal hosts				
89	WO/2003/043411A2	Manipulation of the phenolic acid content and digestibility of plant cell walls				
90	6534286	Protein production in Aureobasidium pullulans				
91	6534101	Enzymes mixture obtained from Penicillium funiculosum				
92	US20030035822	Compositions and methods for enhancing fiber digestion				
93	US20030032161	Esterase enzymes, DNA encoding esterase enzymes and vectors and host cells incorporating same				

Table 1 Continued

94 US20030024009 Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes 95 WO/2002/068666A1 Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes 97 WO/2002/055679A2 Hernostable lipolytic enzyme variant 98 6388069 Corn fiber for the production of advanced chemicals and materials: arabinoxylan and arabinoxylan derivatives made therefrom 99 6368833 Esterases, DNA encoding therefor and vectors and host incorporating same 100 6365390 Phenolic acid esterases, coding sequences and methods 101 6352845 Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and materials. 102 WO/2002/012472A1 Stereoselective esterase from Aspergillus vadensis. 104 WO/2001/08578A2 Protein production in Aureobasidium pullulans 105 6323011 Production of vanillin 106 WO/2001/083770A2 Upolytic enzyme variant 107 WO/2001/083559A2 Production of vanillin 108 US20010014467 Production of vanillin 109 WO/2001/02433A2 Talaromyces emersonii Xylans						
Sectioncell walls by targeted expression of genes encoding cell wall degrading enzymes95WO/2003/000898A1Plant genes involved in defence against pathogens96WO/2002/068666A1Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes97WO/2002/055679A2thermostable to genes encoding cell wall degrading enzymes97WO/2002/055679A2thermostable and variant986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan derivatives made thereform996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods thereof102WO/2002/012472A1Stereoselective esterase from Aspergillus vargea103WO/2001/086578A2Protein production of proteins and polypeptides using fungal cells, in particular Aspergillus vargea104WO/2001/083770A2Lipolytic enzyme variant Production of vanillin1056323011Production of vanillin tangal cells, in particular Aspergillus vargea104WO/2001/04467Production of vanillin tanatorials shaving modified immungenicity108US20010014467Production of variallin tarials with hydrolytic enzymes isolated from humicola species toxidase-promoted gelling of phenolic polymers <td>94</td> <td>US20030024009</td> <td>Manipulation of the phenolic acid</td>	94	US20030024009	Manipulation of the phenolic acid			
95WO/2003/000898A1Plant genes involved in defence against pathogens96WO/2002/068666A1Manipulation of the phenolic acid content and digestibility of plant degrading enzymes97WO/2002/055679A2thermostable lipolytic enzyme variant986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan and arabinoxylan derivatives made thereform996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and monsaccharides and materials: separation of monosaccharides and materials: approximation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2001/096578A2Protein production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/083770A2Lipolytic enzyme variant Production of vanillin1056323011Protein and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/020555A2Methods of treating plant materials with hydrolytic enzymes isolated from humicola species isolated from the field of filamentous fungal hosts1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fru						
95WO/2003/000898A1degrāding enzymes96WO/2002/068666A1Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes97WO/2002/055679A2thermostable lipolytic enzyme variant986388069Corn fiber for the production of advanced chemicals and materials: arabinoxylan and host incorporating same996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin Uarom and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/09255A2Methods of treating plant materials with hydrolytic enzyme sisolated from humicola species loxidase-pornoted gelling of phenolic polymers1116232101Oxidase-pornoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1 WO/2000/014243A1Orange fruit pectinacetylesterase Phenolic caid esterases, coding sequences and methods						
96WO/2002/068666A1against pathogens Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes97WO/2002/055679A2thermostable lipolytic enzyme variant986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan derivatives made thermostable lipolytic enzyme variant996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2001/096578A2Protein production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/083770A2Lipolytic enzyme variant Production of vanillin1056323011Production of vanillin106W22001/014243A2Talaromyces emersoni Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic coid esterases, coding sequences and methods			degrading enzymes			
96WO/2002/068666A1Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes97WO/2002/055679A2thermostable lipolytic enzyme variant986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan and erivatives made therefrom996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus vadensis.103WO/2001/096578A2Protein production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/083770A2Protein production in Aureobasidium pullulans1056323011Production of variants having modified immunogenicity108US20010014467Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	95	WO/2003/000898A1				
content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes97WO/2002/055679A2thermostable lipolytic enzyme variant986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan and arabinoxylan derivatives made therefrom996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and materials: aspergillus oryzae102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2001/096578A2Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/083770A2Lipolytic enzyme variant1056323011Production of vanillin106WO/2001/042433A2Talaromyces emersonii Xylanses Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
97WO/2002/055679A2cell walls by targeted expression of genes encoding cell wall degrading enzymes97WO/2002/055679A2thermostable lipolytic enzyme variant986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan derivatives made therefrom996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein Production of vanillin1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant Production and Use of Protein Variants having modified immunogenicity108US2010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	96	WO/2002/068666A1				
ofgenesencodingcellwall degrading enzymes97WO/2002/055679A2thermostablelipolyticenzyme variant986388069Corn fiber for the production of advanced arabinoxylanand materials:arabinoxylanand arabinoxylan996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals102WO/2002/012472A1Stereoselective103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus oryzae104WO/2001/096578A2Production of vanillin Lipolytic enzyme variant1056323011Production of vanillin Aureobasidium pullulans106WO/2001/083770A2Lipolytic enzyme variant Production of vanillin108US20010014467Production of vanillin Talaromyces emersonii Xylanses Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1 WO/2000/017368A1Transformation system in the field of filamentous fungal hosts						
97WO/2002/055679A2degrading enzymes thermostableipolyticenzyme variant986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan derivatives made therefrom996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin US20010014467108US20010014467Production of vanillin variants having modified immunogenicity108US20010014467Production of vanillin Dipoloci polymers1106232301Oxidase-promoted gelling of phenolic polymers1116232101Oxidase-promoted gelling of phenolic polymers113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1 WO/2000/014243A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
variantvariant986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan derivatives made therefrom996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of advanced chemicals104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Protein duction of vanillin108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange furit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
986388069Corn fiber for the production of advanced chemicals and materials:arabinoxylan and arabinoxylan derivatives made therefrom996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein Production of vanillin1056323011Production of vanillin Uipolytic enzyme variant Production of vanillin106WO/2001/083770A2Protein and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin Talaromyces emersonii Xylanses1106245363Coxidase-promoted gelling of phenolic polymers1116137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungul hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	97	WO/2002/055679A2				
advancedchemicalsand materials:arabinoxylanand arabinoxylan996368833Esterases, DNA encoding therefor and1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced102WO/2002/012472A1Stereoselective103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Production of vanillin1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083359A2Production of vanillin108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase114WO/2000/014243A1Phenolic acid esterases, coding sequences and methods						
materials:arabinoxylanand arabinoxylanderivativesmade therefrom996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Protein production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/042433A2Production of vanillin108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	98	6388069				
996368833arabinoxylan derivatives made therefrom996368833Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/02825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
996368833therefrom1006365390Esterases, DNA encoding therefor and vectors and host incorporating same1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083359A2Production of vanillin108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
1006365390andvectorsandhost1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein Production of vanillin Lipolytic enzyme variant1056323011Production of vanillin Lipolytic enzyme variant107WO/2001/083559A2Production of vanillin Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
1006365390incorporating same Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods thereof102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	99	6368833				
1006365390Phenolic acid esterases, coding sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/042433A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
1016352845sequences and methods1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods thereof102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production of vanilin1056323011Production of vanilin106WO/2001/083770A2Production of vanilin107WO/2001/083559A2Production of vanilin108US20010014467Production of vanilin109WO/2001/042433A2Talaromyces emersonii Xylanses1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungul113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	100	6265200				
1016352845Corn fiber for the production of advanced chemicals and materials: separation of monosaccharides and methods thereof102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Protein of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production of vanillin108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungal hosts114WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/014243A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	100	0303390				
advancedchemicalsand materials:102WO/2002/012472A1Stereoselectiveesterasefrom Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Proteinproductionin Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	101	6352845	•			
102WO/2002/012472A1monosaccharides and methods thereof103WO/2002/002825A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Protein of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production of vanillin108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	-					
102WO/2002/012472A1thereof103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Protein of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production of vanillin108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods			materials: separation of			
102WO/2002/012472A1Stereoselective esterase from Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1 WO/2000/014243A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
103WO/2002/002825A1Aspergillus oryzae103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1 WO/2000/014243A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	102	W/O/2002/012472A1				
103WO/2002/002825A1Method for the production of proteins and polypeptides using fungal cells, in particular Aspergillus vadensis.104WO/2001/096578A2Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1 WO/2000/014243A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	102	W0/2002/0124/2A1				
104WO/2001/096578A2fungalcells,inparticular104WO/2001/096578A2Proteinproductionin1056323011Production of vanillinIn106WO/2001/083770A2Lipolytic enzyme variantProduction and Use of Protein107WO/2001/083559A2Production of vanillin108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1 WO/2000/014243A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	103	WO/2002/002825A1				
104WO/2001/096578A2Aspergillus vadensis.1056323011Protein production in Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
104WO/2001/096578A2Protein Aureobasidium pullulans1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
1056323011Aureobasidium pullulans106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	104	WO/2001/006578A2				
1056323011Production of vanillin106WO/2001/083770A2Lipolytic enzyme variant107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	104	W0/2001/0303/0A2				
107WO/2001/083559A2Production and Use of Protein Variants having modified immunogenicity108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	105	6323011				
Variantshavingmodified108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	106	WO/2001/083770A2	Lipolytic enzyme variant			
108US20010014467immunogenicity109WO/2001/042433A2Production of vanillin1106245363Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	107	WO/2001/083559A2				
108US20010014467Production of vanillin109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
109WO/2001/042433A2Talaromyces emersonii Xylanses1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	100					
1106245363Methods of treating plant materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods						
1116232101materials with hydrolytic enzymes isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase115WO/2000/014243A1Phenolic acid esterases, coding sequences and methods						
1116232101isolated from humicola species1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase Phenolic acid esterases, coding sequences and methods	110	0240000				
1116232101Oxidase-promoted gelling of phenolic polymers1126137032Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase115WO/2000/014243A1Phenolic acid esterases, coding sequences and methods						
1126137032phenolic polymers113WO/2000/020555A2Xylanase obtained from an anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase115WO/2000/014243A1Phenolic acid esterases, coding sequences and methods	111	6232101	-			
113WO/2000/020555A2anaerobic fungus113WO/2000/020555A2Transformation system in the field of filamentous fungal hosts114WO/2000/017368A1Orange fruit pectinacetylesterase115WO/2000/014243A1Phenolic acid esterases, coding sequences and methods						
 113 WO/2000/020555A2 Transformation system in the field of filamentous fungal hosts 114 WO/2000/017368A1 Orange fruit pectinacetylesterase 115 WO/2000/014243A1 Phenolic acid esterases, coding sequences and methods 	112	6137032				
114WO/2000/017368A1of filamentous fungal hosts115WO/2000/014243A1Orange fruit pectinacetylesterasePhenolic acid esterases, coding sequences and methods			-			
114WO/2000/017368A1Orange fruit pectinacetylesterase115WO/2000/014243A1Phenolic acid esterases, coding sequences and methods	113	WO/2000/020555A2				
115 WO/2000/014243A1 Phenolic acid esterases, coding sequences and methods	114	WO/2000/017368A1	5			
sequences and methods						
	116	EP0976838A1	Enzymes mixture			

Table 1 Continued

117	WO/2000/004053A1	Purification of Hemicelluloses materials				
118	WO/1999/057325A2	Enzyme Miurext				
119	5948667	Xylanase obtained from an				
121	WO/1999/011672A1	Fractionation of Hemicelluloses materials				
122	5869720	Transgenic cotton plants producing heterologous peroxidase				
123	5824533	Orpinomyces xylanase proteins and coding sequences				
124	WO/1998/014594A2	Esterases, DNA encoding therefor and vectors and host incorporating same				
125	WO/1997/035999A2	Production of vanillin				
126	5608148	Transgenic cotton plants producing heterologous peroxidase				
127	5591619	Aureobasidium pullulans xylanase, gene and signal sequence				
128	WO/1996/040182A1	Identification of a potent antioxidant from Aloe barbadensis				
129	WO/1996/036701A1	Orpinomyces xylanase proteins and coding sequences				
130	WO/1996/003440A1	Oxidize-Promoted Gelling of Phenolic Polymers				
131	WO/2004/009804A3	Feruloyl Esterases and uses thereof				

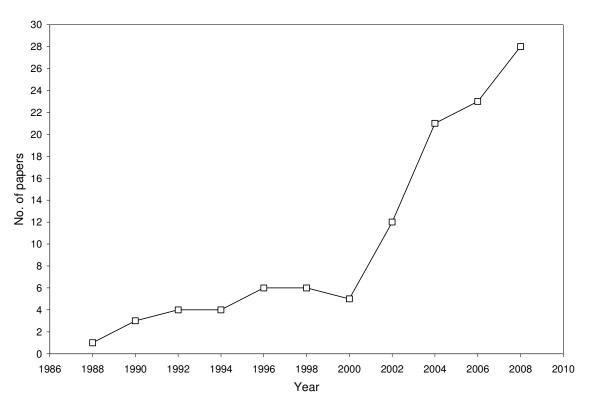


Figure 1. Annual publications on feruloyl esterases

Figure 2. Patents recorded for feruloyl esterases. USP; United States Patent collection data base. USPA; United States Patent Applications data base. EPD; European Parliament documents. WIPO-PCT; World Intellectual Property Organization-Patent Cooperation Treaty.

using the same search engine (Elsevier SDOS) (Figure 3).

In this review, we will try to report concise and complete highlights of the large-scale usage of such kind of enzyme (feruloyl esterases) in both academic research and industry.

WHAT IS FERULOYL ESTERASES?

Recently, it was reported that ferulic acid had been shown to link hemicellulose and lignin. Cross-linking of ferulic acids within cell wall components influences wall properties such as extensibility, plasticity, and digestibility, and limits the access of polysaccharidaes to their substrates (Borneman et al., 1990).

The complete degradation of plant cell wall polymers requires an array of enzymes with different activities. The hydrolysis of hydroxycinnamate esters in plant cell walls is catalyzed by cinnamoyl esterases (CEs; such as cinnamoyl ester hydrolases, feruloyl/p-coumaroyl esterases, and ferulic/p-coumaric acid esterases). CEs are a subclass of the carboxylesterases (EC 3.1.1.1) and characterized by a relatively high activity on various hydroxycinnamate esters (Fazary et al., 2007).

Two enzymes, feruloyl and cinnamoyl esterases (FAE-B), purified from *Aspergillus niger* strains (Fazary et al., 2008), have different physicochemical characteristics and catalytic properties against cinnamoyl model substrates, such as methyl derivatives of hydroxycinnamic esters and soluble feruloylated oligosaccharides derived from plant cell wall (Ralet et al., 1994). These enzymes are exocellular and the corresponding expression is inducible. A new strain of *A. niger* I-1472 was shown to produce numerous polysac-charide-degrading enzymes as well as esterases that released ferulic acid from natural feruloylated oligosac-charides, when grown on sugar beet pulp and maize bran (Hutnan et al., 2000).

FAEs (EC 3.1.1.73), including cinnamoyl esterases and cinnamic acid hydrolases, are a subclass of the carboxylic acid esterases (EC 3.1.1) that play a key physiological role in the degradation of the intricate structure of plant cell wall by hydrolyzing ferulate ester groups involved in the cross-linking between hemicelluloses and between hemicellulose and lignin (Lee et al., 2005). The use of multiple alignments of sequences or domains that show FAE activity, as well as related sequences, helped to construct a neighborhood-joining phylogenic tree (Table 2). The outcome of this genetic comparison supported substrate specificity data and allowed FAEs to be sub-classified into four types, A, B, C, and D (Crepin, et al. 2003a, b, c, 2004; Donaghy et al., 1998, 1995; Faulds et al., 2002, 1997, 1993), based on their substrate specificities towards synthetic methyl esters of hydroxycinnamic acids (ferulic acid, diferulic acids, p-coumaric acid, sinapinic acid, and caffeic acid) for substitutions on the phenolic ring, and on their amino acid sequence identity (protein sequence), indicating an evolutionary relationship among FAEs, acetyl xylan esterases, and certain lipases.

By looking in the Comprehensive Enzyme Information System (http://www.brenda-enzymes.info/), we found that there are only 22 protein database entries in that type of enzyme. Considering the remarkable impact of FAEs in

Primary Peptide Sequence	Species	GO Evidence [*]	Database	Reference	
MKQFSAKHALAVVVTAGHALAASTQGISEDL YTRLVEMATISQAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGGD TNLQLDTNYTLTPFDTLPQCNGCEVHGG YYIGWVSVQDQVESLVKQQVSQYPDYALTV TGHSLGASLAALTAAQLSATYDNIRLYTFG EPRSGNQAFASYMNDAFQASSPDTTQYFR VTHANDGIPNLPPVEQGYAHGGVEYWSVDP Y	Aspergillus awamori	ISS	UniProtKB/Swiss -Prot Q9P979	de Vries st et al., 1997	
SAQNTFVCTGDEVQCCEAQGGQGVNNAHT TYFGMTSGACTW					
FAEA_ASPN GMKQFSAKYALILLATAGQALAASTQGISEDLY NRLVEMATISQAAYADLCNIPSTIIKGEGaeA: Feruloyl esteraseKIYNAQTDINGWILRDDTSKEIITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNDCEVHGG YYIGWISVQDQVESLVKQQASQYPDYALTVT GHSLGASMAALTAAQLSATYDNVRLYTFG EPRSGNQAFASYMNDAFQVSSPETTQYFRV THSNDGIPNLPPADEGYAHGGVEYWSVDPY SAQNTFVCTGDEVQCCEAQGQQVNDAHT		IDA	UniProtKB/Swiss -Prot O42807	de Vries st et al., 1997	
MKQFSAKYAIAVVVTAGHALAASTQGISEDL YSRLVEMATISQAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNSCEVHGG YYIGWISVQDQVESLVQQQVSQFPDYALTVT GHSLGASLAALTAAQLSATYDNIRLYTFG EPRSNQAFASYMNDAFQASSPDTTQYFRVT HANDGIPNLPPADEGYAHGVVEYWSVDPYS AQNTFVCTGDEVQCCEAQGGQGVNNAHTT YFGMTSGHCTW	Aspergillus tubingensis	ISS	UniProtKB/Swiss -Prot O42815	de Vries st et al., 1997	
MKVASLLSLALPGAALAATDPFQSRCNEFQ NKIDIANVTVRSVAYVAAGQNISQAEVASV CKASVQASVDLCRVTMNISTSDRSHLWAEA WLPRNYTGRFVSTGNGGLAGCVQETDLNF A ANFGFATVGTNGGHDGDTAKYFLNNSEVLA DFAYRSVHEGTVVGKQLTQLFYDEGYNYSY YLGCSTGGRQGYQQVQRFPDDYDGVIAGS AAMNFINLISWGAFLWKATGLADDPDFISAN LWSVIHQEIVRQCDLVDGALDGIIEDPDFCAP VIERLICDGTTNGTSCITGAQAAKVNRA LSDFYGPDGTVYYPRLNYGGEADSASLYFT GSMYSRTEEWYKYVVYNDTNWNSSQWTLE S AKLALEQNPFNIQAFDPNITAFRDRGGKLLS YHGTQDPIISSTDSKLYYRRVANALNAAP SELDEFYRFFQISGMGHCGDGTGASYIGQG YGTYTSKAPQVNLLRTMVDWVENGKAPEY M PGNKLNANGSIEYMRKHCRYPKHNIHTGPG	Aspergillus niger	IDA	UniProtKB/Swiss -Prot Q8WZI8	de Vries st et al., 2002	
	MKQFSAKHALAVVVTAGHALAASTQGISEDL YTRLVEMATISQAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGGD TNLQLDTNYTLTPFDTLPQCNGCEVHGG YYIGWVSVQDQVESLVKQQVSQYPDYALTV TGHSLGASLAALTAAQLSATYDNIRLYTFG EPRSGNQAFASYMNDAFQASSPDTTQYFR VTHANDGIPNLPPVEQGYAHGGVEYWSVDP Y SAQNTFVCTGDEVQCCEAQGGQGVNNAHT TYFGMTSGACTW MKQFSAKYALILLATAGQALAASTQGISEDLY NRLVEMATISQAAYADLCNIPSTIIKGE KIYNAQTDINGWILRDDTSKEIITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNDCEVHGG YYIGWISVQDQVESLVKQQASQYPDYALTVT GHSLGASMAALTAAQLSATYDNVRLYTFG EPRSGNQAFASYMNDAFQVSSPETTQYFRV THSNDGIPNLPPADEGYAHGGVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGACTW MKQFSAKYAIAVVVTAGHALAASTQGISEDL YSRLVEMATISQAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNSCEVHGG YYIGWISVQDQVESLVQQQVSQFPDYALTVT GHSLGASLAALTAAQLSATYDNIRLYTFG EPRSNQAFASYMNDAFQVSSPETTQYFRV THSNDGIPNLPPADEGYAHGGVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGACTW MKVFSAKYAIAVVVTAGHALAASTQGISEDL YSRLVEMATISQAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNSCEVHGG YYIGWISVQDQVESLVQQQVSQFPDYALTVT GHSLGASLAALTAAQLSATYDNIRLYTFG EPRSNQAFASYMNDAFQASSPDTTQYFRVT HANDGIPNLPPADEGYAHGVVEYWSVDPYS AQNTFVCTGDEVQCCEAQGGQGVNNAHTT YFGMTSGHCTW MKVASLLSLALPGAALAATDPFQSRCNEFQ NKIDIANVTVRSVAYVAAGQNISQAEVASV CKASVQASVDLCRVTMNISTSDRSHLWAEA WLPRNYTGRFVSTGNGGLAGCVQETDLNFA A ANFGFATVGTNGGHDGDTAKYFLNNSEVLA DFAYRSVHEGTVVGKQLTQLFYDEGYNYSY YLGCSTGGRQGYQQVQRFPDDYDGVIAGS AAMNFINLISWGAFLWKATGLADDPDFISAN LWSVIHQEIVRQCDVDGALDGIIEDPDFCAP VIERLICDGTTNGTSCITGAQAAKVNRA LSDFYGPDGTVYYPRLNYGGEADSASLYFT GSMYSRTEEWYKYVVYNDTNWNSSQWTLE S AKLALEQNPFNIQAFDPNITAFRDRGGKLLS YHGTQDPIISSTDSKLYYRANALNAAP SELDEFYRFFQISGMGHCGDGTGASYIGQG YGTYSKAPQVNLLRTMVDWVENGKAPEY M	MKQFSAKHALAVVVTAGHALAASTQGISEDL YTRLVEMATISQAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGGD TNLQLDTNYTLTPFDTLPQCNGCEVHGG YYIGWVSVQDQVESLVKQQVSQYPDYALTV TGHSLGASLAALTAAQLSATYDNIRLYTFG EPRSGNQAFASYMNDAFQASSPDTTQYFR VTHANDGIPNLPPVEQGYAHGGVEYWSVDP Y SAQNTFVCTGDEVQCCEAQGGQGVNNAHT TYFGMTSGACTW MKQFSAKYALILATAQQALAASTQGISEDLY NRLVEMATISQAAYADLCNIPSTIIKGE KIYNAQTDINGWILRDDTSKEIITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNDCEVHGG YYIGWISVQDQVESLVKQQASQYPDYALTVT GHSLGASMAALTAAQLSATYDNVRLYTFG EPRSGNQAFASYMNDAFQVSSPETTQYFRV THSNDGIPNLPPADEGYAHGGVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGACTWAspergillus nigerMKQFSAKYALILATAQQALAASTQGISEDL YSRUVEMATISQAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDTSKEIITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNSCEVHGG YYIGWISVQDQVESLVQQQVSQFPDYALTVT GHSLGASLAALTAAQLSATYDNIRLYTFG EPRSNQAFASYMNDAFQASSPDTTQYFRVT HANDGIPNLPPADEGYAHGVVEYWSVDPYS AQNTFVCTGDEVQCCEAQGGQGVNNAHTT YFGMTSGHCTW MKVASLLSLALPGAALAATDPFQSRCNEFQ NKIDIANVTVRSVAYAAGQNISQAEVASV CKASVQASVDLCRVTMINISTSDRSHLWAEA WLPRNYTGRFVSTGNGGLAGCVQETDLNFA A ANFGFATVGTNGGHDGDTAKYFLNNSEVLA DFAYRSVHEGTVVGKQLTQLFYDEGYNYSY YLGCSTGGRQGYQQVQRFPDDYDGVIAGS AAMNFINLISWGAFLWKATGLADDPDFISAN LWSVIHQEIVRQCDLVDGALDGIIEDPDFCAP VIERLCDGTTNGTSCITGAQAAKVNRA LSDFYGPOTVYYVVVNDTNWNSSQWTLE S AKLALEONPFNIQAFDPNITAFRDRGGKLLS YHGTQDPISSTDSKLYYRRVANALNAAP SELDEFYRFFQISGMGHCGDGTGASYIGQG YGTYTSKAPQVNLLRTMVDWVENGKAPEY M PGNKLNANGSIEYMRKHCRYPKHNIHTGPGAspergillus ANFGKLNANGSIEYMRKHCRYPKHNIHTGPG	MKOFSAKHALAVVTAGHALAASTQGISEDL YTRLVEMATISQAAYADLCNIPSTIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGGD TNLQLDTNYTLTPFDTLPQCNQGEVHGG YYGWSVSVDQOVESLVKQQVSQYPDYALTV TGHSLGASLAALTAAQLSATYDNIRLYTFG EPRSGNQAFASYMNDAFQASSPDTTQYFR YTHANDGIPNLPPVEQGYAHGGVEYWSVDP Y SAQNTFVCTGDEVQCCEAQGGQGVNNAHT TYFGMTSGACTW MKQFSAKYALILLATAGQALAASTQGISEDLY NRLVEMATISQAAYADLCNIPSTIKGE KIYNAQTDINGWILRDTSKEITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNDCEVHGG PYGWSVDQQVESLVKQQASQYPDYALTVT GHSLGASMAALTAAQLSATYDNIRLYTFG EPRSGNQAFASYMNDAFQVSSPETTQYFRV THSNDCIPNLPPADEGYAHGGVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGACTW MKQFSAKYALULATAQLSATYDNIRLYTFG EPRSNQAFASYMNDAFQVSSPETTQYFRV THSNDCIPNLPPADEGYAHGGVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSQACTW MKQFSAKYALAVAVVTAGHALAASTQGISEDL YSRLVEMATISQAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEITVFRGTGSD TNLQLDTNYTLTPFDTLPQCNSCEVHGG YYIGWISVQDQVESLVQQQSQFPDYALTVT GHSLGASLAALTAAQLSATYDNIRLYTFG CPRSNQAFASYMNDAFQXSSPDTTQYFRVT HANDGIPNLPPADEGYAHGVVEYWSVDPYS AQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGHCTW MKVASLLSLALPGAALAATDPFOSRCNEFQ NKUPSNYLGEYGRQGGAVNAHTT YFGMTSGHCTWAspergillus nigerIDA nigerMKQFSAKVQQVQVQVQFPDDYALTVT GHSLGASLAALTAAQLSATYDNIRLYTFG CARSVQASVDLCR/TMNISTSDRSHLWAEA ANFGFATVGTNGGHDGDTAKYFLNNSEVLA DFAYRSVHEGTVVGKQLTQLFYDEGYNSY YLGCSTGGRQGYQVQCRFPDDYDQVIAGS AAMNFINLISWGAFLWKATGLADDPPOSSRN LWSVIHQEIVRQCLVDGALDGIIEDPDFCAP VIERLICDGRQVQCVRFPDDYDQVIAGS AAMNFINLISWGAFLWKATGLADDPDFISAN LWSVHQEIVRQCDLVDGALDGIIEDPDFCAP VIERLICDGTNGTSCLTGAQAAKVNRA LSDFYGPDGTVYYPRLNYGGEADSASLYFT GSMSGRTEEWVKYVVYNDTINWNSSQWTLE S ALLEQNPFNIQAFDPNITAFRDRGKLLS YHGTQDPIISSTDSKLLYRRVANALNAAP SELDEFYRFFQISGMGHCGDGTGASVIGQG GYTYTSKAPQVNLLRTMVDWVENGKAPEY M PGNKLNANASISEYMRKHCRYPKHNIHTGPGIDA INFORTGPNITAFRDRGKLLS YMGTQDPINGAGHKKHCRYPKHNIHTGPG <td>LineEvidence'MKQFSAKHALAVVTAGHALAASTQGISEDL VTRUVEMATISOAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGGD DTILQLDTNYTLTPFDTLPCCNGCEVHGG YYIGWSVQDQVESUKQQVSQYPDYALTV TGHSLGASLAALTAAQLSATYDNIRLYTFG EPRSGNQAFASYMNDAFQASSPDTTQYFR Y SAQNTFVCTGDEVCCCEAQGGQGVNNAHT TYFGMTSGACTW MKCFSAKYALILLATAGQALAASTQGISEDLY NRLVEMATISQAAYADLCNIPSTIIKGE EPRSGNQAFASYMNDAFQASSPDTTQYFRV THANDGIPNLPPVEQGYAHGGVEYWSVDP Y SAQNTFVCTGDEVQCCEAQGGQGVNNAHT TYFGMTSGACTWAspergillus nigerIDA UniProtKB/Swiss -Prot Q42807NRCFSAKYALILLATAGQALAASTQGISEDLY YIGWISVDQUVESLVKQQASQYPDYALTVT GHSLGASMAALTAAQLSATYDNVRLYTFG EPRSGNQAFASYMNDAFQASSPETTQYFRV THSNDGIPNLPPADEGYAHGGVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGACTWAspergillus tubingensisIDA UniProtKB/Swiss -Prot Q42807VISUSDQUVESLVQQQSQPDYALTVT GHSLGASLAALTAAQLSATYDNVRLYTFG GPRSQNQAFASYMNDAFQQSSPETTQYFRV THSNDGIPNLPPADEGYAHGQVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGACTWAspergillus tubingensisIDA UniProtKB/Swiss -Prot Q42815VISUSDQUVESLVQQQQSGFPDYNLTYT GHSLGASLAALTAAQLSATYDNIRLYTFG EPRSNQAFASYMNDAFQASSPDTTQYFRVT HANDGIPNLPPADEGYAHGVEYWSVDPYS AQNTFVCTGDEVQCCEAQGGQGVNNAHTT TYFGMTSGHCTWAspergillus nigerIDA UniProtKB/Swiss -Prot Q42815VISUSCOUVESLVQQQQGFEDVDQVSLVGVQQQQGFEDVQUS ACMSVQASULCR/TMNISTSDRSHLWAA MUSYHAGUTVQGLTGQL/DAGLAGLDPDFCAP VIEGLCFGTTNGTSCITGAQAAKVNRA LSDFYGPDGTVYYPRLNYGGEADSASLYFT SMSMTEWYKYVVNOTNENWSSQWTLE S AKLALEONPFNIQAFDVNTGRVGGADGAS/GQG YGTYTSKAPQVNLLRTMVDWVENGKAPEY M PGNKLNANGSIEYMRKHCRYPKHNIHTGPGIDA NIDA UNIPROKGQDELAGSSLYFT MC PGNKLNANGSIEYMRKHCRYPKHNIHTGPG</td>	LineEvidence'MKQFSAKHALAVVTAGHALAASTQGISEDL VTRUVEMATISOAAYADLCNIPSTIIKGE KIYNSQTDINGWILRDDSSKEIITVFRGTGGD DTILQLDTNYTLTPFDTLPCCNGCEVHGG YYIGWSVQDQVESUKQQVSQYPDYALTV TGHSLGASLAALTAAQLSATYDNIRLYTFG EPRSGNQAFASYMNDAFQASSPDTTQYFR Y SAQNTFVCTGDEVCCCEAQGGQGVNNAHT TYFGMTSGACTW MKCFSAKYALILLATAGQALAASTQGISEDLY NRLVEMATISQAAYADLCNIPSTIIKGE EPRSGNQAFASYMNDAFQASSPDTTQYFRV THANDGIPNLPPVEQGYAHGGVEYWSVDP Y SAQNTFVCTGDEVQCCEAQGGQGVNNAHT TYFGMTSGACTWAspergillus nigerIDA UniProtKB/Swiss -Prot Q42807NRCFSAKYALILLATAGQALAASTQGISEDLY YIGWISVDQUVESLVKQQASQYPDYALTVT GHSLGASMAALTAAQLSATYDNVRLYTFG EPRSGNQAFASYMNDAFQASSPETTQYFRV THSNDGIPNLPPADEGYAHGGVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGACTWAspergillus tubingensisIDA UniProtKB/Swiss -Prot Q42807VISUSDQUVESLVQQQSQPDYALTVT GHSLGASLAALTAAQLSATYDNVRLYTFG GPRSQNQAFASYMNDAFQQSSPETTQYFRV THSNDGIPNLPPADEGYAHGQVEYWSVDPY SAQNTFVCTGDEVQCCEAQGGQGVNDAHT TYFGMTSGACTWAspergillus tubingensisIDA UniProtKB/Swiss -Prot Q42815VISUSDQUVESLVQQQQSGFPDYNLTYT GHSLGASLAALTAAQLSATYDNIRLYTFG EPRSNQAFASYMNDAFQASSPDTTQYFRVT HANDGIPNLPPADEGYAHGVEYWSVDPYS AQNTFVCTGDEVQCCEAQGGQGVNNAHTT TYFGMTSGHCTWAspergillus nigerIDA UniProtKB/Swiss -Prot Q42815VISUSCOUVESLVQQQQGFEDVDQVSLVGVQQQQGFEDVQUS ACMSVQASULCR/TMNISTSDRSHLWAA MUSYHAGUTVQGLTGQL/DAGLAGLDPDFCAP VIEGLCFGTTNGTSCITGAQAAKVNRA LSDFYGPDGTVYYPRLNYGGEADSASLYFT SMSMTEWYKYVVNOTNENWSSQWTLE S AKLALEONPFNIQAFDVNTGRVGGADGAS/GQG YGTYTSKAPQVNLLRTMVDWVENGKAPEY M PGNKLNANGSIEYMRKHCRYPKHNIHTGPGIDA NIDA UNIPROKGQDELAGSSLYFT MC PGNKLNANGSIEYMRKHCRYPKHNIHTGPG	

Table 2. Gene Product Associations to feruloyl esterase activity

various industrial and medical applications, it is anticipated that these crystal structural studies (22 protein database) will provide an initial framework for the rational design of novel enzymes with improved biotechnological potential (Table 3) (Faulds et al., 1997).

Major extent of work on the microbial production of

R PTNIR fae-1, APSW B22K18.040, CWGV NCU09491: AKYNA Feruloyl PEVFE esterase B Q precursor TCARC RMQIY V EFSRM	TLLGLALTAATGLCASLQQVTNWGSN MYTYVPDKLATKPAIIVALHGCGGT YSGTRLPSYADQYGFILIYPGTPNMSN NDPASLTHGAGGDSLGIVAMVNYTI ADASRVYVMGTSSGGMMTNVMAATY EAGAAYSGVAHACFAGAASATPFSPN GLQHTPEEWGNFVRNSYPGYTGRRP YHGLADNLVYPRCAMEALKQWSNVLG NVSGVPSQAYTQIVYGDGSKLVGYMG HVAPTNEQVMLKFFGLIN	Neurospora crassa	ISS	UniProtKB/Swiss -Prot Q9HGR3	Kroon PA et al., 2000
N GSLQM faeB: FeruloyI ATEYY esterase B CFDAY precursor STYGA DVFAA TCSQQ PRLQM G LSFTG AAGVQ PTTTP	VLVLAWLLPVVLAASLTQVNNFGDNP MYIYVPNKLASKPAIIVAMHPCGGS (GMYDYHSPADQYGYILIYPSATRDYN (SSASLTHNGGSDSLSIVNMVKYVI ADSSKVYMTGSSSGAIMTNVLAGAYP AGSAFSGMPYACLYGAGAADPIMSNQ GQIQHTGQQWAAYVHNGYPGYTGQY MWHGTADNVISYADLGQEISQWTTIM INQTNTPLSGYTKMVYGDGSKFQAYS GHFVPTDVSVVLDWFGITSGTTTTT TTSTSPSSTGGCTAAHWAQCGGIGY ACASPYTCQKANDYYSQCL	Penicillium funiculosum	IDA	UniProtKB/Swiss -Prot Q9HE18	Kroon PA et al., 2000
FAEB_PIRE Q faeB: FeruloyI esterase B precursor GMPW NQGG DFGGI NQGG DFGGI NQGG DFGGI GMQW VEYST PS GFTGI AKAAL C CTDAE FSMGG LAKEIN YNGGI	VLSIVALFLTSKASADCWSERLGWPC NAEVIYVDDDGDWGVENNDWCGIQK NNSWDMGDWNQGGNQGGGMPWG NQGGGMQWGDFGGNQGGGMPWG VGDFGGNQGGNQGGGMPWGDFGG NQGGGMPWGDFGGNQGGGMQWG NQGG GMPWGDFGGNQGGGMQWGDFGG NQGGGMPWGDFGGNQGGGMQWG	Piromyces equi	IDA	UniProtKB/Swiss -Prot Q9Y871	Fillingham IJ et al., 1999
*Gono Ontology	v Evidence Codes: ISS; Inferred from Seq	uence or Structur	ral Similarity, ID	A. Inferred from Dire	ect Assav

FAEs to date involves the isolation, (Topakas et al., 2006) purification, and characterization of FAEs derived from a wide range of microorganisms (fungi and bacteria), as well as the enzymetic release of the products from cell wall degradation (Figure 4). Generally, FAE enzymes are produced (purified and characterized) from several microorganisms (various bacteria and fungi).

FERULOYL ESTERASES, RESEARCH AND INDUSTRY

Generally, feruloyl esterases benefit microorganisms, industry, and biochemists (Figure 5). There has recently been considerable interest in a large number of potential applications of feruloyl esterases due to their roles in

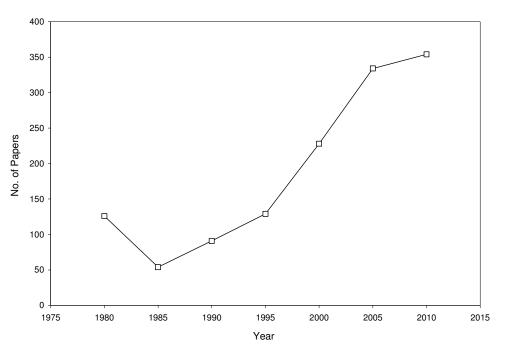


Figure 3. Annual publications on ferulic acid.

many biotechnological processes, in various industries (chemicals, fuel, animal feed, textile and laundry, pulp and paper, food and agriculture, and pharmaceutical), also in their potential applications in obtaining ferulic acid from agro-industrial waste materials such as those produced by milling, brewing, and sugar industries. The prospect of broad applications of FAEs has fueled much interest in these enzymes, as shown by the increasing number of FAEs discovered in microbial organisms in recent years.

FERULOYL ESTERASES APPLICATIONS IN PULP AND PAPER INDUSTRY

A great extent of work has been done during the last few decades to investigate many enzymes in pulp and paper industry. In spite of extensive research no viable technology has so far been developed to utilize the oxidative enzymes for the pulp and paper industry. The major application is the use of xylanases in pulp bleac-hing. Xylanases liberate lignin fragments by hydrolysing residual xylan. This reduces considerably the need for chlorine based chemicals for bleaching process. Other minor enzyme applications in pulp production include the use of enzymes to remove fine particles from pulp. This facilitates water removal. FAEs could be used in pulp and paper processes (Record et al. 2003; Sigoillot et al., 2005). Hemicellulases and cellulases offer alternatives to

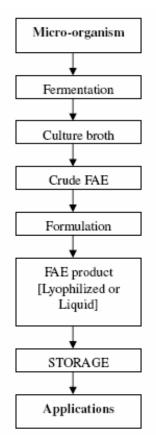

augment chemical and mechanical paper-pulping methods, and there is a large extent of published work on this subject (Kroon et al. 1996; Williamson et al., 1998). Acetylxylan esterases and FAEs might enhance this process by removing substitutions and linkages between polymers during pulping, thus making the solubilization of lignincarbohydrate complexes easier (Mathew et al., 2004; Topakas et al., 2004a, b; Tarbouriech et al., 2001; Faulds et al., 1993; Ralet et al., 1994; Kroon et al., 1999,1996a, b; Fillingham et al., 1999; Williamson et al., 1998). Pretreatment of lignocellulosic material by secreted fungal enzymes leads to de-esterification, which increased the rate of in vitro digestion by ruminal microorganisms by approximately 80% (Mathew et al., 2004; Topakas et al., 2004a, b; Tarbouriech et al., 2005; Faulds et al., 1993; Ralet et al., 1994; Kroon et al., 1999, 1996a, b; Fillingham et al., 1999; Williamson et al., 1998). In paper making, enzymes are used especially for modification of starch, which is used as an important additive. Starch improves the strength, stiffness and erasability of paper. The starch suspension must have a certain viscosity, which is achieved by adding amylase enzymes in a controlled process. Enzymes used in paper industry should not contain cellulose-degrading activity as a side activity because this activity would damage the cellulose fibres (Nethaji et al., 1988; Mathew et al., 2004) to facilitate nutrient assimilation. Pitch is a sticky substance present mainly in softwoods. It is composed of lipids. It is a special problem when mechanical pulps of red pine are

Table 3. Some PDB entries of feruloyl esterases.

PDB Code	Title	Protein Source	Protein Structure	3D View	Reference
1usw	Crystal structure of ferulic acid esterase from aspergillus niger	Aspergillus niger. Strain: cbs 120.49/n400. Expressed in: pichia pastoris	Feruloyl esterase A. Chain : A. Synonym : ferulic acid esterase, FAE- III.		J.A.Hermoso et al. (2004)
1uwc	Feruloyl esterase a. Chain: a, b. Synonym: ferulic acid esterase a, fae-iii, cinnamoyl esterase. Engineered: yes. Other_details: n- acetylglucosamin e at asn 79	Aspergillus niger. Expressed in : aspergillus oryzae	Feruloyl esterase a. Chain: a, b. Synonym: ferulic acid esterase a, FAE-III, cinnamoyl esterase.		K.E.McAuley et al. (2004)
2bjh	Crystal structure of s133a anfaea- ferulic acid complex	Aspergillus niger. Strain: cbs 120.49- n400. Expressed in : pichia pastoris	Feruloyl esterase a. Chain: a, b, c. Synonym: ferulic acid esterase a, FAE-III, cinnamoyl esterase.		C.B.Faulds et al. (2005)
2h16	Structure of homologously expressed ferrulate esterase of aspergillus niger in complex with caps	Aspergillus niger. Fungi. Gene: FAE- A. Expressed in : aspergillus niger.	Feruloyl esterase A. Chain : a, b. Synonym : ferulic acid esterase a, FAE-III, cinnamoyl esterase, ferrulate esterase A.		I.Benoit et al. (2006)

Table 3. Continued.

1uza	Crystallographic structure of a feruloyl esterase from aspergillus niger	Aspergillus niger. Expressed in: aspergillus oryzae	Feruloyl esterase a. Chain: a, b. Synonym: ferulic acid esterase A, FAE-III, cinnamoyl esterase.	K.E.McAuley et al. (2004).
2ix9	Respective role of protein folding and glycosylation in the thermal stability of recombinant feruloyl esterase a	Aspergillus niger. Strain: d15pyrg. Expressed in : escherichia coli.	Feruloyl esterase a. Chain : a, b. Fragment: catalytic domain, residues 22-281. Synonym : feruloyl esterase types A, FAE-III, cinnamoyl esterase.	I.Benoit et al. (2006).

Figure 4. Flow diagram for the life cycle of feruloyl esterases from production to industry

used as a raw material. Pitch causes problems in paper machines and can be removed by lipases.

FERULOYL ESTERASES IN FOOD AND PHARMACEUTICAL INDUSTRY

FAEs derived from non-recombinant producing strains might be important for better acceptance by consumer's food related applications. In addition, ferulic acid, which is the most abundant cinnamic acid in plant cell walls, is a precursor for vanillin and its access through biotechnological methods is crucial in the quest for natural vanillin (Priefert et al., 2001). As well as being exploited as a hydrolase, FAE was shown to be a good catalyst in synthesizing sugar-phenolic esters (Mathew et al., 2004; Topakas et al., 2004a, b), and could also be used to functionalize sugar polymers by adding phenolic deriva-tives onto the natural biopolymers.

Some of the ester-linked substituents on plant cell wall polysaccharides retard or inhibit microbial infection. There are many examples in published reports concerning the antimicrobial nature of the phenolic compounds towards some microorganisms. Phenolic components of the plant cell wall, especially p-coumaric acid, ferulic acid, and phydroxybenzaldehyde, inhibit the growth of rumen microorganisms (Williamson et al. 1998) and phenolic acids derived from plant cell walls have long been used as food preservatives (Garcia-Conesa et al., 1998a,b) to inhibit microbial growth. *Magnaporthe grisea*, a rice blast fungus,

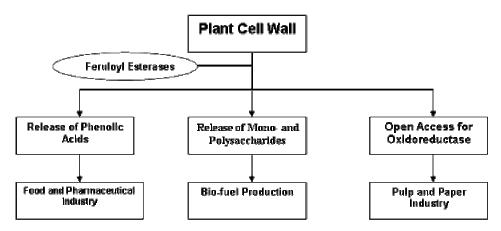


Figure 5. Diagrammatic representation of industrial and medicinal applications of feruloyl esterases

produces a xylanase and an arabinofuranosidase that act synergistically to release arabinoxylo-oligosaccharides from rice cell walls. These compounds contain esterified ferulic acid, and the release leads to the death (presumably programmed cell death) of surrounding rice cells. *In vitro* removal of the ferulic acid moiety destroyed more than 95% of this killing ability, which would enhance the chances of the colonization of the rice cell wall by the pathogen in the presence of a cinnamoyl esterase (Saija et al., 1999).

As phenolic acid sugar esters have clear antitumor activity and the potential to be used to formulate antimicrobial, antiviral, and/or anti-inflammatory agents (Omar et al., 1992; Garcia-Conesa et al., 2004), specific FAEs could be used in the tailored synthesis of such pharmaceuticals (Garcia-Conesa et al., 2004; Malherbo et al., 2002; Kondo et al., 1990). The FAE system of T. stipitatus has been studied and three discrete FAEs, including a type C esterase, with broad specificity against hydroxycinnamate esters (Kondo et al., 1990; Lam et al., 1990; Moore et al., 1996) have been found. The reestablishment of efficient use of cheap agricultural waste materials, with their synergistic action with other lignocellulose-degrading enzymes, is promising tools in various agro-industrial processes (Moore et al., 1996; Benoit et al., 2006). Other potential applications include production of important medicinal compounds, improvement of bread quality, pulp treatment, juice clarification, improvement of quality of animal feedstock, production of biofuel, and synthesis of oligosaccharides (Williamson et al., 1998). Therefore, effective FAEs production is a vital prerequisite for successful applications in various Industries. To achieve this goal, it is necessary to use FAEs, as well as defined polysaccharides and oligosaccharides from different agricultural raw materials.

FAEs are potential analytical aids in modern carbohy-

drate chemistry. In combination with other plant cell walldegrading enzymes, the esterases will provide important tools in understanding the fine structure and linkage patterns that exist in the plant cell wall, but the science is at an early stage and ripe for exploitation (Mathew et al., 2004; Topakas et al., 2003a; Tarbouriech et al., 2005; Faulds et al., 1993; Ralet et al., 1994; Kroon et al., 1999, 1996a, b; Fillingham et al., 1999; Williamson et al., 1998). Arabinoxylans and α -glucans in the cell walls of barley have been shown to be associated either together or to a common component through an ester bond, as shown by specific hydrolysis by a pure cinnamoyl esterase (Campbell et al., 1998; Benoit et al., 2006). The exact nature of the covalent bond between lignin and carbohydrate polymers in the cell wall matrix of various plants has still to be determined, although evidence is beginning to accrue on these structures. FAEs could provide a useful tool in helping to determine this link (Campbell et al., 1998; Sun et al., 2002). FAEs are secreted by a number of bacterial and fungal organisms that exploit plants either to enter the plant cell or to use the cell wall material as a nutritional resource. The complete degradation of plant cell wall polymers requires multi-enzyme complex systems. Most FAEs have been shown to act synergistically with xylanases, cellulases, and pectinases to break down complex plant cell wall carbohydrates (Sun et al., 2002; Sahan et al., 2003; Sorensen et al., 2003).

By-products of the maize industry are ideal stock materials for biotechnology processes. An example is ferulic acid, an aromatic food anti-oxidant that can be isolated from maize fiber after wet milling and is converted to valuable compounds such as vanillin, an important flavoring agent used extensively for the foodstuffs (Luonteri et al., 1999; Sorensen et al., 2003). Apart from its use for flavoring, vanillin is also required for the synthesis of pharmaceutical drugs and is used extensively in the perfume and metal plating industries. In agriculture, it has herbicidal action, and can be used as a ripening agent to increase the yield of sucrose in sugar cane (Luonteri et al., 1999; Wood et al., 1996).

FERULOYL ESTERASES IN BIO-FUEL INDUSTRY

The demand for ethanol has been continuously increasing, where it is used either as a chemical feedstock or as an octane enhancer or petrol additive. Global crude oil production is predicted to decline from 25 billion barrels to approximately 5 billion barrels in 2050 (Benoitet et al., 2006). In the USA, fuel ethanol has been used in gasohol or oxygenated fuels since the 1980s. These gasoline fuels contain up to 10% ethanol by volume. It is estimated that 4.54 billion liters of ethanol is used by the American transportation sector and that this number will rise phenomenally as the American automobile manufacturers plan to manufacture a significant number of flexi-fueled engines which can use a blend of 85% ethanol and 15% gasoline by volume. The production of fuel ethanol from sugars or starch impacts negatively on the economics of the process, thus making ethanol more expensive compared with fossil fuels. Hence the technology development focus in the production of ethanol has shifted towards the use of residual lignocellulosic materials to lower production cost. An improved use of wheat endosperm by-products in this type of ethanol production would generate a fermentable hydrolysate based on the hemicellulose fraction. Complete enzymatic hydrolysis of arabinoxylan requires both depolymerizing and sidegroup cleaving enzyme activities such as FAEs. Any hemicellulose containing lignocellulose generates a mixture of sugars upon pretreatment alone or in combination with enzymatic hydrolysis. In Europe, potable alcohol manufacturing plants are based on wheat endosperm processing, with the hemicellulosic by-product remaining after fermentation consisting of approximately 66% (W/W) arabinoxylan (Benoit et al., 2006). Fermentable sugars from cellulose and hemicellulose will essentially be glucose and xylose, which can be released from lingocellulosics by single or two-stage hydrolysis, thereby leading to mixtures of glucose and xylose or separate glucoseand xyloserich streams. Conventional methods, applied for bioconversion of cellulose and hemicellulose to ethanol, involve acid or enzyme hydrolysis of biopolymers to soluble oligosaccharides followed by fermentation to ethanol. A synergistic action between cellulases, FAEs and xylanases may prove to be more effective when applied in a critical concentration in the saccharification of steam-exploded wheat straw (Borneman et al., 1993; Kennedy et al., 1999).

CONCLUSION

Feruloyl esterases are promising enzymes to have poten-

tial and significant contributions in research and industry. However, two of the problems to commercialize the use of feruloyl esterases are: to date there is no commercial full purified feruloyl esterases and the lack of sufficient enzyme stocks. Thus, efforts have to be made in order to achieve cheap overproduction of feruloyl esterases in heterologous hosts and also their modifica-tion by chemical means or protein engineering to obtain more robust and active purified feruloyl esterases enzymes.

REFERENCES

- Benoit I, Navarro D, Marnet N, Rakotomanomana N, Lesage-Meessen L, Sigoillot J-C, Asther M (2006). Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial byproducts. Carbohydr. Res. 341: 1820–1827.
- Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1993). Feruloyl and p-coumaroyl esterases from the anaerobic fungus *Neocallimastix* MC-2: Properties and functions in plant cell wall degradation. In: Coughlan MP, Hazlewood G, eds. Hemicellulose. Cambridge: Portland Press.
- Campbell CJ, Laherrere JH. (1998). The end of cheap oil. Sci Am 3: 78-83.
- Crepin VF, Faulds CB, Connerton IF (2003a). A non-modular type-B feruloyl esterase from *Neurospora crassa* exhibits concentration dependent substrate inhibition. Biochem. J. 370: 417–427.
- Crepin VF, Faulds CB, Connerton IF (2003b). Production and characterization of the *Talaromyces stipitatus* feruloyl esterase FAEC in *Pichia pastoris*: Identification of the nucleophilic serine. Protein Expr. Purif. 29: 176–184.
- Crepin VF, Faulds CB, Connerton IF. (2004). Functional classification of the microbial feruloyl esterases. Appl. Microbiol. Biotechnol. 63: 647–652
- de Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RH, Faulds CB, Williamson G, van den Hombergh JP, Visser J (1997). The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides.63: 4638-4644.
- de Vries RP, vanKuyk PA, Kester HC, Visser J (2002). The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem. J.15: 377-386.
- Donaghy J, Kelly PF, McKay AM (1998). Detection of ferulic acid esterase production by *Bacillus* spp. and lactobacilli. Appl. Microbiol. Biotechnol. 50: 257–260.
- Donaghy JA, McKay AM (1995). Production of feruloyl/p-coumaroyl esterase activity by *Penicillium expansum*, *Penicillium brevicompactum* and *Aspergillus niger*. J. Appl. Bacteriol. 79: 657–662.
- Faulds C Hermoso J, Sanz-Aparicio J, Molina R (2005). Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS J, 272: 4362-4371.
- Faulds CB, deVries RP, Kroon PA, Visser J, Williamson G (1997). Influence of ferulic acid on the production of feruloyl esterases by *Aspergillus niger*. FEMS Microbiol. Lett. 157: 239–244 Faulds CB, Sancho AI, Bartolomé B (2002). Mono- and dimeric ferulic acid release from brewers' spent grain by fungal feruloyl esterases.
- Appl. Microbiol. Biotechnol. 60: 489–493.
 Faulds CB, Williamson G (1993). Ferulic acid esterase from Aspergillus niger: Purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol. Appl. Biochem. 17: 349–359
- Faulds CB, Williamson G (1994) Purification and characterization of a ferulic acid esterase (FAE-III) from *Aspergillus niger*. Specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiol. 140: 779–787

Fazary AE, Ju YH (2007) Feruloyl Esterases as Biotechnological Tools: Current and Future Perspectives. Acta Biochimica et Biophysica Sinica 39: 811–828.

- Fazary AE, Ju YH (2008). Production, Partial Purification and Characterization of Feruloyl Esterases by Aspergillus awamori in Submerged Fermentation. Biotechnol. J. DOI: 10.1002/biot.200800101.
- Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP (1999). A modular cinnamoyl ester hydrolase from the anaerobic fungus *Piromyces equi* acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem. J. 343: 215–224.
- Garcia BL, Ball AS, Rodriguez J, Perez-Leblic MI, Arias ME, Copa-Patino JL (1998a). Production and characterization of ferulic acid esterase activity in crude extracts by *Streptomyces avermitilis* CECT 3339. Appl. Microbiol. Biotechnol. 50: 213–218.
- Garcia BL, Ball AS, Rodriguez J, Perez-Leblic MI, Arias ME, Copa-Patino JL (1998b). Induction of ferulic acid esterase and xylanase activities in *Streptomyces avermitilis* UAH30. FEMS Microbiol. Lett. 158: 95–99.
- Garcia-Conesa MT, Crepin VF, Goldson AJ, Williamson G, Cummings NJ, Connerton IF, Faulds CB (2004). The feruloyl esterase system of *Talaromyces stipitatus*: Production of three discrete feruloyl esterases, including a novel enzyme, TsFaeC, with a broad substrate specificity. J. Biotechnol. 108: 227–241.
- Hermoso J, Sanz-Aparicio J, Molina R, Faulds C (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J. Mol. Biol. 338: 495-506.
- Hutnan M, Drtil M, Mrafkova L (2000). Anaerobic biodegradation of sugar beet pulp. Biodegradation 11: 203–211.
- Kennedy JF, Methacanon P, Lloyd LL (1999). The identification and quantification of the hydroxycinnamic acid substituents of a polysaccharide extracted from maize bran. J. Sci. Food Agric. 79: 464–470.
- Kondo T, Mizuno K, Kato T (1990). Cell wall-bound p-coumaric and ferulic acids in Italian ryegrass. Can. J. Plant Sci. 71: 495–499.
- Kroon PA, Faulds CB, Williamson G (1996b). Purification and characterization of a novel esterase induced by growth of Aspergillus niger on sugar-beet pulp. Biotechnol. Appl. Biochem. 23: 255–262.
- Kroon PA, Garcia-Conesa MT, Fillingham IJ, Hazlewood GP, Williamson G (1999). Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J. Sci. Food Agric. 79: 428–434.
- Kroon PA, Williamson G (1996a). Release of ferulic acid from sugarbeet pulp by using arabinanase, arabinofuranosidase and an esterase from *Aspergillus niger*. Biotechno.I Appl. Biochem. 23: 263–267.
- Kroon PA, Williamson G, Fish NM, Archer DB, Belshaw NJ (2000). A modular esterase from *Penicillium funiculosum* which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur. J. Biochem. 267: 6740–6752
- Lam TBT, Liyama K, Stone BA (1990). Distribution of free and combined phenolic in wheat internodes. Phytochem. 29: 429–433.
- Lee YS (2005). Role of NADPH oxidase-mediated generation of reactive oxygen species in the mechanism of apoptosis induced by phenolic acids in HepG2 human hepatoma cells. Arch. Pharm. Res. 28: 1183–1189.
- Luonteri E, Kroon PA, Tenkanen M, Teleman A, Williamson G (1999). Activity of a *Aspergillus terreus* α -arabinofuranosidase on phenolic-substituted oligosaccharides. J. Biotechnol. 67: 41–48.
- Malherbo S, Cloete TE (2002). Lignocellulose biodegradation: Fundamentals and applications. Rev. Environ. Sci. Biotechnol. 1: 105–114.
- Mathew S, Abraham TE (2004). Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit. Rev. Biotechnol. 24: 59–83.
- Mcauley KE, Svendsen A, Patkar S, Wilson KS (2004). Structure of a feruloyl esterase from Aspergillus niger. Acta Crystallogr D. Biol. Crystallogr. 60: 878-887.
- Moore J, Bamforth CW, Kroon PA, Bartolome B, Williamson G (1996). Ferulic acid esterase catalyses the solubilisation of -glucans and pentosans from the starchy endosperm cell walls of barley. Biotechnol. Lett. 18: 1423–1426.

Nethaji M, Pattabhi V (1988). Structure of 3-(4-Hydroxy-3-Methoxy-

phenyl)-2-propenoic acid (ferulic acid). Acta. Cryst. C44: 275-277.

- Omar MM. (1992) In Phenolic compounds in food and their effect on health I. ACS Symposium Series 12: 154–168.
- Priefert H, Rabenhorst J, Steinbuchel A (2001). Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56: 296–314.
- Ralet MC, Faulds CB, Williamson G, Thibault JF (1994). Degradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from *Aspergillus niger*. Carbohydr. Res. 263: 257–269.
- Record E, Asther M, Sigoillot C, Pages S, Punt PJ, Delattre M, Haon M van den Hondel CA, Sigoillot C A, Lesage-Meessen L, Asther M (2003). Overproduction of the *Aspergillus niger* feruloyl esterase for pulp bleaching application. Appl. Microbiol. Biotechnol. 62: 349–355.
- Saha BC (2003). Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279–291
- Saija A, Tomaino A, Cascio RL, Trombetta D, Proteggente A, De Pasquale A, Uccella N (1999). Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. J. Sci. Food Agric. 79: 476–480.
- Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Perez-Boada M, Martinez MJ Maria MJ, Jean-Claude S, Marcel A, Colome JF, Angel TM (2005). Comparison of different fungal enzymes for bleaching high-quality paper pulps. J. Biotechnol. 115: 333–343.
- Sorensen HŘ, Meyer AS, Pedersen S (2003). Enzymatic hydrolysis of watersoluble wheat arabinoxylan. 1. Synergy between α-*L*-arabinofuranosidases, endo-1,4- α -xylanases, and α -xylosidase activities. Biotechnol. Bioeng. 81: 726–731.
- Sun Y, Cheng J (2002.Hydrolysis of lignocellulosic material from ethanol production. Biores Technol. 83: 1–11.
- Tarbouriech N, Prates JA, Fontes CM, Davies GJ (2005). Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B from *Clostridium thermocellum*. Acta. Crystallogr. D. Biol. Crystallogr. 61: 194–197.
- Topakas E, Christakopoulos P (2004b). Production and partial characterization of alkaline feruloyl esterases by *Fusarium oxysporum* during submerged batch cultivation. World J. Microb. Biot. 20: 245–250.
- Topakas E, Stamatis H, Biely P, Christakopoulos P (2004a). Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus *Sporotrichum thermophile*. Appl. Microbiol. Biotechnol. 63: 686–690.
- Topakas E, Stamatis H, Biely P, Christakopoulos P (2006). *Sporotrichum thermophile* type C feruloyl esterase (StFaeC): Purification, characterization, and its use for phenolic acid (sugar) ester synthesis. Enzyme Microb. Technol. 36: 729–736.
- Topakas E, Stamatis H, Mastihubova M, Biely P, Kekos D, Macris BJ, Christakopoulos P (2003a). Purification and characterization of a *Fusarium oxysporum* feruloyl esterase (FoFAE-I) catalyzing transesterification of phenolic acid esters. Enzyme Microb. Technol. 33: 729–737.
- Williamson G, Kroon PA, Faulds CB (1998). Hairy plant polysaccharides: A close shave with microbial esterases. Microbiol. 144: 2011–2023
- Wood TM, McCrae SI (1996). Arabinoxylan-degrading enzyme system of the fungus *Aspergillus awamori*: Purification and properties of an -*L*-arabinofuranosidase. Appl. Microbiol. Biotechnol. 45: 538–545.