A flipped course delivery: A practitioner approach with a case study

Parkavi A1* and Vetrivelan N2

1Department of CSE, MS Ramaiah Institute of Technology, Bangalore, India.
2Department of Computer Applications, Periyar Maniammai University, Thanjavur, TN, India.

Received 04 June, 2015; Accepted 9 July, 2015

Full Length Research Paper

Flipped course is used in well-developed educational institutions and technologically developed countries. It is quite experimental in nature for resource restricted educational institutions and developing countries. In this paper such cases are considered, where faculties make use of free resources available for conducting flipped courses. Traditionally courses are taught to the students using black board. Nowadays teachers have started using power point presentations for their teaching. Teachers cannot completely depend on black board teaching to demonstrate the applications and implementations of a course. In addition to the conceptual teaching, the students should be actively involved and motivated to make the course more effective. To make students get involved in learning about concepts of a course, the authors have designed and conducted different case studies. The methodology of delivering course and assessment methods are refined year after year using qualitative and quantitative measurements. Comparison of the outcomes is done by the authors with respect to students' performance year after year. This helps in refining the course content, course delivery and assessment methods. In this paper, authors discuss the different course delivery methodologies they are practicing with continuous refinements. The authors suggest different learning activities, assessment methods and their outcome analysis in this paper.

Key words: Active learning, outcome analysis, flipped course, student learning.

INTRODUCTION

Traditional course design

In traditional courses, most of the students are inactive in class. Making the students get involved in active learning is a typical task which has to be planned properly. Active learning happen in traditional classes accidently which are not scheduled priory. In traditional classes, there are no interesting technologies used for student interaction. Curriculum designers organize the design of courses which are needed for a student to get familiar with a particular professional course.

The courses are to be taught across the semesters of the years of the programme conduction. Students have theoretical exams for their assessments to grade their
Modern curriculum design

Learning of a course helps the students for their all round growth of knowledge. Curriculum designers should design the syllabi of different courses in a constructive way. Thus the students grow in their knowledge of conceptual and experimental skills. So they can design the courses from junior years to senior years in a pipelined or streamlined structure. Fundamentals courses of a Programme can be taught in the junior year. The intermediary courses can be taught to students in the intermediary years of the programme. Then the advanced courses can be covered and taught to students in senior years. So the students will have thorough knowledge of courses as they learn the concepts in stages throughout their complete programme (Anupama, 2015). Teachers have many ways to communicate with the students such as the websites, online forms, etc. There are new methods which are the findings of educational research to conduct different teaching delivery and assessments. In this paper, the authors consider few of the delivery methods for a course and assessments using modern methodologies. These methods surely improve the interest for the students in learning a course and get assessed.

Case study: Flipped compiler design course for engineering students

In this paper, authors consider the Curriculum designed for Computer science and engineering students (Figure 1). In first year, students study Fundamentals of Computing in which they learn C programming developing, compilation and execution. In second year, students study basics of Data structures, Algorithms, Discrete mathematics, Theory of computation, Microprocessor, Computer organization and Data communication. These are the important courses students learn to become a Computer Science and Engineer.

In Third year, the students learn compiler design. Before that, they have learnt the basics of compiler in Theory of Computation subject and the data structures. These courses are needed to be learnt for designing compilers. So students can understand about the stack usage easily in compiler operations. About algorithms students have learnt in Analysis of Algorithms course. This course helps the students for designing their compiler phases in an optimal way.

Microprocessors and Computer Organization courses help the students to study and learn about the Computers in detail. With the knowledge of the usages of system software students learn the purpose of translators. Students learn about translators and their working nature for each computer architecture. Students correlate machine architecture knowledge with the translators like assembler and compiler. As students learn microprocessor they can code a machine using assembly language program. This will help the teacher to link compiler code generation phase as code generator phase generates assembly language code (Figure 2).

Instead of teaching the students in traditional ways with black board, the authors use quiz component. This quiz conduction is used to make students to prepare for the course concepts. The authors have conducted the quiz as additional assessment component in their first attempt to deliver the course. Students show interest to prepare for the assessment of online quizzes more than the regular descriptive theory tests. So authors have motivated more active learning strategies in their courses. These authors have refined the active component in the next year. For that authors have selected a strategy to implement the course concepts in an experimental ways using tools. That also yields a fruitful performance improvement in the students’ interest and motivation. Students show interest in collaborative learning of course contents in group activities by sharing their knowledge.

Overview of course Structure

Refining a course in an autonomous institution

The objective is to flip the course delivery and assessment methods from the traditional methods of course conduction. Initially when the authors institutions...
have moved to autonomous institution status, they have introduced the tutorial component only for problem oriented subjects. This tutorial is additional component and varying from traditional university curriculum delivery methods of courses. So the students get involved in problem solving during the tutorial sessions and additional faculties will be there to help students in solving problems.

Students have discussion with their peers during tutorial session and solve the problems in collaborative way too. Authors have introduced quiz component to improve their learning activity, so that they come prepared for quiz. Then the authors have used practical assignments to improve their practical skills to implement conceptual knowledge. This year authors have refined the course conduction thus the students involve actively in technical paper writing skills related to courses (Figure 3).

Course objectives

The authors want to standardize the course delivery methods in an outcome based education scenario, for which they have to determine the course objectives which are needed to be achieved by efficient course delivery, learning and assessment methods. This has to be done very much prior to the beginning of a course. So the teacher can plan and schedule the things accordingly. In this paper, authors consider the following course objectives which are set for compiler design course.

Compiler Design course will help students to achieve the following objectives:

1. Present fundamental concepts and techniques for compiler design and understand the scanning process of compiler
2. Identify the methods and strategies for parsing techniques.
3. Show the syntax directed translation schemes of compilers
4. Devise intermediate code generation schemes
5. Optimize the code for efficient utilization of CPU

Course outcomes

To measure the course objectives attainment, the course designer should specify the outcomes needed to be measured for a course. This has to be specified before the beginning of the course. In this paper, authors have defined certain course outcomes which have to be met at the end of the compiler design course.

At the end of the compiler design course students should be able to:

1. Identify the phases of a complier and explain and perform the lexical analysis process of compiler
2. Create various types of parsing tables for syntax analyzer phase of a compiler
3. Devise and perform syntax-directed translation schemes for compiler
4. Formulate intermediate code generation schemes for compiler
5. Reorganize code for obtaining an effective code
Prerequisites courses for an advanced course

Course Objectives

In class Activities
• Black board teaching or Power point presentation
• Online Quiz Conducted (in 2013)
• Peer/faculty interactions in Problem solving in tutorials
• Bridge course conduction (in 2014 & 2015)

Post class Activities (refined year by year)
• Homework problems solving (in 2013)
• Team activities to do Practical assignments (in 2014)
• Team activities to do literature survey and technical paper writing (in 2015)
• Referring course materials in course Web site (in 2015)

Internal Assessments (refined year after year)
• Online quiz and assessed by Moodle Software (in 2013)
• Practical assignments submitted in online were assessed by faculties (in 2014)
• Technical paper writing and evaluation by faculties (in 2015)

Learning Assessments
• Midterm survey through online forms
• Course exit survey through online

Course Outcomes Analysis & Refinements to course

Figure 3. Structure of a course with year wise refinements.

generation.

Learning activities for flipped course

Quiz activity
Traditionally teachers conduct quiz orally to students by dividing them into groups and grade them. In some cases, it can also be conducted by making students to write answers in answer sheet. Faculty evaluates the answers of quiz later and assigns the grades to students accordingly. For the preparation of quiz, students need to prepare for the conceptual as well as problematic lessons of the course as homework. This improves the active involvement of students in understanding the concepts outside the class. As part of the flipped course conduction in this paper, authors attach quiz component which is different from traditional method of quiz conduction. The authors have conducted online quiz using Moodle Tool. Previously, the authors have used quiz component with courses like computer organizations through multiple choice questions (Veselin et al., 2015).

Using Moodle software for quiz conduction
As traditional methods of quiz conduction are time consuming, the faculty should look for softwares such as Moodle for the evaluation of quiz. Hence in this case study, the authors find Moodle software to be more effective in terms of time. Teachers find reducing malpractices such as copying and other things. This is because the questions are not same for all the students as the software has the option of assigning questions randomly.

Further, this quiz component results in effective and proper evaluation of students with regard to various courses offered.
Conduction of Bridge course to teach tools

As the courses consist of experimental nature, the authors suggest the faculty that they should teach students with demonstration of related tools. This helps students to simulate the concepts learnt in a course (Theodora et al., 2015). Teaching the tools during the regular class consumes student’s time and leads deviation from regular course conduction. Bridge courses make students learn the tools or simulators. This helps them experiment their conceptual learning of a course. Bridge course can be conducted during vacation or during weekend or special classes (Qinran et al., 2015). In this case study, the authors want students to improve in their creative skills. In compiler design course, students solve the problems related to compiler phases. The authors have refined the learning method by replacing quiz component of course with practical assignments. This helps to involve students in active learning of compiler design tools. Using the tools students design compiler phases and learn compiler design using hands-on training. Students learn to work with the tools through the bridge course. Bridge course have been conducted for 2 days over 2 weekends.

Group activities and online submissions

Teachers should involve students in active learning and make them use the technology. For that teachers can make the students to perform activities in groups (Leonard et al., 1997). Transferring the assignment questions and the solutions can be done through online over internet communications between the students and teacher (Sousa et al., 2013). In this case study, the authors teach Lex and Yacc tools to students. They teach the way of coding to generate compiler phases using the tools. At the end of bridge course the authors give few assignment questions. Students should perform and submit the assignments in group of 2 (Loren et al., 2012) before dead line. So students actively get involved in the bridge course and complete the assignment in the stipulated time (Margaret and Amber, 2015).

Sample of practical assignment questions

The authors define the problems to be solved by students using Lex and Yacc tools. Students get supplied with the sample input to be given as well as the output to be yielded from their programming solutions. With reference to that students develop program solutions using the tools as the outcome of bridge course. The sample practical assignments problem definitions are stated below. Students are provided with the sample input and output to validate their program execution to avoid ambiguity in their solution.

Problem definition 1

Write a Yacc program to accept a statement and do error detection. Check for valid arithmetic expressions in input C program. Report the errors in the statements to user.

Sample Input 1:

\[A = a + b \times (f + 6) / (f^2) \]

Output Expected for sample input 1:

Valid arithmetic expression

Sample Input 2:

\[A = a + b \times (f + g - 8) \]

Output Expected for sample input 2:

Invalid arithmetic expression

Problem definition 2

Write a Lex program to accept a C program and do error detection and correction.

i) Check for un-terminated string constant in input C program; that is, a string constant beginning with double quotes and extended for more than one line. Intimate the error line numbers and the corrective actions to user.

ii) Check for valid arithmetic expressions in input C program. Report errors in the statements to user.

iii) Check for valid arithmetic expressions in input C program. Report errors in the statements to user.

Sample Input 1:

```c
#include<stdio.h>
#include<conio.h>
void main()
{
    int a;
    char c(10)="msrit";
    a=a+b;
}
```

Output Expected for sample input 1:

Valid string
Valid arithmetic expression

Sample Input 2:

```c
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
    int a;
    char c(10)="msrit";
    a=a+/b+h;
    strcpy(c,"Bangalore");
```
Output Expected for sample input 2:
Invalid arithmetic expression in line number 8 : + and / used adjacently.
Corrective action required: remove either + or / appropriately.
Invalid String in line number 9: “ is opened but not closed.
Corrective action required: close the input string

Assessment of group activities

1) Using Online Forms

Assignment questions for group activities can be put in the website or it can be sent to the group mails of students. Teacher can make use of resources like google forms to accept the submissions from students. This resource is freely available, so faculty can use it for flipped course conduction in terms of assessment submissions (Heinrich, 2014).

For the bridge course assignment in this case study, the authors create online forms and send the links to students. Students submit their program solutions online along with their team details for assessing them. The authors evaluate the students’ code which was submitted through online forms. Then the authors assign the marks and send to their group mails. This reduces the consumption of paper for contacting and notifying students about their progress. The authors find this method as environment friendly (Berhanu, 2014) (Figure 4)

In Figure 4, online form for submitting the practical assignments is given. When it is submitted it will be in the responses of the google form, so faculty can assess it and send the grades along with remarks. In Figure 5, the responses submitted by students are shown.

Online course website for course

Developing Educational Institutions can launch their website using freely available website service providers. Teaching faculties can use Google sites or Wix, etc., so faculty can put their notifications, notes, questions on the website and students can refer to them whenever they want (Heinrich, 2014).

As part of this case study, this year the authors launch course website using free website providers. This is useful for guiding students online whenever faculty is away (Berhanu, 2014). The authors make important notifications, course reference materials, tutorial problems, assessment methods through the website. In Figure 6, week wise updating of course reference materials is shown section wise. In Figure 7, Web page of weekly tutorial problems is shown. Previous year semester end examination question papers are put up for students’ reference in web page as shown in Figure 8.

Using free/limited resources available online for course delivery and assessment methods

Moodle is a software through which, faculty can conduct online quizzes, assignment submissions, project
document submissions, etc. Moodle is an open source. Faculties can design their course websites to be in touch with students through online using free website providers. They can upload the study materials and notifications to students in web pages. Faculties can use online forms like google docs to create forms and collect surveys from

Figure 5. Online form submissions (Excel sheet) created automatically from student responses using Google form.

Figure 6. Case study: Course website - Web page to view course reference materials week wise.
students. Using google sites, wix web sites templates, etc., people can create their websites and launch. Shared drives can be created through drives like google drives and those repository files can be shared among students.

Refinement in course learning activity

Course delivery and assessment methods are refined based on the feedbacks, surveys, performance of students in assessments. Based on the analysis of these data, course designer and deliverer modify the course contents and the assessment strategies. For this, new strategies are needed to improve the active learning involvement of students (El-adaway et al., 2015; Loren et al., 2012; Massimo et al., 2013).

Technical paper writing

For the advanced courses in senior year, faculty can ask students to do literature study over the existing systems
related to particular topic of a course. Based on that the students can be instructed to write technical papers and present for professional societies. This promotes the students’ skills to become researchers and creators. In this case study, after two refinement stages in the past two years, this year the authors introduce technical paper writing. It involves literature survey and writing technical paper on Compiler design phases and related topics. Students are new to technical papers writing. So the authors make repositories of papers and share to students through shared drives which are accessible online.

Repository of journal papers through shared drive online

Faculty can create repository of journal papers which she/he wants to share for students. Students download according to the specializations and put in the shared drive online. For this free shared drives services can be used online over the internet. Teaching faculties can make use of shared drive facility available with Google. This reduces the expenses in conducting flipped courses in developing educational institutions. In this case study, the authors create the repository of technical research papers. Repository consists of different categories like lexical analyser, parser, semantic analyser, intermediate code generator, code optimizer and code generator. The authors' institutions have purchased online journals which are available in digital library. The authors have created the repository out of the digital library. So students can easily refer these repositories to do their literature survey and write technical papers related to compiler design. They need to present in conferences and publish in journals. After getting the review comments and acceptance notifications they need to show the proofs to faculty for assessment. This component is been assessed as part of their continuous internal assessment (Rosemary and Sidney, 2010).

ASSESSMENT RESULTS AND ANALYSIS OF CIE ASSESSMENT

CIE theory exams can be conducted in traditional way, to evaluate the conceptual and problem solving ability of students. Questions can be formed and categorized using revised blooms taxonomy. In Figure 9, CIE question paper analysis is shown as per blooms taxonomy. It depicts that 17% of the questions make the students to create solutions and write. Another 17% of questions make them to remember and write the concepts and 19% of the questions are to evaluate the concepts learnt. 14% are used to analyze and write, 13% for checking the understanding and 20% for making students to apply the knowledge to answer the questions.

Curriculum designers and teaching faculties can measure and analyze the course delivery methods by collecting the feedbacks and surveys as well as from the performance assessment results. By comparing them year wise (Lopatto, 2007), the flipped course objectives attainments can be drawn against the course outcomes. This has to be mentioned prior to the beginning of the course delivery. For this case study, the authors do the statistical analysis of all students’ performance in the continuous internal evaluation (CIE) tests. The CIE tests were conducted for 30 marks. Three CIE tests were conducted in equal distribution across the semester of 6 month duration. The authors have compared the performance of present year students with previous year students. In Table 1, the students' CIE-descriptive question answering marks were analyzed statistically. Deviation of marks is very less for students of 2014 compared to that of 2013 batch students.

In Table 2, comparison of students marks test wise as well as year wise are shown compared to the 2013 batch student. The standard deviation of students’ marks got reduced for all tests of 2014 batch students. Mean values of tests 1 and 2 marks are more in 2014 year compared to 2013 with active learning methods, such as practical assignments. In test 3, the students of 2013 have done better and 2014 students have not performed well. The reason for this is practical assignments are not given.
Table 1. Case study: statistical analysis of CIE descriptive question and answering test marks.

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>20</td>
<td>5.81</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>2013</td>
<td>21</td>
<td>6.72</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 2. Case study: statistical analysis of CIE descriptive question and answering test marks.

<table>
<thead>
<tr>
<th>Year</th>
<th>Internal Assessment No</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Test1</td>
<td>20.51</td>
<td>5.58</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Test2</td>
<td>21.1</td>
<td>6.00</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Test3</td>
<td>15.64</td>
<td>7.11</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2013</td>
<td>Test1</td>
<td>16.89</td>
<td>6.85</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Test2</td>
<td>16.01</td>
<td>7.16</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Test3</td>
<td>23.72</td>
<td>7.54</td>
<td>2.5</td>
<td>30</td>
</tr>
</tbody>
</table>

from the course outcomes mapped to test 3. Further 2013 students have studied for the quiz prior to the test 3. This has helped them to perform better in test 3 and mean is higher than 2014 students.

Analysis of quiz assessment (2013) and practical assignment assessment (2014)

Quiz conduction has been done through Moodle software. Students get the questions in different order with options. The questions and options are jumbled up by software automatically. Students appear for quiz online individually. Finally, the assessment of quiz has been taken from Moodle software in excel format. Assessment marks get added to their theory Continuous Internal Evaluation (CIE) marks. Through Quiz, faculty can assess students remembering, understanding, analyzing and applying skills. Students’ collaborative skills are not involved in quiz as well as faculty cannot assess creative skill of students. This can be overcome by practical assignments. Students get involved collaboratively in practical assignments as they do assignments in group and they use their creative skills. Students learn in shared mode along with remembering, understanding, analyzing and applying skills (Table 3).

The authors compare the quiz marks with that of practical assignment marks of different years (Lopatto, 2007; Michael, 2004). They observe that the standard deviation of students’ marks in 2014 is lesser than the year 2013.

Table 3. Statistical analysis of active learning assessment marks.

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>14.3</td>
<td>3.02</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>2014</td>
<td>19.48</td>
<td>1.50</td>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4. Case study: Statistical analysis of semester end examination descriptive question and answer.

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>Percentage of students</td>
<td>Percentage of students</td>
</tr>
<tr>
<td>S</td>
<td>1.27</td>
<td>2.60</td>
</tr>
<tr>
<td>A</td>
<td>36.94</td>
<td>26.62</td>
</tr>
<tr>
<td>B</td>
<td>36.31</td>
<td>47.40</td>
</tr>
<tr>
<td>C</td>
<td>12.10</td>
<td>11.69</td>
</tr>
<tr>
<td>D</td>
<td>5.10</td>
<td>5.19</td>
</tr>
<tr>
<td>E</td>
<td>4.46</td>
<td>3.25</td>
</tr>
<tr>
<td>F</td>
<td>3.82</td>
<td>3.25</td>
</tr>
</tbody>
</table>

Semester end examination assessment analysis

Statistical analysis of Semester End Examination marks helps the curriculum designer to determine the effectiveness of flipped course conduction and assessment methods. The statistical information can be compared across the different years (Michael, 2004; Johnson et al., 2001). Statistical analysis of different course delivery and various assessment methods are done for refinement (Leon, 2015). This will surely help the faculty to know whether the new methods have improved the performance of students or not. In Table 4, statistical analysis of Semester End Examination marks conducted for this case study is shown. These are taken of compiler design course students of year 2013 and 2014. The S grade represents students have scored between 90 to 100 marks, A grade represents 80 to 89 marks, B grade represents 70-79 marks, C grade represents 60-69 marks, D grade, 50-59 marks, E grade represents 40-49 marks and F grade represents fail grade. The authors compare the percentage of students who scored F grade in 2014 with 2013. Similarly E grades, C grades are reduced in year 2014 compared to year 2013. There is a negligible decrease of 0.09% for D grades in 2014 and B grades also have increased in 2014. There is 10% decrease in A grade for 2014 and B grade scorers have increased by 11% compared to the year 2013. S grade scorers also increased by 1.4% in year 2014. Hence the authors
identify that they should put in more effort to increase A grade scorers. For that, they should introduce more active learning strategies in their course (Figure 10).

Statistical analysis of students attaining the course outcomes in CIE

The authors desire to measure the course outcomes and analyse them. For that, they map the questions asked in the CIE assessment to the course outcomes (CO). Then they compared them year wise (Weili et al., 2015). In Table 5, the statistical analysis is shown for the years 2013 and 2014. It shows the students’ average marks scored in each question. Questions get mapped to the course outcomes and with that percentage of course outcome attainment is calculated (Kim, 2013).

In 2014, the students have performed well in their CIE assessments. The authors observed that students learning outcomes are attained better for the course outcomes 1, 2, 3. This is because the practical assignments are related to the topics CO1, CO2 and CO3. Hence, the authors plan to refine the practical assignments related to CO4 and CO5, so that students actively learn CO4 and CO5 to enhance attainment level.

Analysis of students’ feedback during 2014

The teaching faculty can measure delivery methods and assessment methods using the surveys and feedback. Faculty can analyze the data to extract the effectiveness of their delivery and assessment strategies used during the course conduction (Anupama, 2015). For this case study, the authors have collected students’ feedback in 2014 using online forms and the responses are analysed (Matthew et al., 2014).

Table 6 shows the mid-term survey of students’...
Table 6. Feedback analysis of students-2014.

<table>
<thead>
<tr>
<th>Feedback questionnaires</th>
<th>Mid-term survey</th>
<th>Course exit survey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agree</td>
<td>Disagree</td>
</tr>
<tr>
<td>Lectures clear/well organized and presented at a reasonable pace</td>
<td>98%</td>
<td>2%</td>
</tr>
<tr>
<td>Class sessions increase the understanding of the course</td>
<td>95.9%</td>
<td>4.1%</td>
</tr>
<tr>
<td>Problems worked out in the classroom help to understand and solve questions on their own</td>
<td>95.9%</td>
<td>4.1%</td>
</tr>
<tr>
<td>Grading scheme clearly outlined and reasonable/fair</td>
<td>91.8%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Assignment procedures clearly explained by the teacher</td>
<td>89.8%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Attainment level of CO1</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Attainment level of CO2</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Attainment level of CO3</td>
<td>95.9</td>
<td>4.1%</td>
</tr>
<tr>
<td>Attainment level of CO4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Attainment level of CO5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

feedbacks. Mid-term survey helps to,

1. Improve the lectures and delivery methods for improving understanding
2. Refine problems solved in tutorials to improve the problem solving skills
3. Improve the grading schemes
4. Refine the instructions and guidelines
5. Refine assignments

So in course exit survey, the feedback gets improved to 100% in most of the feedback statements asked to students through online forms (Kim, 2013).

DISCUSSION

Teachers want their students to learn the course thoroughly. For this active involvement of students is required through active learning.

Active learning methodologies discussed in this paper

1. Online quiz conduction using computers
2. Homework assignments
3. Online submission forms
4. Online technical paper submission in shared drive
5. Group activities in collaborative manner

The above activities are experimented, analysed and compared for their effectiveness. For this case study, in 2014 the authors have introduced the practical assignments. This helps students get involved in designing compiler phases using lex and yacc tools. It helps the students to learn to work with compiler phases. This created an opportunity to experiment the theory of compiler design course.

In 2013, students actively learnt compiler design concepts using their preparation for quiz. This helped them to prepare for conceptual knowledge test and individual participation. But in 2014 students got an opportunity to work as a team using tools. The authors assisted them by conducting additional bridge course to fill the gap of compiler theory and the practical. For that, the faculty has used lex and yacc. Students have done collaborative work to develop programming solutions (Massimo et al., 2013; Leonard et al., 1997).

The authors measure (Johnson et al., 2001) the course outcomes attained using the grade scored by students. They use surveys to collect students’ feedback about the course outcomes attainment levels. This helps the authors to know how much understanding students have about the course. This helps to refine the delivery methods and the assessment methods.

This year 2015, the authors have created course website. This is useful to communicate to students the on-going compiler design course. The website provides the weekly reference materials and tutorial problems to be solved. This will help the students to update themselves with respect to course materials. This year, the authors have asked students to write technical paper on compiler design. This makes the students involve in compiler research study better. This helps the students to understand the basic concepts and improve their grades in CIE and in Semester End Examinations.

Conclusion

In this paper, the authors suggest useful strategies to
deliver the flipped course effectively. For that the authors suggest freely available resources over the internet such as Moodle software, Google online forms, Google web sites, wix websites, etc. This encourages students' involvement in active learning of practical assignments related to theory than quizzes. Further, the authors analyse that the practical assignments help students to learn the compiler design theory better. They observe that the practical assignments help students to improve in their grades in the assessments. With this, the authors conclude that having limited resources cannot restrict flipped course conduction. Teaching faculties can use freely available internet resources to provide better course delivery and assessment online. Faculty can host course references and assessments through freely available online resources.

Conflict of Interests

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

Parkavi. A thanks Dr. K.G. Srinivasa and the MSRIT management for their constant support in research studies. The authors thank Dr. P.L. Srinivasa murthy and Mrs. Bindu Mohan for their effort and guidance in proof reading of this paper.

REFERENCES

