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Microbial processes functioning in bioreactors under realistic conditions are subject to incomplete 
dispersion and the presence of noise from the environment and within the cells. These factors 
complicate the development of good quantitative descriptions of microbial reactors. Most analyses 
have therefore focused on either the intra-cellular or the extra-cellular processes, ignoring or simpli-
fying the other facet. The resulting models are thus useful only for the intended purposes and in limited 
domains, but they do not include a comprehensive description of all features. These models have 
employed one or more of three main approaches to develop quantitative descriptions – mechanistic, 
cellular intelligence (or cybernetic), and artificial intelligence. Models using judicious combinations of 
two or more methods have wider and more versatile applicability. However, no model has accommo-
dated both intra-cellular and extra-cellular noise in a macroscopic description of a nonideal bioreactor. 
Based on a review of recent studies, such a conceptual model is presented here. It combines all three 
approaches in a flexible design. 
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INTRODUCTION 
 
Cellular processes are often more complex than chemical 
processes, even when both generate the same outputs. 
Many factors contribute to this complexity. At a funda-
mental level, living cells sustain more complex and intri-
cate networks of reactions than many chemical reactions. 
Cellular reaction networks are not always completely 
deciphered, thus underlining their complexity and nece-
ssitating simplifying methods to formulate workable kine-
tic models (Gombert et al., 2000; Varner and 
Ramkrishna, 1999). Unlike chemical reactions, metabolic 
reactions are regulated by structurally and functionally 
complex molecules such as DNA, RNA and enzymes, 
many of whose concentrations are small but important. 
The low concentrations also make these molecules 
sensitive to noise at the genetic level (Kaern et al., 2005), 
which in turn has an impact on the observed behavior of 
the process (Haag et al., 2005). 

Cellular metabolic processes also respond to environ-
mental changes in ways that are difficult to capture 
through models constructed on chemical kinetic prince-
ples alone. The lag phase behavior of cultures transfer-
red from one medium to another, the responses to abrupt 

changes in input streams, and cellular dynamics in the 
presence of external noise are some examples. Such 
observations may however be described quantitatively by 
“intelligent” models. By contrast with the static nature of 
chemical kinetic models, intelligent models employ either 
inherent or artificial intelligence. Inherent intelligence is 
the basis of the so-called cybernetic models (Dhurjati et 
al., 1985; Patnaik, 2000) which attribute to living cells the 
ability to retain information, understand it and adjust their 
responses on the basis of past experience. Artificial inte-
lligence has been invoked largely to model macro-scopic 
microbial behavior under the influences of noise and 
spatial variations in a bioreactor. Methods such as arti-
ficial neural networks, fuzzy logic and genetic algorithms 
then provide more faithful representations of varied cellu-
lar dynamics than mechanistic models do (Hodgson et 
al., 2004; Patnaik, 2006a). 

While intelligent descriptions of microbial processes in 
bioreactors have decisive advantages over mechanistic 
models under realistic conditions, they have limitations 
too. Cybernetic models tend to be quite complex, often 
resulting in large sets of differential equations, and some- 
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times more than one cybernetic goal seems to explain the 
observed behavior equally well (Patnaik, 2000; Straight and 
Ramkrishna, 1994). A pivotal feature of cybernetic models 
is the presence of regulatory key enzymes, but it has not 
always been possible to establish a correspondence bet-
ween these and the enzymes actually detected. A com-
mon criticism of artificial intelligence methods is that they 
are too empirical and do not incorporate the physiological 
features of cellular processes. Consequently, it becomes 
difficult to provide physical interpretations for the para-
meters of these models and relate them to kinetic and 
thermodynamic features (James et al., 2002; Lubbert and 
Jorgensen, 2001). 

Despite their inadequacies, mechanistic models are 
simple and are derived through biological and physical 
principles. Therefore they have greater physiological 
closeness to internal cellular processes; as a result, their 
parameters can be attributed physical meaning and can 
be manipulated by introducing mutational, genetic or ope-
rational changes (Haag et al., 2005; Hodgson et al., 
2004). Given the different strengths of mechanistic mo-
dels and intelligent models, it might be useful to combine 
the two approaches to develop composite (or hybrid) 
models for microbial reactors. These composite models 
should, in principle, turn out to be adaptive, flexible and 
self-regulating like intelligent models, but also possess 
the fundamental biological basis of mechanistic models. 

The idea of composite or hybrid models is not new. Many 
previous studies (Coleman et al., 2003; Galvanauskas et al., 
2004; James et al., 2002; Patnaik, 2003a) have combined 
two or more modeling approaches to optimize and control 
bioreactors for different microbial cultures. However, no 
investigation has yet been reported of an approach that 
includes both intra-cellular and extra-cellular noise as 
well as cybernetic kinetics and bioreactor nonidealities. 
Since all these are important features of real microbial 
processes, this communication provides a perspective of 
how the development of existing methods of modeling 
can lead to such a composite descriptive framework. 
 
 
NONIDEAL FEATURES OF CELLS AND REACTORS 
 
Cellular noise and complexity 
 
Cells synthesize products as a result of the expression of 
specific genes. Molecules such as DNA, mRNA and pro-
teins are involved in gene expression. These molecules 
are usually present in concentrations sufficiently low for 
stochastic effects to become significant (Kaern et al., 
2005; Raser and O’Shea, 2005). As a result, the amount 
of a particular protein that a gene synthesizes fluctuates 
from cell to cell in a population and with time for each 
cell. These fluctuations (termed genetic noise) arise from 
a number of sources but they may be categorized broad-
ly as either (a) intrinsic or (b) extrinsic. 

Intrinsic noise refers to fluctuations associated with 
promoter activation or deactivation and the synthesis and 
decay of mRNA and proteins.  Extrinsic noise pertains  to  

 
 
 
 
fluctuations in gene products such as RNA polymerase, 
ribosomes and certain proteins. Although external to the 
relevant genes, these fluctuations act on the genes, thus 
complicating both genetic expression and the identifica-
tion of the two contributing effects. Nevertheless, Elowitz 
et al.’s (2002) two-reporter assay provides an elegant 
method to differentiate and quantify these two types of 
genetic noise. 

While it may be possible to measure intrinsic noise and 
extrinsic noise and relate them to biochemical parame-
ters (Swain et al., 2002), it still remains difficult to quantify 
individual repositories of intrinsic noise. Intrinsic noise 
may be present at any of three levels: (a) individual 
genes, (b) reaction pathways in a network, and (c) the 
cells as a whole. Each of these sources affects particular 
intra-cellular processes but all three interact as shown in 
Figure 1. 

Since cellular processes involve complex networks of 
reactions regulated at the genetic level, they should be 
able to withstand stochastic effects so that the cellular 
machinery can function without being destabilized. In 
other words, cells should be sufficiently robust to both 
intrinsic and extrinsic noise. Complexity and robustness 
are inter-related, and examples abound in biological and 
ecological systems (Carson et al., 2006). Robustness is 
the maintenance of specific characteristics of system 
behavior in the face of perturbations (Carson and Doyle, 
2002; Kitano, 2004a; Stelling et al., 2004). Kitano (2004a) 
has argued that complex evolvable systems are nece-
ssarily robust; since evolution is a fundamental trait of 
living cells, they too are robust. 

Many factors contribute to robustness, of which feed-
back is a prominent example. While positive feedback 
amplifies fluctuations and negative feedback attenuates 
them, the former also increases phenotypic diversity in a 
population of cells (Becsei and Serrano, 2000; Kaern et 
al., 2005; Rao et al., 2002). In a heterogeneous popu-
lation, different phenotypes have different survival proba-
bilities under given environmental conditions, and this 
has important implications for disease control (Balaban et 
al., 2004). Since both negative and positive feed-back 
have beneficial as well as detrimental effects, it may be 
worthwhile to design gene networks that incorporate the 
helpful features of both; research on HIV (Richman, 
2001) and cancer (Kitano, 2004b) indicates that this is 
possible. 

The evolvability of living systems is also a core concept 
underlying cybernetic models of microbial processes. The 
cybernetic approach (Dhurjati et al., 1985; Varner and 
Ramkrishna, 1999) attributes to living cells the ability to 
learn from their experiences and accordingly respond 
optimally to changing circumstances. Cybernetic models 
have not only provided more faithful representations of 
the dynamic behavior of microbial reactors (Dhurjati et al., 
1985; Hodgson et al., 2004; Namjoshi and Ramkrishna, 
2001; Patnaik, 2000) but also explained uncommon pat-
terns of behavior that were considered aberrant by mech-
anistic    modeling    approaches   (Narang   et  al.,  1997;  
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Figure 1. Noise sources inside a cell and their effects on cellular processes. Reproduced from Kaern et al. (2005) with 
permission from Macmillan Publishers Ltd. � 2005. 

 
 
 
Straight and Ramkrishna, 1994). Such models have also 
helped to increase productivity (Patnaik, 2006a) and to 
suggest new feeding methods with multiple substrates to 
promote desired objectives (Patnaik, 2003b). 

It is important to realize that the cybernetic concept is 
consistent with the basic premises of complex evolvable 
systems (Carson and Doyle, 2002; Kitano, 2004a). Both 
address the dynamics of complex processes and both 
are predicated on the Mendelian idea of evolution as a 
method of survival. Not surprisingly, therefore, the cyber-
netic framework may be used to suggest genetic modi-
fications that will alter the rates and fluxes of path-ways in 
a metabolic network so that a desired objective, such as 
over-expression of an enzyme or suppression of a by-
product, is favored (Varner and Ramkrishna, 1998). 
 
 
Heterogeneity and noise in bioreactors 
 
Populations of cells are usually cultivated in bioreactors 
under conditions that favor specific objectives. Typical 
objectives are the growth of the cells themselves, the for-
mation of particular products, and the removal of harmful 
components from the environment of the cells. To ach-
ieve these objectives, it is possible to have elaborate con-
trols of small bioreactors used in the laboratory but prac-
tical difficulties and high costs limit both measurements 
and control in large bioreactors. Therefore, larger reac-
tors are less ‘ideal’ than small vessels and generate less 
of the product(s). Two significant nonideal features are: 
(a) spatial variations within the reactor, as a result of 
incomplete mixing or dispersion and (b) the influx of noise 
from the environment. The latter feature is obviously 
more likely in continuous flow and fed-batch operations; 
nevertheless, kinetic and thermodynamic considerations 
often favor the choice of such operating modes (Liden, 
2001). 

While spatial heterogeneity increases with reactor size, 
even small bioreactors can have significant gradients on 
a microscopic scale (Larsson et al. 1996). This makes the 
optimal positioning of sensors difficult and expensive. 
Moreover, the presence of spatial variations and the 
influx of noise from the environment create differences 
among the cells and in the distribution of fluxes along the 
pathways of metabolic networks, in the yields of  products  

and sometimes in the stability of the fermentation. These 
effects are illustrated by numerous studies of the pro-
duction of ethanol by Saccharomyces cerevisiae in conti-
nuous cultures (Garhyan and Elnashaie, 2004; Garhyan 
et al., 2003; Patnaik, 2005). Recall here that extrinsic 
noise also creates differences between cells in a popu-
lation (Kaern et al., 2005; Raser and O’Shea, 2005). 
Since both extrinsic noise and external (environmental) 
noise have an impact on the cells, this raises an intri-
guing question: will the two sources of noise amplify or 
nullify each other? Depending on the operating condi-
tions, either effect is possible: noise may drive a culture 
from a monotonic stationary state to an oscillating or a 
chaotic state and, alternately, proper filtering of noise can 
restore stable states from chaotic conditions (Garhyan 
and Elnashaie, 2004; Garhyan et al., 2003; Patnaik, 
2006b). 

The complexities described above make it difficult to 
formulate mechanistic models and control policies based 
on them that are sufficiently accurate, simple, flexible, 
adaptive, fast and robust. These difficulties have moti-
vated the use of artificial intelligence (AI) methods for on-
line estimations of important variables and optimal control 
of bioreactors. Artificial neural networks (Gadkar et al., 
2005), genetic algorithms (Hodgson et al., 2004) and 
fuzzy logic (Arnold et al., 2002) have been used in dif-
ferent applications. Although they are superior to clas-
sical methods of modeling and control, AI methods are, in 
effect, ‘black box’ entities with poor physiological founda-
tions. Not surprisingly, therefore, they are often difficult to 
train, do not always yield unique models and have limited 
capability outside their training domains. These weak-
nesses have generated hybrid models that combine AI or 
cybernetic models with mechanistic equations. Many 
applications of hybrid models have been reviewed recen-
tly (Galvanauskas et al., 2004). While establishing the 
usefulness of hybrid approaches, they also reveal areas 
that are still uncertain and require further inquiry. These 
are discussed in later sections. 
 
 
A CONCEPTUAL BASIS FOR MODEL DEVELOPMENT 
 
The formulation of a comprehensive model for a biore- 
bioreactor begins at the cellular level, integrates this  with 
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the extra-cellular environment, establishes a quantitative 
description of this environment through mass balances, 
and incorporates non ideal features. The processes 
inside the cells themselves are sufficiently complex to 
require a hierarchical portrayal; Figure 2 presents such a 
portrait. Many studies (Dun and Ellis, 2005; Shimizu, 2002; 
Wang et al., 2006) have discussed cellular functions from 
the perspective of Figure 2, so that discussion will not be 
repeated here. An overriding feature of this conceptual 
depiction is the emergence of ‘omic’ structures as buil-
ding blocks for intra-cellular processes. Genomics des-
cribes the primary functions at the level of genes. Ensem-
bles of genes may differ from one genome to another, 
thus controlling the expression of different proteins thro-
ugh DNA transcription processes (transcript-tomics). The 
expressed proteins differ in their structures, functions, 
stability and interactions within individual mole-cules and 
between molecules; these features are the domain of 
proteomics. 

Macroscopic manifestation of these intra-cellular facets 
begins at the metabolomic stage, where metabolic regu-
latory networks and fluxes along pathways constituting 
these networks are analyzed. The flux distributions are 
controllable and are critical to the product distributions 
obtained in microbial cultures. Thus metabolomics pro-
vides a vital interface between genome-level processes 
and those at the bioreactor level. The hierarchical struc-
ture of the ‘omic’ domain continues through the meta-
bolome to the bioreactor, as illustrated in Figure 2 (Ortoleva 
et al., 2003; Wang et al., 2006). Note that from the 
microscopic to the macroscopic level the number of 
variables reduces from up to 105 (reflecting the comple-
xity of cellular processes) to less than 10. This reduction 
is important because practical monitoring and control of a 
bioreactor can be done efficiently only with a limited num-
ber of variables. 

Multi-cellular processes that differ so widely in comple-
xity, time scales and the number of variables may under-
standably be described by more than one approach. 
Different workers have adopted different approaches and 
used different assumptions, according to the conditions of 
the system being studied and the objective. There appear 
to be five main approaches, with differences and simi-
larities: 
 

i.) Equation-oriented approach. 
ii.) Signal-oriented approach. 
iii.) Cellular intelligence approach. 
iv.) Artificial intelligence approach. 
v.) Composite (or hybrid) approach. 
 
These are discussed below, followed by a proposal to 
combine some of them to formulate a composite compre-
hendsive model. 
 
 

EQUATION-ORIENTED MODELING 
 
The  underlying premise for equation-oriented  models  is 

 
 
 
 
that biological processes follow the same laws as chemi-
cal processes. This implies that, as for chemical reac-
tions, mass balances and kinetic equations can be formu-
lated on the basis of measurements of inputs, outputs 
and intermediates. We recapitulate here that cellular 
systems involve reactions inside the cells and transport 
between (a) the cells and the extra-cellular broth, (b) 
through the broth itself and (c) sometimes between the 
broth and the external environment. On this basis two 
streams of modeling have evolved independently. One 
relates to the intra-cellular metabolic processes (Gombert 
and Nielsen, 2000; Varner and Ramkrishna, 1999) and 
the other pertains to bioprocesses (Bailey, 1998; Lubbert 
and Jorgensen, 2001). However, a comprehensive descr-
iption of a microbial system should encompass both 
streams, and Haag et al. (2005) work illustrates how this 
may be done. 

Consider a set of reactions that follow the stoichiometry 
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Where Si is the i-th substrate and Pi the i-th product. In a 
perfectly mixed continuous flow stirred tank bioreactor, 
the mass (or molar) balances for each component in the 
extra-cellular fluid may be written as  
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where exc  is the vector of exit concentrations, inc the 
vector of inlet concentrations, Qin the inflow rate, Qout the 
outflow rate, V the volume of material in the bioreactor 
and t the elapsed time, r contains the rate terms for the 
concentrations exc , and exK  is a vector of stoichiometric 
rate constants. 

Normally Qout = Qin and hence V is constant. Then, with 
the dilution rate defined as D = Qin/V, Eqn. (2) becomes 
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Haag et al. (2005) also accounted for the common obser-
vation that, at any time, some cells are active (or viable) 
and others are inactive (or dead). Ignoring detailed mech-
anisms, they considered simply that, overall, dead cells 
(Xd) arise irreversibly from viable cells (Xv). Then the 
mass balances for the biomass may be expressed as: 
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Here 
dv xx k and k contain the respective reaction rate 

constants, and kd is the rate constant for the decay of 
viable cells. Combining Eqns. (4) and (5), the total 
specific growth rate may be obtained from  
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The equality µtot = µ is understandable since only viable 
cells contribute to the growth. Metabolic reactions inside 
the cells contribute to changes in the viable cell mass. 
Therefore, similar to Equation (2), global balances for the 
intra-cellular metabolites, ic  , may be written as 
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The vector q  contains the metabolic fluxes along the 
reaction pathways. Equation (7) may be recast in the 
form of Equation (3) to obtain 
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Since the control volume of the bioreactor alone is a 
closed system, the mass flows between the cells and 
their environment have to be balanced. This leads to  
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with exg containing the terms representing exchanges 
with the environment outside the bioreactor. In the 
simplest case without gaseous inflow or outflow, 
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This model is rigorous but complex. Moreover, it depends 
on intra-cellular concentrations, which are usually difficult 
to measure, and it ignores intra-cellular regulatory 
processes (Dhurjati et al., 1985; Ptnaik, 2000). These 
limitations have been exposed in studies of hybridoma 
cultures (Namjoshi et al., 2003; Zupke and Stephano-
poulos, 1995). 
 
 
SIGNAL-ORIENTED APPROACH 
 

As an alternative to the “bag full of enzymes” (Lengeler et  
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al., 1999) approach of equation-oriented mechanism-
based modeling, the signal-oriented approach views a 
cell as a mosaic of function units with signals flowing bet-
ween them. The content and the nature of flows deter-
mine the ultimate functions of a cell. Three biological 
criteria are used to demarcate these units: (i) the pre-
sence of an enzymatic network with a common physio-
logical task, (ii) control of this network at the genetic level 
by a common regulatory unit, such as an operon or a 
regulon, usually organized in a hierarchical way, and (iii) 
the coupling of this regulatory network through a signal 
transduction system. 

Based on these concepts, Kremling and coworkers 
(Kremling et al., 2000) proposed a signal-oriented descri-
ption of cellular dynamics. They illustrated their method 
with Escherichia coli. In their application each functional 
unit is characterized by two “coordinates”. The structural 
coordinate is described by the number and type of inputs 
and outputs. For example, a functional unit may describe 
transcription processes connecting a pool of nucleotides 
with the RNAs. The second coordinate is behavioral and 
it is expressed by mathematical equations describing the 
structural object. As might be expected, functional units 
differ in their complexity and response times. 

Kremling et al. (2000) also assigned to each unit an 
indicator molecule (called an alarmone) whose level of 
activity controls the activities of superimposed regulatory 
networks. It is worth remembering this concept in order to 
draw a parallel with the cybernetic approach to be des-
cribed later. 

Each function may be composed of one or more ele-
mental submodels or model objects. These are basically 
of three types: (i) substance storages, (ii) substance 
transformers and (iii) signal transformers. Substance 
storage devices may either contain genetic information 
(as in the cases of DNA, RNA and proteins) and may not 
(e.g. intermediate metabolites). Signal transformers form 
the central nervous system of the signal-oriented app-
roach. As Kremling et al. (2000) point out; they provide 
the crucial links between the reception of stimuli, either 
from inside the cells or from the external environment, 
and the cellular responses. 

Signal transformers also help to differentiate between 
metabolic flows and signal flows. Metabolic networks 
comprise metabolic and regulatory subnetworks. The 
metabolic subnetwork contains the metabolic fluxes 
whereas the regulatory component describes the signal 
transduction processes. The signal-oriented approach 
may be illustrated by the simple example of the synthesis 
of a protein (Kremling et al., 2000). This requires the pro-
cesses of transcription, translation and replication, which 
are modeled as shown in Figure 3. Each process has 
three components–substance storage, substance trans-
former and signal transformer. As seen, transcription and 
translation provide unidirectional signal transfer. The 
signal transformer of the transcription cascade processes 
information about  DNA  sequences,  regulatory  proteins,  
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            Replication (RP)    Transcription (TC)        Translocation (TL)  
 
Figure 3. Signal flow depictions of the processes of replication (RP), transcription (TC) and 
translation (TL) in the synthesis of a protein. Reproduced from Kremling et al. (2000) with permi-
ssion from Academic Press � 2000. 

 
 
  

 
 
Figure 4. Signal flow diagram of the chemosensory 
system of Escherichia coli. Redrawn from Andrews et al. 
(2006) � Authors 2006. 

 
 
 
etc. and determines the transcription efficiency. The pro- 
duct of transcription - mRNA - is an input to the signal 
transformer of the translation stage, where the translation 
efficiency is determined for the synthesis of the final 
protein.  

The chemosensory system of E. coli (Figure 4) demon-
strates the application of the signal-oriented approach to 
a more complex problem. Contrary to Fickian diffusion, E. 
coli move up a chemical gradient. A chemotactic path 
comprises alternate straight-line movements (“runs”) and 
corrective changes of direction (“tumbles”). The move-
ments are effected by long helical flagellae attached to 
rotary motors embedded in the cell surface. When the 
motors spin counter-clockwise, they propel the cells 
along straight paths.  Clockwise  rotations  generate  tum-  

bles. Chemoreceptors projecting out from the cell surface 
sense the stimuli and generate a network of signals that 
eventually control the rotary motors. Details of the chem-
osensory mechanism are described elsewhere (Andrews 
et al., 2006; Baker et al., 2006). 

Kremling and coworkers preferred a different applica-
tion that perhaps illustrates better both the strengths and 
the weaknesses of their methodology. They analyzed the 
diauxic growth of E. coli on a mixture of glucose and lac-
tose (Kremling et al., 2001). While the signal-oriented 
model could express the observed growth patterns, it 
also allowed variations in the identification of the func-
tional units and in the signal flow diagrams. In their earlier 
work (Kremling et al., 2000) they had called this flexibility 
but the multiplicity of competing designs also make it 
difficult to reach an optimal representation and a reliable 
interpretation of the biological processes. Similar to 
cybernetic models of metabolic processes, to be discu-
ssed next, the signal-flow method suffers from a surfeit of 
parameters, many of which have to be estimated inde-
pendently, and the non-uniqueness of topologies just 
mentioned. 
 
 

CELLULAR INTELLIGENCE APPROACH 
 

Ramkrishna and associates proposed a different pers-
pective of microbial metabolism and growth. Like Krem-
ling and coworkers, they were motivated by the inability 
of mechanistic models to portray and predict certain fea-
tures of microbial cultures. For example, mechanistic 
kinetics accounts for steady state variations with the dilu-
tion rate in continuous flow bioreactors by invoking an un-
proven maintenance term but still fails to handle the 
transient approach to a steady state. Another case is 
diauxic growth on  mixture  of  two substrates,  where  the 



 
 
 
  

 
 
Figure 5. Information flow diagram of a typical cell, showing 
internal regulatory controls and the effect of the 
environment. Redrawn from Dhurjati et al. (1985) with 
permission from John Wiley and Sons Inc., New York 
�1985. 
 
 
 
mechanistic approach cannot explain why one substrate 
is ignored until the other is exhausted (Ramkrishna, 
2003). 

To account for such apparent oddities, Ramkrishna and 
coworkers (Dhurjati et al., 1985; Straight and Ramkrishna, 
1994; Varner and Ramkrishna, 1999) proposed that living 
cells have internal regulatory controls that enable the 
cells to exercise judgment in a given set of conditions. An 
alternate way to describe this is to say that cells possess 
some rudimentary intelligence that enables them to learn 
from their experiences and respond to environmental 
changes in a manner that is most favorable to them-
selves. 

Figure 5 represents a flow sheet of the key stages in a 
cybernetic modeling framework (Dhurjati et al., 1985). A 
typical cell contains an “adaptive machinery” that controls 
metabolic transformations in response to extra-cellular 
variations. The extra-cellular soup is viewed as a re-
source pool (of substrates and other nutrients), whose 
constituents are allocated optimally to different metabolic 
pathways such that a desired objective (such as cell 
growth) is maximized. Once the essential proteins are 
synthesized, a “permanent machinery” carries out the 
metabolic reactions for replication of cellular material. 
The third component is a “regulator”, and it embodies a 
crucial feature of cybernetic modeling that distinguishes it 
from mechanistic modeling. The regulator controls the 
distribution of resources to achieve the maximization 
objective referred to above. The cells choose their object- 
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tives such that their survival is favored at all times. In this 
sense, the cybernetic approach formalizes the evolution-
ary approach that Demain (1971) had recognized nearly 
four decades ago. 

Cybernetic modeling begins with the concept of a key 
enzyme whose synthesis and activity are regulated 
cybernetically. The utilization of each substrate (in a 
mixture) is regulated by a corresponding key enzyme. To 
explain the cybernetic process in simple terms, let n sub-
strates S1, S2, ……., Sn contribute to the synthesis of an 
equal number of proteins P1, P2, ……, Pn. Let Ri be the 
allocation rate of Si to Pi, and R the total allocation rate. 
Then ui = Ri/R is the fractional allocation Si to Pi. Based 
on Mandelstam and McQuillen’s (1968) work, Dhurjati et 
al. (1985) considered R to be constant, thereby resulting 
in the constraint 
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The total rate of production of cell mass, X, is the sum of 
the concentrations from the individual substrates: 
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where Ysi is the yield of cell mass per unit mass of Si 
consumed. The rate of consumption of Si depends, 
among other factors, on its key enzyme Ei, whose 
activity, ei, varies with time. For Monod kinetics, 
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Here µmi is the maximum specific growth rate on Si and 
Ksi is a saturation constant. Equation (14) differs from a 
classic Monod equation by including ei, whose rate of 
change is simply the difference between its synthesis and 
degradation rates: 
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The first term represents synthesis and the second is for 
degradation. 

At this point the cybernetic approach invokes its central 
concept. The activities of the key enzymes are regulated 

by a set of cybernetic variables s
iλ  such that they are 

proportional to the returns from the respective enzymes. 
If rij is the rate of formation of the i-th product from the j-th 
resource (or substrate) then: 
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Equation (16) applies to “substitutable” substrates, that is, 
where any one of a set of substrates may contribute to a 
synthesis pathway for a product. For “complementary” 
substrates, where each substrate has a choice of path-
ways, 
 

)P/r(max

P/r

kjkj
k

ijijc
ij =λ                        (17) 

 
Expounding on these fundamental ideas, many workers 
have expanded the cybernetic approach and applied it to 
different systems. Their studies, like Kremling et al. 
(2000, 2001) examples of signal-oriented modeling, 
expose the value as well as some weaknesses of cyber-
netic descriptions.  

By incorporating regulatory controls that enable the 
cells to utilize information gained from experience and 
thereby respond intelligently to external conditions, cyber-
netic modeling is able to overcome the rigidity and the 
limitations of mechanistic modeling. It has successfully 
portrayed lag phase behavior, cellular responses to chan-
ges in dilution rate, and both diauxic and triauxic growth, 
features which have been difficult to describe by mech-
anistic methods (Bapat et al., 2006; Namjoshi and 
Ramkrishna, 2001; Ramkrishna, 2003). However, as 
mentioned above, the cybernetic approach too has weak-
nesses. One weakness is that quite complex models may 
be required to describe adequately metabolic dynamics 
of multi-cellular systems, especially under non-ideal con-
ditions. A second difficulty is the inability sometimes to 
identify a unique cybernetic goal, thus creating uncer-
tainty about the cellular response itself. Recent reviews 
(Patnaik, 2000, 2001a, 2008) have discussed these as-
pects in detail and suggested combining cellular intelli-
gence with other methods. 
 
 
ARTIFICIAL INTELLIGENCE APPROACH 
 
The successes of artificial intelligence (AI) methods in 
different disciplines and particularly in remote sensing 
and control, together with the difficulties of obtaining rapid 
on-line acquisition of intra-cellular data perhaps motive-
ted the use of AI for microbial processes. Many recent 
applications provide a testimony to the value of AI in cell-
ular systems. 

AI was initially employed in microbial cultures for bro-
adly two purposes (Schugerl, 2001). One is for estima-
tions of time-dependent variables that are difficult or/and 
expensive to monitor by instrumental methods. The se-
cond class of applications was for bioreactor control. The 
latter use of course required on-line data, provided either 
by AI methods or by sensory hardware, but it depended 
also on good models of biological processes. However, it 
is often difficult to formulate mathematical models that 
are sufficiently simple, accurate and flexible to be useful 
under realistic conditions.  This difficulty generated a third  

 
 
 
 
class of applications of  AI,  for  bioprocess modeling and 
optimization, and it has also been a driving force for 
cybernetic models. 

The early applications of AI have been reviewed by 
Patnaik (1998) and by Lubbert and Simutis (1998), 
whereas more recent work has been discussed by 
Komives and Parker (2003). These applications have em-
ployed different AI methods, notably artificial neural net-
works, fuzzy logic and genetic algorithms. Often two or 
more techniques have been used in conjunction, some-
times combined also with classical mathematical models 
for certain features. 

Neural networks seem to be the most favored method 
to represent microbial processes. They have been used 
to portray both cell growth and related dynamics (Acuna 
et al., 1998; Valdez-Castro et al., 2003) of microbial 
behavior in bioreactors affected by incomplete mixing of 
the broth and the inflow noise from the environment 
(Patnaik, 2002), and for early detection of different types 
of process faults (Vora et al., 1997). However, neural 
networks, being essentially “black box” devices, suffer 
from weak physiological links with the biological process, 
thereby creating difficulties under nonideal conditions 
(Chen and Rollins, 2000). Other AI methods such as 
fuzzy logic and genetic algorithms avoid some of these 
problems but have others of their own. 

For instance, the choice of the membership function in 
fuzzy logic or the fitness function in genetic algorithms is 
not always known uniquely, and competing candidates 
may perform equally well within the experimental errors. 
Nevertheless, both methods have been successful in 
specific situations. Arnold et al. (2002) study of the adap-
tation of microorganisms to an inhibiting factor in an 
industrial brewing process provides a good practical exa-
mple of the usefulness of fuzzy logic in formalizing the 
intuitive knowledge of skilled vinegar brewers. Hodgson 
and coworkers (2005) used genetic programming to 
reach the interesting conclusion that, for Saccharopoly-
spora erythrea cultures, constrained mathematical forms 
were superior to flexible unconstrained models, even 
though no prior knowledge of the fermentation was used. 

The strengths and the weaknesses of individual AI me-
thods suggest the possibility of combining them such that 
the composite model minimizes the overall weakness 
and/or capitalizes on the strengths. Diverse applications 
illustrate the validity of this approach for different micro-
bial systems. In one of the early studies, Ye et al. (1994) 
coupled fuzzy logic with a feed-forward neural network to 
control β-galactosidase production by recombinant E. 
coli. More complex devices were employed by Coleman 
et al. (2003) and Fellner et al. (2003). The former maxi-
mized the production of green fluorescent protein by E. 
coli through a combination of decision-free analysis, a 
neural network and a hybrid genetic algorithm. In a novel 
hybrid network, the latter authors introduced a fuzzy 
node, a differential equation node and chemometric node 
into a back propagation network to obtain on-line estimates 
of diacetyl alcohol in a brewery fermenter. 
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Figure 6. Block diagram of the development of a hybrid model for a microbial reactor. 
Mechanistic and AI models contribute in a weighted manner to the overall kinetics. The 
balance equations (for the bioreactor) may be mass balances or AI representations. 

 
 
 

All the investigations cited so far have used one or 
more AI methods but no mechanistic model. While avoi-
ding the weaknesses of mechanistic modeling, they have 
also lost its physiological relevance. Recent work by 
Galvanauskas et al. (2004) and by Patnaik (2003a, 
2006b) has highlighted the benefits of integrating some 
mechanistic information with AI methods. Patnaik (2003a, 
2006b) has also shown how neural networks may be de-
signed to filter the inflow noise into a bioreactor, an 
important function for industrial applications. 

The basic structure of a hybrid model is portrayed in 
Figure 6. A set of mechanistic models (e.g. Monod kine-
tics or substrate inhibition equations) and one or more AI 
models contribute to the complete kinetic description. 
Their outputs are fed to a bioreactor model, which may 
be a set of macroscopic equations or purely AI descrip-
tors or a combination. Figure 6 incorporates Galvanaus-
kas et al. (2004) recommendation to use a weighted com-
bination of the kinetic components but in a more gene-
ralized manner. αj here is the weight assigned to the j-th 
kinetic model; obviously 1� j

j
=�  Their values may be 

determined iteratively. 
These composite (or hybrid) neural models still do not 

account for intra-cellular noise. However, as discussed 
earlier, noise inside the cells has a vital impact on the 
metabolic processes (Kaern et al., 2005; Kitano, 2004a; 
Raser and O’Shea, 2005; Stelling et al., 2004). Moreover, 

since substrates supplied from outside participate in 
metabolic reactions, external noise enters the cells and 
interacts with internal noise. Although the nature of these 
interactions are not yet clear, we do have the interesting 
information that neither source of noise per se is entirely 
detrimental and optimal filtering of either, and preferably 
both, can indeed enhance cellular functions (Andrews et 
al., 2006; Patnaik, 2006b; Rao et al., 2002). These obser-
vations and the benefits of combining AI methods with 
equation-oriented models presents the possibility of 
designing composite architectures that optimally blend 
cellular intelligence, artificial intelligence and mechanistic 
models in a framework that links intra-cellular and extra-
cellular processes. This concept is discussed below. 
 
 
CONCEPTUAL DEVELOPMENT OF A COMPREHEN-
SIVE MODEL 
 
Kaern et al. (2005) have provided an elegant exposition 
of the different sources of noise in a microbial culture and 
their inter-relationship. Their concept is captured diagra-
mmatically in Figure 1, where the influx of external noise 
(from the environment) has been added. Environmental 
noise enters through feed streams, permeates the culture 
broth and penetrates the cells through the diffusional 
transfer of substrates. Within the cells, external noise en-
counters intra-cellular noise. Of the two types of intra- 
cellular noise,  extrinsic  noise  contributes more substan- 
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tially to stochasticity in gene expression than intrinsic 
noise (Elowitz et al., 2002; Kaern et al., 2005; Raser and 
O’Shea, 2005; Stelling et al., 2004)]. Whereas intrinsic 
noise causes differences between reporter genes in a 
single cell, extrinsic noise creates differences between 
cells. The latter thus has a direct effect on the behavior of 
a population of cells in a bioreactor and is therefore 
significant for bioreactor dynamics. 

Kaern et al. (2005) and other analysts of cellular noise 
(Elowitz et al., 2002; Raser and O’Shea, 2005; Rao et al., 
2002; Thattai and van Oudenaarden, 2004) concentrated 
on fluctuations in cellular components and did not 
consider the impact of environmental noise on these 
processes. On the other hand, Patnaik (2002, 2003a, 
2006b) and others (Coleman et al., 2003; Galvanauskas 
et al., 2004; Gadkar et al.,  2005; James et al., 2002) 
studying bioreactor problems focused on observable 
macroscopic variations, either without intra-cellular detail 
or by lumping molecular-level fluctuations into simple 
mathematical descriptions. Both approaches have value 
in their respective spheres but neither is complete, so 
here we will try to evolve a way to concatenate them to 
develop a comprehensive description of microbial 
processes. 

The development of even a conceptual strategy needs 
to recognize the central role of yet another source of 
fluctuations that interfaces those at the cellular level with 
macroscopic fluctuations induced by external variations. 
This is the binding noise discussed by Andrews et al. 
(2006). Although their work pertains to chemotaxis, the 
idea and their model should be applicable to any cellular 
system. The mechanism of chemotaxis involves the 
binding of chemical ligands to receptor clusters protru-
ding from the surfaces of cells. Since small molecules in 
low concentrations are involved, stochastic fluctuations 
are associated with this process (Kaern et al., 2005; 
Raser and O’Shea, 2005). Andrews et al. (2006)] argued 
that bacterial cells possess an inherent mechanism to 
filter this noise optimally. To model this mechanism, they 
relied on Yi et al.’s (2000) observation that the presence 
of an integral feedback system (Figure 7a) imparts robust 
adaptation to the cells. Such a mechanism may be 
modeled by a differentiator in series with a low-pass filter 
(Figure 7b). In a more general context of any cellular 
reaction system, the ligand-receptor binding may be 
replaced by the binding of substrate molecules to active 
sites on the cell surface, thus retaining the validity of 
Andrews et al.’s (2006) depiction. 

Feedback circuits are the most common device to 
regulate noise at the genetic level. Negative feedback 
attenuates fluctuations whereas positive feedback ampli-
fies them. While many examples of feedback regulation 
in biological systems are known and many of their mech-
anisms have been identified (Kaern et al., 2005; Raser 
and  O’Shea,  2005;  Rao  et al.,  2002;  Thattai  and  van 
Oudenaarden, 2004), the construction of gene circuits that 
that impart the desired feedback features is still at an early 
stage.  However,  Becskei  et  al. (2001)  designs of negative 

 
 
 
 
  

 
 
Figure 7. Regulatory system for filtering of 
binding noise. (a) Schematic representation of the 
filtering process. (b) Equivalent analog model. 
Redrawn from Andrews et al. (2006) �Authors 
2006. 

 
 
 
negative (Becsei and Serrano, 2000) and positive (Becsei 
et al., 2001) feed-back modules in E. coli to control the 
fluctuations of a green fluorescence protein used as a 
marker of gene expression indicate the feasibility of syn-
thetic gene circuits. Interestingly, simple negative feed-
back corresponds to a low-pass filter, which also forms 
part of an integrated feedback model (Andrews et al., 
2006). This similarity between the two main modes of cel-
lular feedback stabilization makes it convenient to use 
similar noise filtering methods. 

The macroscopic broth in which the cells are immersed 
is subject to noise from the environment as well as dis-
persion in the broth itself. Although environmental noise, 
carried mainly by inlet streams, may be reduced by 
classical algorithmic filters such as the extended Kalman 
filter, the low-pass Butterworth filter and the cusum filter, 
the static nature of these devices restricts their adapt-
ability to varying disturbances, and thus undermines their 
effectiveness. Neural networks as filtering devices per-
form much better (Gadkar et al., 2005; Patnaik, 2001b, 
2002). However, these networks may be difficult to train, 
have limited extrapolation capability and have little orga-
nic connection with the metabolic processes. These limi-
tations have led to the development of hybrid filters that 
combine neural networks for some variables with algori-
thmic filters for others (Galvanauskas et al., 2004; Hodg-
son et al., 2004; James et al., 2002; Patnaik, 2006b). 

The development of hybrid filters seems to have been 
motivated by the success of similar modules for biore-
actors per se. While good mixing can be achieved in 
small laboratory-scale bioreactors, this is difficult in large 
reactors. The presence of spatial gradients (Larsson et 
al., 1996; Liden, 2001)  and  the  limitations as well as the 
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Figure 8. Flow sheet of a conceptual composite model for a microbial system. The model includes both intra-
cellular and extra-cellular processes. Previous studies suggest the following representations for the components: 
Box 1 = auto-associative neural network, Box 2 = Differentiator + Low-pass filter, Box 3 = Optimization algorithm 
or AI system, Box 4 = Feed-forward neural network, Box 5 = Flexible combination of mechanistic, cybernetic and 
AI models, and Box 6 = Macroscopic balances + Elman neural network. 

 
 
 
costs of instrumental methods make it impractical to have 
on-line measurement of all important variables (Mandenius, 
2004; Sonnleiter, 2000). Off-line measurements can be too 
slow for rapid data feedback and control, especially in 
response to disturbances. Moreover, the time-varying 
nature of external noise and of dispersion in the broth 
often invalidate conventional kinetic equations developed 
on the basis of laboratory-scale observations. As a result 
control strategies that require a good model of a bio-
process have limited validity in nonideal situations. Hybrid 
models overcome these weaknesses by enabling rapid 
on-line estimations of variables that are difficult to mea-
sure and by implementing “intelligent” control policies. 

Most hybrid models of microbial processes (Coleman et 
al., 2003; Galvanauskas et al., 2004; James et al., 2002; 
Lubbert and Jorgensen, 2001) have used combinations 
of one or more AI methods with mathematical equations. 
However, both AI and equation-oriented descriptions 
ignore internal regulatory controls that cybernetic models 
recognize. Therefore Patnaik (2006c) recently proposed 
a conceptual approach that models bioreactors through 
arrays of neural networks, cybernetic models and AI mo-
dels. He did not, however, include either binding noise or 
genetic noise. Since these are not isolated from each 
other or from extra-cellular noise and dispersion, a more 
holistic model should embrace all of these. Figure 8 pre-
sents a flow sheet for such a model. 

Inflow streams are first filtered to prune environmental 
noise present in them (box 1). This filter generates the 
same output variables as it receives but with reduced 
noise. An auto-associative neural network is germane to 
this requirement and many applications (Patnaik, 2001b, 
2003a, 2006b) have shown that it is superior to algorith-
mic filters and other neural configurations. On entering 
the cytoplasm, the substrate molecules bind to active 
sites on the cell surfaces; box 2 in Figure 8 contains the 
binding noise filter, which may be represented by a diff-
erentiator   coupled  to  a  low-pass  filter  (Andrews et al.,  

2006; Rao et al., 2002). The cellular reactions, leading to 
biomass growth and the formation of products, begin 
after the binding process. This is a critical phase, both 
biologically and for model building. Kinetic equations de-
rived from observations of ideal laboratory-scale fermen-
tations often cannot be translated directly to large non-
ideal bioreactors (Liden, 2001; Lubbert and Jorgensen, 
2001). AI and cellular intelligence (cybernetic) models 
provide more accurate, flexible and faithful descriptions. 
Since each method has strengths and weaknesses, a 
judicious combination of more than one approach is often 
recommended (Arnold et al., 2002; Coleman et al., 2003; 
Galvanauskas et al., 2004; Hodgson et al., 2004; James et 
al., 2002; Patnaik, 2003a; Ramkrishna, 2003). The se-
quence of blocks labeled (5) illustrates this idea. For 
generality, the microbial process is considered to have an 
arbitrary number of ‘n’ variables, each of whose rates of 
change is described by an appropriate cellular model. 

The bioreactor itself may be represented by either macro- 
scopic mass balances or by neural networks or by a 
combination of the two. If neural networks are used, a 
recurrent network of the Elman (1990) type turns out to 
be the best. The reason is that an Elman network has 
internal feedback loops that mimic the internal recircu-
lation streamlines in a reactor with finite dispersion 
(Patnaik, 2003a, 2006c). The entire process is under 
neural control (box 4) because this is more efficient than 
adaptive PID control (Gadkar et al., 2005; Hisbullah et al., 
2002; Patnaik, 2003a). Box (3) is a critical component in 
that it compares input and output data and thereby ad-
justs the settings of the controller dynamically. For a PID 
controller this involves manipulating the gain and the 
integral and differential time constants, whereas a neural 
controller requires adjustments of the weights associated 
with the inter-neuron signal flows. Although an AI routine 
may be employed for the optimizer, algorithmic multiva-
riable optimization methods may also be acceptable if the 
variables of interest do not have widely different dynamics.  
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CONCLUDING REMARKS 
 
Owing to the complexity of the processes involved, quan-
titative descriptions of cellular systems functioning in rea-
listic situations have focused on either microscopic intra-
cellular phenomena or a macroscopic observable beha-
vior. Either approach generates workable models that are 
useful for their intended limited purposes but not beyond.  
Macroscopic models account for dispersion in the culture 
broth, transport processes and the inflow of noise form 
the environment, but they tend to ignore or simplify meta-
bolic detail, intra-cellular controls and noise within the 
cells. Models focused on the cells per se describe the 
latter features in detail while lumping or ignoring their 
macroscopic manifestations.  

Given that cellular processes differ widely, and even a 
given process behaves differently under different condi-
tions, it is worthwhile to develop comprehensive descrip-
tions that incorporate both intra- and extra-cellular pro-
cessses under realistic conditions. The resulting model(s) 
may then be tailored for specific applications. The versa-
tility and usefulness of composite models are suggested 
by examples of the use of two or more descriptive meth-
odologies to simulate and optimize microbial processes. 
These approaches are broadly of three types – mech-
anistic (or equation-oriented), cellular intelligence (or 
cybernetic) and artificial intelligence. 

Based on the topologies of the hybrid models that have 
been used for microbial reactors, a conceptual framework 
for a comprehensive composite model is devised. The 
flow sheet for such a model accommodates (a) fluid dis-
persion in the broth, (b) environmental noise, (c) genetic 
noise and (d) ligand or substrate binding noise in a flex-
ible manner. Each phenomenon may described by a sui-
table modeling approach and, according to each applica-
tion, one or more of them may be simplified or dispensed 
with or assigned a suitable weightage. This flexibility also 
allows the relative contributions of different processes to 
the overall behavior of a microbial reactor to be adjust-
table on-line, a feature that is useful when flux distri-
butions or product patterns or morphology or other rele-
vant characteristics of the cells change as a fermentation 
progresses.  
 
 
REFERENCES 
 
Acuna G, Latrille E, Beal C, Corrien G (1998). Static and dynamic 

neural network models for estimating biomass concentration during 
thermophilic lactic acid bacteria batch cultures. J. Ferment. Bioeng. 
85: 615-622. 

Andrews BW, Yi T-M, Iglesias P (2006). Optimal noise filtering in the 
chemotactic response of Escherichia coli. PloS Comput. Biol. 2: 
1407-1418. 
Arnold S, Becker T, Delgado A, Emde F, Enenkel A (2002).  
Optimizing high strength acetic acid bioprocess by cognitive methods  
in  an  un- steady state cultivation. J. Biotechnol. 97: 133-145. 

Bailey J (1998). Mathematical modeling and analysis is biochemical 
engineering: past accomplishment and future opportunities. 
Biotechnol. Prog. 14: 8-20. 

Baker MD, Wolanin PM, Stock JB (2006). Systems biology of bacterial  

 
 
 
 
    chemotaxis. Curr. Opin. Microbiol. 9: 187-192. 
Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004). Bacterial 

persistence as a phenotypic switch. Science 305: 1622-1625. 
Bapat PM, Sohoni SV, Moses TA, Wangikar PP (2006). A cybernetic 

model to predict the effect of freely available nitrogen substrate on 
rifamycin B production in complex media. Appl. Microbiol. Biotechnol. 
72: 662-670. 

Becsei A, Serrano L (2000). Engineering stability in gene networks by 
autoregulation. Nature 405: 590-593. 

Becskei A, Seraphin B, Serrano L (2001). Positive feedback in 
eukaryotic gene networks: cell differentiation by graded to binary 
response conversion. EMBO J. 20: 2528-2535. 

Carson E, Feng DD, Pons ML, Socini-Sessa R, van Straten G (2006). 
Dealing with biological and ecological complexity: Challenges and 
opportunities. Ann. Revs. Control. 30: 91-101. 

Carson JM, Doyle J (2002). Complexity and robustness. Proc. Natl. 
Acad. Sci. USA 99 Suppl. 1: 2538-2545. 

Chen VCP, Rollins DK (2000). Issues regarding artificial neural network 
modeling for reactors and fermenters. Bioprocess Eng. 22: 85-93. 

Coleman MC, Buck KK, Block DE (2003). An integrated approach to 
optimization of Escherichia coli fermentations using historical data. 
Biotechnol. Bioeng. 84: 274-285. 

Demain  AL (1971). Overproduction of microbial metabolites and 
enzymes due to alteration of regulation. Adv. Biochem. 
Eng./Biotechnol. 1: 113-142. 

Dhurjati P, Ramkrishna D, Flickinger C, Tsao GT (1985). A cybernetic 
view of microbial growth: modeling cells as optimal strategists. 
Biotechnol. Bioeng. 27: 1-9. 

Dun WB, Ellis DI (2005). Metabolomics: current analytic platforms and 
methodologies. Trends Analyt. Chem. 24: 285-294. 

Elman J (1990). Finding structure in time. Cognitive Sci. 14: 1789-1811. 
Elowitz M, Levine A, Siggle E, Swain P (2002). Stochastic gene 

expression in a single cell. Science. 297: 1183-1186. 
Fellner M, Delgado A, Becker T (2003). Functional nodes in dynamic 

neural networks for bioprocess modeling. Bioprocess Biosyst. Eng. 
25: 263-270. 

Gadkar KG, Mehra S, Gomes J (2005). On-line adaptation of neural 
networks for bioprocess control. Comput. Chem. Eng. 29: 1047-1057. 

Galvanauskas V, Simutis R, Lubbert A (2004). Hybrid process models 
for process optimization, monitoring and control. Bioprocess Biosyst. 
Eng. 26: 393-400. 

Garhyan P, Elnashaie SSEH (2004). Static/dynamic bifureation and 
chaotic behavior of an ethanol fermenter. Indl. Eng. Chem. Res. 43: 
1260-1273. 

Garhyan P, Elnashaie SSEH, Haddad SA, Ibrahim G, Elshishini SS 
(2003). Exploration and exploitation of bifurcation/chaotic behavior of 
a continuous fermenter for the production of ethanol. Chem. Eng. Sci. 
58: 1479-1496. 

Gombert AK, Nielsen J (2000). Mathematical modeling of metabolism. 
Curr. Opin. Biotechnol. 11: 180-186. 

Haag JE, Wouwer AV, Bogaerts P (2005). Dynamic modeling of 
complex biological systems: a link between metabolic and 
macroscopic description. Math. Biosci. 193: 25-49. 

Hisbullah M, Hussain MA, Ramachandran KB (2002). Comparative 
evaluation of various control schemes for fed-batch fermentation. 
Bioprocess Biosyst. Eng. 24: 309-318. 

Hodgson BJ, Taylor CN, Ushio M, Leigh JR, Kalganova T, Baganz F 
(2004). Intelligent modeling of bioprocesses: a comparison of 
structured and unstructured approaches. Bioprocess Biosyst. Eng. 
26: 353-359. 

James S, Legge R, Budman H (2002). Comparative study of black-box 
and hybrid estimation methods in fed-batch fermentation. J. Process 
Contr. 12: 113-121. 

Kaern M, Elston TC, Blake WJ, Collins JJ (2005). Stochasticity in gene 
expression: from theories to phenotypes. Nat. Revs. Genet. 6: 451-
464. 

Kitano H (2004a).  Biological robustness. Nat. Revs. Genet. 5: 826-837. 
Kitano H (2004b). Cancer as a robust system: implications for 

anticancer therapy. Nat. Revs. Cancer 4: 227-235. 
Komives C, Parker RS (2003). Bioreactor state estimation and control. 

Curr. Opin. Biotechnol. 14: 468-474. 
Kremling A, Bettenbrock K, Laube B, Jahreis K, Lengeler JW, Gilles ED  



 
 
 
 
    (2001). The organization of metabolic reaction networks. III 

Application for diauxic growth on glucose and lactose. Metabol. Eng. 
3: 362-379. 

Kremling A, Jahreis K, Lengeler JW, Gilles ED (2000). The organization 
of metabolic reaction networks: A signal-oriented approach. Metabol. 
Eng. 2: 190-200. 

Larsson G, Tornquist M, Wernersson ES, Tragardh C, Noorman H, 
Enfors SO (1996). Substrate gradients in bioreactors: origins and 
consequences. Bioprocess Eng. 14: 281-289. 

Lengeler JW, Drews G, Schlegel HG (1999). Biology of the Prokaryotes. 
Oxford: Thieme Verlag, Stuttgardt/Blackwell Science. 

Liden G (2001). Understanding the bioreactor. Bioprocess Biosyst. Eng. 
24: 273-279. 

Lubbert A, Jorgensen S (2001). Bioreactor performance: a more 
scientific approach for practice. J. Biotechnol. 85: 187-212. 

Lubbert A, Simutis R (1998). Advances in modeling for bioprocess 
supervision and control. In: Subramanian G (Ed) Bioseparation and 
Bioprocessing. Weinheim: Wiley-VCH, Vol. I, Ch.15. 

Mandelstam J, McQuillen K (1968). Biochemistry of Bacterial Growth. 
Oxford: Blackwell. 

Mandenius CF (2004). Recent developments in the monitoring, 
modeling and control of biological production systems. Bioprocess 
Eng. 26: 347-351. 

Namjoshi A, Ramkrishna D (2001). Multiplicity and stability of steady 
states in continuous bioreactors. Dissection of cybernetic models. 
Chem. Eng. Sci. 56: 5593-5607. 

Namjoshi AA, Hu WS, Ramkrishna D (2003). Unveiling steady state 
multiplicity in hybridoma cultures. The cybernetic approach. 
Biotechnol. Bioeng. 81: 80-91. 

Narang A, Konopka A, Ramkrishna D (1997). New patterns of mixed 
substrate utilization during batch growth of Escherichia coli. 
Biotechnol. Bioeng. 55: 747-757. 

Ortoleva P, Berry E, Brun Y, Fan J, Fontus M, Hubbard K, Jaquaman K, 
Jarymowycz L, Navid A, Sayyed-Ahmad A, Shrief Z, Stanley F, 
Tuncay K, WeiTzke E, Wu LC (2003). The Karyote physico-chemical 
genomic, proteomic, metabolic cell modeling system. OMICS J. 
Integrat. Biol. 7: 269-283. 

Patnaik PR (1998). Neural network applications to fermentation 
processes. In: Subramanian G. (Ed.) Bioseparation and 
Bioprocessing. Weinheim: Wiley-VCH, I, Ch. 14. 

Patnaik PR (2000). Are microbes intelligent beings? An assessment of 
cybernetic modeling. Biotechnol. Adv. 18: 267-288. 

Patnaik PR (2001a). Microbial metabolism as an evolutionary response: 
The cybernetic approach to modeling. Crit. Revs. Biotechnol. 21: 
155-175. 

Patnaik PR (2001b). A simulation study of dynamic neural filtering and 
control of a fed-batch bioreactor under nonideal conditions. Chem. 
Eng. J. 84: 533-541. 

Patnaik PR (2002). Neural optimization of fed-batch streptokinase 
fermentation in a nonideal bioreactor. Can. J. Chem. Eng. 80: 920-
926. 

Patnaik PR (2003a). An integrated hybrid neural system for noise 
filtering, simulation and control of a fed-batch recombinant 
fermentation. Biochem. Eng. J.  15: 165-175. 

Patnaik PR (2003b). Effect of fluid dispersion on cybernetic control of 
microbial growth on substitutable substrates. Bioprocess Biosyst. 
Eng. 25: 315-321. 

Patnaik PR (2005). Application of the Lyapunov exponent to detect 
noise-induced chaos in oscillating microbial cultures. Chaos Solitons 
Fractals 26: 759-765. 

Patnaik PR (2006a). Fed-batch optimization of PHB synthesis through 
mechanistic, cybernetic and neural approaches. Bioautomation 5: 23-
38. 

 
 
 
 
 
 
 
 
 

Patnaik              041 
 
 
 
Patnaik PR (2006b). Hybrid filtering to rescue stable oscillations from 

noise-induced chaos in continuous cultures of budding yeast. FEMS 
Yeast Res. 6: 129-138. 

Patnaik PR (2006c). Synthesizing cellular intelligence and artificial intel- 
ligence for bioprocesses. Biotechnol. Adv. 24: 129-133. 

Patnaik PR (2008). Intelligent models of the quantitative behavior of 
microbial systems. Food Bioprocess Technol. (in press). 

Ramkrishna D (2003). On modeling of bioreactors for control. J. 
Process. Contr. 13: 581-589. 

Rao CV, Wolf DM, Arkin AP (2002). Control, exploitation and tolerance 
of intracellular noise. Nature 420: 231-237. 

Raser JM, O’Shea EK (2005). Noise in gene expression: origins, 
consequences, and control. Science 309: 2010-2013. 

Richman DD (2001). HIV chemotherapy. Nature 410: 995-1001. 
Schugerl K (2001). Progress in monitoring, modeling and control of 

bioprocesses during the last 20 years. J. Biotechnol. 85: 149-173. 
Shimizu H (2002). Metabolic engineering – Integrating methodologies of 

molecular breeding and bioprocess systems engineering. J. Biosci. 
Bioeng. 94: 563-573. 

Sonnleiter B (2000). Instrumentation of biotechnological processes. 
Advances in Biochemical Engineering/Biotechnology 66:1-64. 

Stelling J, Sauer U, Szallasi Z, Doyle FJ III, Doyle J (2004). Robustness 
of cellular functions. Cell 118: 675-685. 

Straight JV, Ramkrishna D (1994). Cybernetic modeling and regulation 
of metabolic pathways: growth on complementary nutrients. 
Biotechnol. Prog. 10: 574-587. 

Swain PS, Elowitz MB, Siggia ED (2002). Intrinsic and extrinsic 
contributions to stochasticity in gene expression. Proc. Natl. Acad. 
Sci. USA 99: 12795-12800. 

Thattai M, van Oudenaarden A (2004). Stochastic gene expression in 
fluctuating environments. Genetics 167: 523-530. 

Valdez-Castro L, Baruch I, Barrera-Cortes J (2003). Neural networks 
applied to the prediction of fed-batch fermentation kinetics of Bacillus 
thuringiensis. Bioprocess Biosyst. Eng. 25: 229-233. 

Varner J, Ramkrishna D (1998). Application of cybernetic models to 
metabolic engineering: Investigation of storage pathways. Biotechnol. 
Bioeng. 58: 282-290. 

Varner J, Ramkrishna D (1999). Mathematical modeling of metabolic 
pathways. Curr. Opin. Biotechnol. 10: 146-150. 

Vora N, Tambe SV, Kulkarni BD (1997). Counterpropagation neural 
networks for fault detection and diagnosis. Comput. Chem. Eng. 21: 
177-185. 

Wang Q, Wu C, Chen T, Chen X, Zhao X (2006). Integrating 
metabolomics into systems biology to exploit metabolic complexity: 
strategies and applications in microorganisms. Appl. Microbiol. 
Biotechnol. 70: 151-161. 

Ye K, Jin S, Shimizu K (1994). Fuzzy neural network for the control of 
high cell density cultivation of recombinant Escherichia coli. J. 
Ferment. Bioeng.  77: 663-673. 

Yi T-M, Huang Y, Simon MI, Doyle J (2000). Robust perfect adaptation 
in bacterial chemotaxis through integral feed-back control. Proc. Natl. 
Acad. Sci. USA  97: 4649-4653. 

Zupke C, Stephanopoulos G (1995). Intracellular flux analysis in 
hybridomas using mass balances and in vitro 13C NMR. Biotechnol. 
Bioeng. 45: 292-297. 

 
 
 
 


