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Computation plays an important role in functional genomics and proteomics. Theoretical Microscopic 
Titration Curves (Thematics) are being employed to predict active binding sites of enzymes. The 
principal reasons are that the pace of discovery of new proteins is increasing, outpacing the ability to 
characterize them in conventional biochemical and structural techniques; in addition, advances in 
computational, structural and force data are used in an interative manner to improve accuracy of active 
site prediction. From methods using amino acid and nucleotide sequences evidence is available that 
residues in the enzyme core are selected for stability while those at the surface, which are sites of 
protein interaction, trade off stability for ligand interactivity. Thematics is a computational method that 
predicts chemical and electrostatic properties of residues in enzymes and utilizes information 
contained in those predictions to identify active sites. Discussion of the chemical basis for the 
predictive powers of Thematics is featured in this paper, and the role of protein tyrosine phosphatase in 
type 2 diabetes discussed briefly. 
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INTRODUCTION 
  
Target identification might seem to be the sole domain of 
bioinformatics methods. Computational science or com-
puter science has been playing a major role in these 
methods. Bioinformatics methods have to find the genes 
that are up or down regulated in certain diseases and 
then point out which proteins are expressed by these 
genes. These proteins might either be enzymes catalyz-
ing certain metabolic reactions or be proteins involved in 
signaling pathways. Manual analysis of such a gigantic 
data is impossible, computer analysis  became  a  neces- 

sity. Access to powerful methods for prediction of binding 
constants for ligands to target receptors is highly 
desirable in the drug discovery process. Computational 
methods for the estimation of binding constants (or, 
equivalently, free energies of binding) can be particularly 
fruitful when the structure of the receptor is known. 
Predictions of the affinity of a given inhibitor for different 
enzyme variants and mutants may be equally valuable. 

Enzymes are protein molecules, which perform a varie- 
ty of cellular and regulatory functions by  interacting  with 
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ligands at specific locations called ‘active sites.’ The 
active site depends on a variety of factors from the arran-
gement of protein chain in space and time (secondary, 
tertiary and quaternary structures). The active site is 
dynamic with interactions at a variety of physical and 
chemical factors in the surroundings. With more data 
flooding can be annotated, computational methods are 
employed in this area (Terribilini, 2006). Predicting the 
active site leads to better understanding of a proteins 
function and therefore can be useful to design drugs 
rationally that can modulate interaction of proteins by 
modifying their structure as well as to establish interac-
tions among networks of proteins (Liang, 2006; Halperin, 
2003). 

The motivation for ‘reverse engineering’ of protein 
structure and function is the assumption that sequences 
of naturally occurring proteins are defined by selective 
pressure evolutionarily; the pressure is exerted by a 
balance of function and stability (Koehl, 2002). Studies 
comparing stability and solubility of proteins from their 
sequences have shown that core residues in proteins 
appear to follow the need for stability (Koehl, 2002).   

Efforts were made to use structure of known proteins 
and predict the amino acid sequences so that  the   
information can be utilized to predict structure of n 
Sequence  of  amino  acids  (primary structure)  to can be 
utilized to predict structure of new proteins whose                                                                      
amino acid sequences alone are known (Raja, 2000). 
Many protein sequence design methods have been 
employed such as homology modeling in which attempts 
are made to match unknown to known, and then thread 
the sequence to a known backbone based on energy 
expression. Energy expression is in turn determined by 
search algorithms such as stochastic and deterministic. 
 
 
‘Lock and key’ Concept and computational prediction 
 

Emil Fischer, a chemist, summarized the action of 
enzymes as follows: ‘In order to be able to act chemically 
on one another, an enzyme and its substrate must fit 
together like a lock and key.’ The original ‘lock and key’ 
concept has been revised and refined to describe the site 
where substrate and enzyme interact. The region of the 
enzyme containing the binding and catalytic sites is called 
the active site (Palmar, 2004). It usually occurs near or on 
the surface of the protein as a cleft for the substrate to fit. 
The active site is located in three dimensions, with amino 
acids or cofactors comprising binding and active sites. 
These arrangements are further affected by amino acids 
in the microenvironment of the active site. 

Identification of binding and catalytic sites is a complex 
process, involving a variety of processes including the 
use of substrate analogues, modification of amino acid 
side chains of enzymes, generation of fusion protein and 
by site-directed mutagenesis (Palmar, 2004; Kennelly, 
2006) In essence, to understand enzyme action at the 
active site requires not only  the  identity  of  amino  acids,  

 
 
 
 
their spatial arrangement. Information about enzyme 
structure has been traditionally obtained by x-ray crystal-
lography and NMR spectrometry. Considering the com-
plexity of the physical and chemical properties in which 
the interactions occur, computational prediction requires, 
besides, the order of amino acids, the various physical 
and chemical interactions of atoms lining the active site 
gorge. Once the raw data is available, computational, 
mathematical and statistical techniques are employed to 
predict the active site. 

Various computational methods for estimating ligand-
binding affinity have been devised, each representing a 
different choice of computational demand versus accura-
cy (Ajay, 1995). Free energy perturbation (FEP) theory 
(Kolllman, 1993; Jorgensen, 1989; Beveridge, 1989) 
combined with conformational sampling by molecular 
dynamics (MD) or Monte Carlo (MC) simulation can be 
used to calculate free energy changes upon small 
modifications of the ligand or receptor (Singh, 1988a, b). 
However, FEP calculations become quite complicated 
and computationally expensive for structurally dissimilar 
inhibitors and for calculation of absolute free energies of 
binding. In the latter case, precautions must also be 
taken to ensure a correct standard state when molecules  
are annihilated or created (Cammon, 1997).  Scoring 
functions applied to single conformations of the docked  
complex is a more empirical approach to affinity predict-
tion. They are generally based on identifying individual 
points of intermolecular interaction such as hydrogen 
bonds, ionic interactions and hydrophobic interactions, as 
well as entropy estimates, in a given conformation of the 
receptor-ligand complex and as signing a binding energy 
score to each contributing factor (Bohm, 1994; Wallqvist, 
1995; Smyithe, 1996; Jain, 1996). These methods inclu-
de estimates of the effect of solvation, either implicitly by 
their parameterization to fit a set of experimental values 
or explicitly by measuring the change in the solvent-
accessible surface area upon binding. There are also 
examples of utilizing scaled molecular mechanics ener-
gies for minimized structures to obtain binding energy 
estimates (Holloway, 1995).  

Yuko Tsuchiya et al (Yuko, 2004) analyzed 63 protein-
DNA complexes by focusing their attention on the shape 
of the molecular surface of the protein and DNA, along 
with the electrostatic potential on the surface, and con-
structed a new statistical evaluation function to make 
predictions of DNA interaction sites on protein molecular 
surfaces. Recently Kengo et al. (2007) have developed a 
method to predict ligand-binding sites in a new protein 
structure by searching for similar binding sites in the 
Protein Data Bank (PDB).  

The similarities are measured according to the shapes 
of the molecular surfaces and their electrostatic poten-
tials. They provided new web server, to interface the 
search method (URL: http://eF-site.hgc.jp/eF-seek). It has 
been observed that the density of conserved residue 
positions is higher at the  interface  regions  of  interacting  



 

 
 
 
 
protein surfaces, except for antibody–antigen complexes, 
where a very low number of conserved positions is ob-
served at the interface regions. Yuhua et al. (2005) 
identified putative interacting regions on the surface of 
interacting partners. Using the free energy along with 
conservation information and other descriptors used in 
the literature for ranking docking solutions, such as shape 
complementarity and pair potentials, they developed a 
global ranking procedure that significantly improves the 
docking results by giving top ranks to near-native com-
plex structures 
 
 
Molecular docking 
 
Assigning function to uncharacterized enzymes discover-
ed through genome projects has provided a great chal-
lenge to the fields of informatics, enzymology and struc-
tural biology. Docking potential ligands into flexible 
models of protein structures and docking potential high-
energy intermediates, rather than substrates, into known 
structures are two new computational methods that have 
provided a much-needed boost to the field (Karen, 2007). 
The use of structure based docking correctly predicts the 
function of BC0371 enzyme of enolase family (Ling, 
2007) and S-adenosylhomocysteine deaminase of an 
enzyme from the amidohydrolase family (Jhoannes, 
2007). In this work the authors approached the problem 
with the rational that because proper interaction, and thus 
corrected computational scoring are the reflection of fit of 
enzyme to ligand, the use of more complementary ligand 
will produce superior results. Since the 1990s, hundreds 
of genomes have been sequenced, providing the great 
promise of new drug targets, a comprehensive under-
standing of cell metabolism and a deep well of knowledge 
for protein engineering (Marvin, 2003). Reliable molecular 
docking and estimation of binding affinities remain an 
important goal in structure based drug design appli-
cations (Blaney, 1993; Jones, 1995; Lynbard, 1995; 
Rosenfeld, 1995; Gschwend, 1996; Lengauer, 1996). 
Given a novel inhibitor against an enzyme of known 
structure, it is important to predict how the ligand is going 
to bind. Successful prediction allows one to prioritize 
synthetic resource into producing compounds, which are 
more likely to be useful and biologically active. Docking 
studies are also important when designing new ligands in 
order to confirm the binding mode and to form the basis 
for an energetic assessment of their binding affinity. 
Docking methodology can be used to screen compound 
databases (Kuntz, 1982; Miller, 1994; Welch, 1996) 
provided the docking is fast enough and there is a 
method to provide a reasonably reliable ranking order for 
the biological activity of the ligands. Kmuncek et al. 
(????) explained the applicability of evaluate the 
applicability of automated molecular docking techniques 
and quantum mechanical calculations to the construction 
of a set of structures of enzyme-substrate complexes for 
use in Comparative binding energy analysis to obtain  3D 
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structure-activity relationships (Jan, 2003). 
 
 
Thematics (Theoretical microscopic titration curves) 
 
Thematics is based on finite difference Poisson- 
Boltzmann (FDPB) methods for calculating the electrical 
potential function for a complex array of charges, coupled 
with a Monte-Carlo procedure for determining the ave-
rage charge as a function of pH for the ionizable residues 
in that protein’s calculated potential. This method 
identifies reactive sites, including residues involved in 
catalysis (Ondrechen, 2001). This technique utilizes Deep 
View-Swiss Pdb Viewer method to obtain the electrical 
potential function for the protein, followed by calculation 
of the predicted titration curves for all of the ionizable 
residues in the protein structure. The novel feature of 
Thematics is that it extracts information from the shapes 
of the theoretical titration curves for the ionizable 
residues in the protein structure, as derived from a FDPB 
calculation. In a protein the residues generally considered 
to be ionizable are all of the Arg, Asp, Glu, His, Lys, and 
Tyr residues, all Cys residues that are not involved in 
disulfide bridges, plus the N- and C- termini. A typical 
equation for the pH as a function of the concentrations of 
an acid HA and its conjugate base as reported (Jaeju, 
2005). 

In an enzyme, the protein environment influences the 
chemical and electrostatic properties of active site 
residues in order to facilitate catalysis and recognition. 
Any active-site residue that acts as a catalytic Brønsted 
acid (/base) must then act as a Brønsted base (/acid) in 
order to restore itself to its initial state for the next 
turnover cycle. A perturbed titration curve increases the 
range of conditions over which a residue may act as both 
an acid and a base, as is required by the definition of a 
catalyst. Similarly, such unusual titration behavior 
expands the pH range over which a residue may exist in 
both charged and neutral forms, thus assisting reversible 
recognition. Finding these perturbed titration properties 
not only identifies the active site but may also give clues 
about the type of chemistry that is catalyzed by that 
active site. 

In  proteins,  active  sites  usually  comprise  hydro-
phobic  pockets  that  involve  side-chain atoms. Methods 
which use interaction energies between the receptor and 
different probes to locate energetically favorable sites are 
complex. They  need  the  assignment  of  proton  loca-
tions and partial  charges  to  the  receptor  atoms. While 
van der Waals energies can indicate sterically available 
regions, the  long-range  nature  of  electrostatic  poten-
tials  make  the  interpretation  of energy levels difficult. 
The  purpose  of  the  Site  Finder  application  in  MOE  is  
to  calculate  possible  active sites  in  a receptor from the 
3D atomic coordinates of the receptor. The underlying 
concept is that the pH dependent electrical potential 
caused by ionizable residue, perturbs the substrate and 
the catalytically  active residues,  so  that  efficient  proton 
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transfer is enabled between them over the desired pH 
range (Fariselli, 2002; Yan, 2006) 
 
 
Prediction of interface residues and sites 
 
Identification of protein-protein interaction sites (Rao, 
2006) and detection of specific amino acid residues that 
contribute to the specificity and strength of protein 
interactions is an important problem with applications 
ranging from rational drug design to analysis of metabolic 
and signal transduction networks. Computational 
methods, mostly sequence based, were developed to 
predict interface sites at differing resolution: at the entire 
domain, a sequence or at the level of each amino acid 
(Halperin, 2003). In general, interface residues are 
predicted by their known characteristics, evolutionary 
conservation of residues and by residue energy distri-
bution on protein surfaces (Liang, 2006). Known charac-
teristics include the fact that protein interfaces occur at 
the planar and accessible paths, their surface is less 
flexible. Shehadi et al. (Ihsan, 2005) suggests that the 
Thematics can be applicable to a much larger set of 
proteins for which an experimentally determined structure 
is unavailable. With a few exceptions, the predicted 
active sites in the comparative model structures are 
similar to that of the corresponding template structure. 
 
 
Correlated mutations and its detection  
 
It has long been suggested that, in the course of evo-
lution, residue substitutions, which tend to destabilize a 
particular structure must be compensated by other 
substitutions that confer greater stability on that structure 
(Tuffery, 1999). Altschuh et al. (Alstchuh, 1987) analyzed 
the amino acid substitutions in the coat protein structure 
of tobacco mosaic virus and seven related viruses and 
showed that some pairs of positions with identical pat-
terns of amino acid substitutions are close together using 
correlated mutations, residues close to interaction site are 
expected to mutate simultaneously during evolution, in 
contrast to convolution approach where simultaneously 
mutations are looked at two interacting partners rather 
than a single protein (Halperin, 2003) Sequence-based 
methods depend on the genomic contex, that is, the 
primary structure, on gene order conservation and on 
domain homologues (Halperin, 2003). It should be 
emphasized that such predictive methods need an 
iterative experimental characterization and production, 
even though it assures a ‘comprehensive measure of the 
compatibility of a sequence with a structure’ (Raha, 
2000). In addition, a variety of statistical predictive 
methods are employed using neural networks and 
machine learning techniques (Raha, 2000). Often a 
combination of methods are used, involving neural net-
works, docking and superimposition (Li, 2005). Such 
predictive methods sometimes use well known phage 
display libraries (Site Light method) (Halperin, 2003). 

 
 
 
 

The remarkable conservation of protein structure, 
compared to that of sequences, suggests that, in the 
course of evolution, residue substitutions which tend to 
destabilize a particular structure must be compensated by other 
substitutions that confer greater stability on that structure. 
Given the compactness of proteins, spatially close resi-
dues are expected to undergo the compensatory pro-
cess. Surprisingly, approaches designed to detect such 
correlated changes have led, until now, only to limited 
success in detecting pairs of residues adjacent in the 
three-dimensional structures (Friesner, 2004). Thematics 
achieves a high success rate of interaction site predict-
tion; about 86% correct or partially correct using 
CatRes/CSA annotations only and about 93% with an 
expanded reference set (Ying, 2007). Success rates for 
catalytic residue prediction are similar to those of other 
structure-based methods, but with substantially better 
precision and lower false positive rates. The method 
requires only the structure of the query protein as input. 
Thematics predictions may be obtained via the web from 
structures in PDB format at: 
http://pfweb.chem.neu.edu/thematics/submit.html 
 
 
Method of Raj Chakrabarti  
 
Given the fact that most of the amino acid sequences in a 
protein are optimized for structural stability and are often 
buried within the structure, attempts were made to 
perform a more comprehensive physico-chemical and elec-
trical interaction map of amino acids at the surface of the protein 
which are likely to be sites of interactions with other proteins 
and chemicals (Li, 2005).  

In their original study, Chakrabarti et al chose a set of 
10 amino acid residues that form essential contacts to the 
ligand for sequence optimization. The essential contacts 
were identified by residues necessary for hydrogen-
bonds, salt bridges, van der Waals forces or hydrophobic 
contacts. The latter was obtained using data and by multi-
ple sequence alignments (Chakrabarti, 2005). The three 
principal steps in the procedure included determining the 
lowest-energy protein structure for each residue, follow-
ing sampling of side-chain conformation and calculation 
of ligand-binding affinity for each. In this way it was 
observed that most binding-site amino acids were 
‘optimized for simple scoring functions based on ligand-
binding affinity, under the constraint that residues involve-
ed in catalysis are restricted to catalytically favorable 
conformations (Chakrabarti, 2005).  
 
 

Protein topology and stability  
 
The sequences of naturally occurring proteins are defined 
by evolutionary selective pressure, which is controlled by 
a fine balance of function, stability, and kinetics. Although 
most random mutations of sequences are unlikely to 
enhance stability or function, they can be accepted by 
natural selection as long as they are neutral (or near neu- 
tral). As a consequence, the size of the  sequence  space 



 

 
 
 
 
space compatible with a given protein fold is very large 
(although small compared with the full space a protein 
sequence can explore, whose size is 20N, where N is the 
number of residues of the protein). The number of 
compatible amino acids at a given position in a protein is 

structure-dependent: some local structures such as tight 
turns have energetic constraints that can be satisfied only 
by small amino acids such as glycine, alanine, or proline. 
In an exploration of sequence space that was associated 
with a given protein attribute, all- atom models were used 
along with a physical energy function (Chakrabarti, 2005). 
It was found that the volume of sequence space was 
defined by protein length, protein topology and stability of 
protein fold. Folding free energy function selects naturally 
available protein sequences in the core but not on the 
surface (Koehl, 2002). This is utilized to search sequence 
space for sequences that satisfy stability constraints for 
known protein structures, which are then compared with 
naturally occurring counterparts. Information of native 
sequence appears to be ‘encoded’ in the backbone 
structure of protein (Jarmillo, 2002). Core amino acid 
sequences were on an average 50% identical to their 
native counterparts. Surface region identity scores were 
much lower than core amino acid sequences (Heinz, 
1992). Newer methods such as Hidden Markov models 
are being explored to improve performance of identifying 
appropriate sequences. It has been suggested that 
sequences the surface of enzymes may have been 
selected at least in part, for mediating interactions at the 
expense of protein stability. Amino acids at the surface 
were therefore optimized not for protein stability, but for 
functional reasons (Heinz, 1992). 

Many proteins maintain their structure while undergoing 
extensive mutations. For example, alanine substitution of 
10 consecutive residues in bacteriophage T4 lysozyme 
leads to only minor structural differences (Cordes, 1999). 
On the other hand, a single double mutation can generate 
a dramatic structural change, as observed in the Arc 
repressor for which the interchange of the sequence 
position of residues 11 and 12 leads to a new structure in 
which each -strand is replaced by an -helix (Bogarad, 
1999). These seemingly conflicting results have lead to a 
complicated picture of protein sequence evolution: it is 
not clear whether a protein fold can evolve into a new fold 
by accumulation of simple point mutations (Drexler, 
1981). As a first step toward a better understanding of 
evolution, studies have focused on characterizing the 
protein sequence space compatible with a given protein 
structure, the so-called inverse folding problem (Pabo, 
1983; Arnold,1998). A large range of methods, including 
in vitro experiments mimicking evolution (Arnold, 1998 a, 
b; Desjarlais, 1995) and fully automated computer protein 
design (Dahiyat, 1997; Hellinga, 1998; Muegge, 2001), 
has been proposed for searching sequences that would 
stabilize a given protein structure with improved stability 

or with a new activity. 
In summary there has been synergistic use of data and 
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methods obtained from different sources to give mean-
ingful biological solutions to the structure and func-tion of 
proteins, that are available in geometric progression, 
faster than can be characterized by hitherto tradi-tional 
methods. Computational methods offer simulation and 
analytical opportunities to characterize, identify and modi-
fy proteins with appropriate characteristics to catalyze the 
specific biochemical reaction that is required. 

The accurate prediction of binding affinity is one of the 
most important tasks in de novo ligand design to direct 
the synthesis of potential modeled ligands bound to 
receptors. The continuously growing number of protein 
structures and protein structural models, resulting from 
the knowledge of genomes, represents enormous 
promise for development of drugs and other bioactive 
compounds. Full utilization of the potential requires an 
armory of computational methods for prediction of ligand–
protein-binding affinities. Structure-based prediction 
methods with various levels of accuracy and speed are 
available today: fast docking and scoring approaches 
(Leach, 2006) for reduction of vast chemical libraries to 
several hundreds of probable binders, the second-pass 
methods selecting a dozen or so compounds with a high 
probability of success, and the most sophisticated 
methods like Free Energy Perturbation (Akash, 2007) 
and Thermodynamic Integration (King,  1998) which can 
e.g., discern the affinity of closely related analogs.  
 
 
Protein tyrosine phosphatase and its relationship to 
diabetes 
 
The global prevalence of diabetes mellitus has increased 
continuously and it has been predicted that the number of 
adult diabetics will double within 30 years. Almost 250 
million people, nearly 6% of adults in the world, have 
diabetes (Mayor, 2006). The problem with diabetes is 
that, even if the exact same mutation caused it in every-
one, it would look different from person to person and 
family to family, depending on environmental influences, 
the genetic background it's laid upon, and modifier genes 
(Martin, 1992 a, b). Its expression would be variable. Fur-
thermore, studies have shown that diabetes is not simple; 
it's genetically complex, involving multiple genes, and 
multiple gene-environment interactions 

Type 1 diabetes mellitus (T1D) results from an auto-
immune destruction of beta-cells in genetically predis-
posed individuals (Castano, 1990). In prediction of T1D 
the presence of circulating autoantibodies to insulin (IAA), 
glutamic acid decarboxylase (GADA) and the protein 
tyrosine phosphatase like IA-2 (IA-2A) are important and 
multiple autoantibodies confer a higher risk of developing 
T1D (Bingley, 1994), especially when combined with the 
risk genotype (Kimpimaki, 2002). 

Type 2 diabetes, formerly known as non-insulin-
dependent diabetes (NIDDM), accounts for most cases of 
diabetes mellitus worldwide. It is estimated that in 2005 
there were approximately 160 million individuals  with  the 
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Figure.1. 3D structure of PTP 1B enzyme phosphate 
formation. 

 
 
 
disease and that this number is likely to double by 2025 
(Swan, 1982). Swan GW first applied the engineering 
optimal control theory to equations describing insulin and 
glucose interactions (Jannik, 2003). T2DM result from 
complex interaction between genetic and environmental 
factors. The high incidence of T2DM in certain popu-
lations and among first-degree relatives of T2DM 
patients, as well as the high concordance in identical 
twins, provides strong evidence that genetic factors 
underlie susceptibility to T2DM (Elebein, 2002). 

Protein tyrosine phosphatase 1B (PTP1B) (Figure 1) 
has been shown to be involved in the negative regulation 
of both insulin and leptin action at the in vitro, ex vivo and 
in vivo levels. A growing body of human genetic data also 
support the hypothesis that PTP1B has an important role 
in insulin signaling and possibly in obesity in humans. The 
protein tyrosine phosphatases (PTP) constitute a family of 
closely related key regulatory enzymes that dephos-
phorylate phosphotyrosine residue in their protein sub-
strates. 
Malfunctions of PTP activity are linked to various 
diseases, ranging from cancer to neurological disorders 
and diabetes.  The family of protein tyrosine phosphatases, 
which is encoded by 100 genes in humans, plays a critical 
in the regulation of signal transduction. Recently a variety of 
links between aberrant PTP function and human diseases has 
been defined (Liu, 2003) Protein tyrosine phosphatase 1B 
(PTP1B) has been implicated as one of the key regulators of 
insulin and leptin signal transduction pathways.  Inhibiting 
PTP1B action using antisense oligonucletides and small 
molecule inhibitors represents novel therapeutic approach 
for the treatment of insulin resistance, type II diabetes, and 
obesity. Liu Gang reviewed the recentaction, particularly 
small molecules PTP1B inhibitors, and inhibitors with 
drug like properties (Zhong, 2002). Zhong (2002) summa-
rized the correlation of PTP summarized the correlation 
of PTP structure and the correlation of PTP                 
structure and function from mutagenesis experiments, in 
this the molecular basis for PTP1B substrate reorgani 
zation is discussed, a powerful strategy is presented for 
creating specific and high affinity bidentate PTP inhibitors 
that simultaneously bind both the active site and unique 
adjacent site (Ebina, 1985). 

 
 
 
 
The major sites of autophosphorylation within the pro-tein 
tyrosine kinase (PTK) domain of the � subunit are Tyr-
1158, Tyr-1162, and Tyr-1163 (using the numbering of 
(White, 1988) which are contained within the PTK 
activation segment.  

Autophosphorylation of all three sites is required for 
maximal activation (Patti, 1998). Following activation, 
additional autophosphorylation reactions occur in the 
juxtamembrane segment and the C-terminal tail of the � 
subunit. IRK-catalyzed phosphorylation of proteins, such 
as IRS-1 and IRS-2, creates high-affinity binding sites for 
proteins that contain Src homology 2 (SH2) domains, 
such as phosphatidylinositol 3-kinase (PI3-K), resulting in 
the assembly of the multiprotein signaling complexes that 
mediate the effects of insulin on cellular metabolism, 
growth, and glucose homeostasis (Ahmad,  1997).  

In the context of insulin signaling, protein phosphory-
lation is a reversible process, regulated by the coordi-
nated action of protein kinases and phosphatases. There-
fore, dephosphorylation of the insulin receptor by protein 
tyrosine phosphatases (PTPs) is also a critical compo-
nent of the control of insulin signaling.  

Numerous studies have demonstrated that in humans, 
and in animal mo-dels, insulin resistance in type 2 
diabetes and obesity is accompanied by increases in 
PTP activity and increases in the level of expression of 
defined members of the PTP family.  

In skeletal muscle and adipose tissue from insulin-
resistant obese and diabetic subjects, the increased PTP 
activity has been linked primarily to changes in the 
expression of the receptor-like PTP LAR (leukocyte com-
mon Antigen  related) and the cytoplasmic enzyme 
PTP1B (Ahmad, 1995). 

Studies in cell culture models have indicated a 
functional link between LAR and dephosphorylation of the 
insulin receptor (Kennedy, 1999).  

However, disruption of the LAR gene in mice yields a 
complex phenotype consistent with a postreceptor defect 
in insulin signaling but associated with impaired activation 
of downstream signals, such as PI 3-kinase (Desmarais, 
1999). Therefore, attention has focused on PTP1B as a 
major regulator of insulin signaling.  

The observation that peptides with tandem pTyr 
residues bind with high affinity to PTP1B is in agreement 
with a recent study by Ramachandran and colleagues 
who observed that pep-tides containing two adjacent 
nonhydrolyzable analogs of pTyr (difluorophosphono-
methyl-Phe) were potent inhibitors of the challenges 
associated with developing PTP1B advances in various 
approaches for attenuating PTP1B (Alastair, 2006).  

One of the main challenges for the design of potent 
inhibitors is to overcome the small size and polar nature 
of the active-site pocket. In the case of PTP1B, bidentate 
inhibitors have been designed that target two surface 
pockets. This concept could also be applicable to other 
family members. The polarity of the active site and 
difficulties in identifying potent pTyr  mimetic  compounds  



 

 
 
 
 
resulted in phosphatase inhibitors with unfavorable phar-
macological properties. To generate inhibitors that can be 
used in vivo, these properties must be improved. 

Recently Alastair J. Barr and Stefan Knapp constructed 
phylogenetic tree for PTP 1D which will be useful for 
development of new PTP inhibitors (Kennedy, 1999). 
Kennedy et al reviewed its role in diabetes and obesity 
(Kenn, 2000; Burke, 1998) 

 Design of small molecule compounds inhibiting the 
enzymatic function of PTP1B is of great medicinal 
interest. It is actively being pursued in many academic 
(Moller, 2000) and industrial (Kole, 1996) organizations. It 
is appreciated that PTP1B is a negative regulator of 
insulin receptor signaling and a suitable drug target for 
treatment of insulin resistance associated with diabetes 
and obesity (Bandyopadhya, 1997). Clinical studies have 
found a correlation between insulin resistance states and 
levels of PTP1B expression in muscle and adipose 
tissues (Ahmad, 1997; Elchelby, 1999). Recent PTP1B 
knockout studies revealed that mice lacking functional 
PTP1B exhibit increased sensitivity toward insulin and 
are resistant to obesity (Chernoff, 1990).  

PTP1B is a prototypical intracellular protein tyrosine 
phosphatase found in a wide variety of human tissues 
(Salmeen, 2000). The exact roles of PTP1B in relation to 
insulin resistance are not fully understood. It has been 
demonstrated that the interaction of insulin with its 
receptor leads to the phosphorylation of certain tyrosine 
residues (1158, 1162 and 1163) within the receptor 
protein, thus activating the receptor kinase (Ahmad, 
1995). PTP1B, probably together with other phos-
phatases (LAR, PTP� and SH-PTP2) (Tonks, 2001), 
dephosphorylate the activated insulin receptor. Recent 
studies with LAR knocked out mice have not shown 
altered glucose homeostasis, however (Malamas, 2000). 
The dephosphorylated insulin receptor loses the tyrosine 
kinase activity that is required for further down-stream 
signaling (Sarmiento, 2000). Inhibition of PTP1B 
prevents, at least to some extent, the activated insulin 
receptor from being inactivated. In addition to the above 
function, PTP1B dephosphorylates a number of other 
receptor tyrosine kinases, including the EGF receptor and 
the PDGF receptor (Tuffery, 1999). Protein- tyrosine 
phosphatases (PTPs), together with protein –tyrosine 
kinases, control the tyrosine phosphorylation state in the 
cell (Figure 1), which is important for cellular activities 
such as growth , differentiation ,motility ,cell-cell interact-
tions ,metabolism, gene transcription, and the immune 
response(Hunter, 1995; Tonks, 1996). PTPs constitute a 
growing family of transmembrane (receptor- like) and 
intracellular enzymes (cytoplasmic) that rival the protein 
tyrosine kinase in terms of structural diversity and 
complexity. Extensive biochemical and structural studies 
of PTPs during the past ten years have led to a detailed 
understanding of the mechanism by which PTPs catalyze 
phosphate monoester hydrolysis. PTP1B can effectively 
accommodate peptides of varying sequence, in  a  cataly- 
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tically viable fashion that differs from that observed in the 
PTP1B.DADEpYL structure .considering that the region 
surrounding the active site is covered with many charged 
cervices and protrusions, compensatory interact-tions 
may be available. A further understanding of the specific 
functional role that PTPs play in cellular signaling and 
how they are mechanically able to carry out these roles 
requires a detailed description of the structural features 
that control PTP substrate specificity. Inspite of the 
remarkable progress in the identification and character-
rization of new PTPs distinguish and in the understanding 
of the PTP catalysis, the molecular basis by which PTPs  
distinguish and recognize the diverse substrates that they 
encounter in the cell has still not been firmly established. 
This is partly because the physiological substrates for 
most PTPs remain unknown and it remains a major 
obstacle to obtain quantities of specifically and stoichio-
metrically tyrosine phosphory-lated proteins required for 
detailed enzymological studies. So the application of 
Thematics for the study of this type of complex proteins 
will be useful for in silico drug discovery studies. (Figure 
2) represents the proposed comparison view of active 
site prediction / drug target identification using proteomic 
and thematic approaches.  
 
 
Conclusion 
 
PTP1B is tractable to structure-based drug design, and 
the crystal structure is well known. Recently, the crystal 
structure of the closely related T-cell protein tyrosine 
phosphatase (TCPTP) has become available, raising the 
possibility for designing selective inhibitors (Johnson, 
2002). It is concluded that PTP1B is playing an important 
role not only in type 2 diabetes but in other diseases like 
cardiovascular and alzheimer’s. As previously reported 
by us for mathematical, bioinformatic and structural 
analysis of complex proteins in diabetes and its complica-
tions is useful to understand the pathophysiology of 
diseases (Bhremeramba, 2007; Rao, 2006; Rao, 2006; 
Sridhar, 2006; Sridhar, 2005). Thematics are useful for 
further development of specific inhibitors to proteins 
(PTP1B), potential anti-diabetic drugs, chemical probes 
for clarification of the roles of PTP1B in normal cellular 
processes as well as in pathogenic pathways. It is proved 
beyond doubt that the computational analysis do 
necessary for any of the protein like PTP which a 
complex protein structurally.   
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