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Soil microbial communities play a vital role in ecosystem functioning by enhancing mineral nutrition 
and protecting forest trees against pathogens through mycorrhizal symbiosis. However, knowledge of 
the diversity and assemblage of belowground fungal communities associated with native host trees in 
tropical Africa is incomplete. Using high-throughput sequencing, this study examined soil fungal 
communities in the rhizosphere of five ectomycorrhizal trees (EcM) from (5) countries using ITS and 
LSU regions.  Unconstrained ordination of fungal species was performed using principal component 
analysis based on their EcM tree rhizosphere affiliation. The ANOSIM test assessed the similarity 
between the fungal community composition associated with the EcM trees. Overall, 90 species 
belonging to 84 genera, 71 families, 40 orders and 4 phyla were identified. Soil fungal communities were 
host specific (P = 0.001). Basidiomycota were more frequently observed in the rhizosphere of Fabaceae, 
except for I. doka, whereas Ascomycota are more abundant in the rhizosphere of Phyllanthaceae (U. 
togoensis) and Dipterocarpaceae (M. kerstingii). The genus Sebacina is predominantly linked to M. 
kerstingii and I. tomentosa, while Russula is dominant under B. grandiflora and, Inocybe with I. 
tomentosa.  This study provides new insights into in the rhizosphere of native forest trees in West 
Africa and highlights areas for future research.  
 
Key words: DNA metabarcoding, ectomycorrhizal association, molecular species, Soil microorganisms, soil 
fungi, timber trees. 

 
 
INTRODUCTION 
 
The rhizosphere is considered to be the narrow zone of 
soil immediately surrounding plant roots (Marschner et 
al., 2004; Olahan et al., 2016). This area is home to a 
wide range of interactions between plant roots and 
microorganisms, which affect soil physical, chemical, and 

biological processes that sustain biodiversity and 
ecosystems (Nihorimbere et al., 2011; Sathya et al., 
2016; Lu et al., 2018). A major group of microorganisms 
found in the rhizosphere are fungi, responsible in part for 
colonizing   the   roots   of   a   plethora  of  plant  species 
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(Olahan et al., 2016; Sathya et al., 2016; Dlamini et al., 
2022). Rhizospheric fungi play a vital role in the soil food 
chain, participating in the recycling of soil carbon and 
nutrients (Larekeng et al., 2019; Pattnaik and Busi, 
2019), and the transformation of hard-to-digest organic 
matter (such as lignin and other soil organic matter) into 
usable forms for other organisms (Stokland et al., 2012; 
Grzyb et al., 2021). Through enzymatic activities, fungal 
hyphae physically bind soil particles together, creating 
stable aggregates that contribute to increased soil 
aeration, water infiltration, and water holding capacity of 
the soil, thereby enhancing soil resistance to erosion 
(Vogelsang et al., 2004; van der Wal et al., 2009). As a 
result, rhizospheric fungi are directly involved in soil 
fertility (Sterkenburg et al., 2015; Rashid et al., 2016) and 
contribute to the mitigation of soil degradation (Rashid et 
al., 2016; Rosas-Medina et al., 2020).  

Among rhizospheric fungi, mycorrhizal fungi comprise 
one of the major groups since they are associated with 
more than 90% of known terrestrial plants (Smith and 
Read, 2008; Nilsson et al., 2019; Islam et al., 2022). 
Mycorrhizal fungi significantly improve the absorption and 
use of nutrients by host plants, stimulate growth, increase 
stress and disease resistance, and thereby contribute to 
maintaining the aboveground primary productivity of 
forest and ecosystem stability (Larekeng et al., 2019; 
Thind et al., 2022). According to root morphological 
differentiation, there are many types of mycorrhizal fungi 
of which one of them is ectomycorrhizal (EcM) fungi. 
They are obligate partners of most woody plant species 
that majorly belong to the families Fagaceae, 
Dipterocarpaceae, Phyllanthaceae, Myrtaceae, etc. 
(Brundrett and Tedersoo, 2018; Corrales et al., 2018). In 
tropical Africa, some EcM trees that belong to these 
families are Afzelia africana Smith ex Persoon, Berlinia 
grandifolia (Vahl) Hutch. and Dalziel, Monotes kerstingii 
Gilg, Isoberlinia doka Craib and Stapf, Isoberlinia 
tomentosa (Harms) Craib and Stapf, Uapaca togoensis 
Pax, etc. (Bâ et al., 2012; Houdanon et al., 2019). They 
are economically important trees and because of their 
socio-economic value, these species are facing major 
pressure from the local population, including charcoal 
production, and illegal logging for furniture (Balima et al., 
2018; Mohammed et al., 2021). In addition, natural 
regeneration is not able to compensate for the removal of 
trees from the forest. Therefore, attempts to plant 
nursery-produced seedlings in the wild have been 
considered (Ogbimi et al., 2020; Ogbimi and Sakpere, 
2021). However, since nursery production does not 
include knowledge of the niche of these plant species in 
their natural habitats, the results of planting in the wild 
are not satisfactory. Given that fungi play a key role in 
plant growth and health, there is a clear need to better 
understand the soil mycobiome surrounding native forest 
trees to develop an effective sustainable management 
strategy. 

Until recently, studies on fungal diversity in West  Africa  

Tchan et al.          31 
 
 
 
have relied primarily on fruiting bodies surveys, mycelia 
isolations, and spore identification (Straatsma et al., 
2001; Luo et al., 2020). Fruit bodies-based surveys do 
not allow a total evaluation of the fungal community 
(Kubartová et al., 2012; Shirouzu et al., 2016), because 
even if a fungus has basidiomata large enough to be 
spotted, they may go unnoticed because fruiting body 
formation is both seasonal and ephemeral (Shirouzu et 
al., 2016). Many taxa such as mycorrhizal and parasitic 
fungi may not grow or produce reproductive structures on 
artificial media even if they are potentially culturable 
(Allen et al., 2003; Senanayake et al., 2020). In addition 
to the aforementioned methods, spore identification is 
traditionally used to identify the rhizosphere arbuscular 
mycorrhizal fungi (Rodríguez-Morelos et al., 2014; Xavier 
and Rodrigues, 2020). However, even though this 
method is important in fungal taxonomy, it is time- and 
energy-consuming and susceptible to variability in spore 
morphology description, because host species and 
microbial age may be very challenging to differentiate 
spores of similar species (Bhat et al., 2014; Senanayake 
et al., 2020). Recent studies using high-throughput 
sequencing of environmental samples have greatly 
improved our understanding of the community and 
diversity of rhizosphere soil fungi (Tedersoo et al., 2014; 
Qin, 2018; Zhu et al., 2018; Nilsson et al., 2019; 
Tremblay et al., 2019; Meidl et al., 2021). 

One of the most accepted methods for high throughput 
sequencing is the generation of the amplicon sequence 
variants (ASVs). So far, this method has been mainly 
used to study soil mycobiome in temperate and boreal 
regions (Wu et al., 2019; Lance et al., 2020; Rosas-
Medina et al., 2020), while very few studies have 
comprehensively assessed the diversity, and community 
composition of soil fungi in tropical African forest 
ecosystems (Meidl et al., 2021). Here, PacBio 
sequencing was employed to assess the diversity and 
community composition of fungi found in the rhizosphere 
of five West African native trees. 
 
 
MATERIALS AND METHODS 
 
Study area 
 
The soil samples used in this study were collected across five West 
African countries namely Benin, Burkina Faso, Guinea, Côte 
d’Ivoire, and Mali.  In total, nine forests containing at least one of 
the targeted EcM tree species were selected. The different forests 
range from woodlands to gallery forests: The gallery forests and the 
woodland of Kota in Benin, the Kou gallery forest and the 
Niangoloko forest reserve in Burkina-Faso, the Farako1 forest 
reserve and the Farako15 forest reserve in Mali, the Bissandougou 
forest reserve and Moussaya forest reserves in Guinae and the 
Kouadianikro gallery forest in Côte d’Ivoire (Figure 1).  
 
 
Sampling design and methods  
 

Within each  study  site, we established a plot of 50 m × 50 m (2500  
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Figure 1. Study area and the sampling sites in red dots. 
Source: Authors 

 
 
 

m
2
) in woodlands and a rectangular plot of 30 m × 80 m (2,400 m

2
) 

within gallery forests due to their shape. Within each plot, five EcM 
trees were targeted, namely I. doka, I. tomentosa, U. togoensis, M. 
kerstingii, and B. grandiflora. Ten trees were chosen in proportion 
to their abundance, while ensuring that each of the EcM trees in the 
plot is represented at least once and that all sampled trees were at 
least eight meters apart. Under each targeted tree, two soil samples 
of about 200 g around 1 m was taken from each side of the trunk 
using a small shovel to collect the first 15 cm of soil. The two soil 
samples were pooled in a plastic bag. A total of 90 (5 EcM trees x 2 
samples x 9 sites) soil samples were collected at a rate of 10 
samples per site. Later on, the collected soil samples were 
processed following the protocol described by Tedersoo et al. 
(2014). 

 
 
DNA extraction, sequencing and bioinformatics analyses 

 
For the DNA extraction and sequencing, soil samples were sent to 
the Department of Ecology and Genetics, Evolutionary Biology, 
Uppsala University. A subsample of approximately 250 mg was 
placed in a separate 2.0 ml tube containing 750 µl of field lysis and 
preservation buffer (Xpedition Soil/Fecal DNA miniprep, Zymo 
Research Corporation, Irvine, California, USA) and lysed in the field 
using a portable bead beater (TeraLyser, Zymo Research 
Corporation). 

Extraction, amplification, sequencing, and clustering of 
sequences into amplicon sequence variants (ASVs) were 
performed as described by Meidl et al. (2021). For more details, see 
the methodology of Meidl et al. (2021). The taxonomic attribution of 
the different ASVs was carried out on the PlutoF platform (Kõljalg et 

al., 2019) using the PROTAX software (Somervuo et al., 2016) 
(publication date 2020-10-21), configured by the Index Fungorum 
taxonomic database and the UNITE reference sequence database 
(Nilsson et al., 2016). We recorded for each query ASV the most 
likely taxonomic identity at the phylum, class, order, family, genus, 
and species levels, as well as the uncertainty of these assignments, 
measured by probabilistic placement. The authors note that the 
PROTAX uncertainty estimates explain the possibility that the 
species is unknown to science (that is, not included in the 
taxonomic database), or known to science but lacking sequences 
reference (Somervuo et al., 2016; Abarenkov et al., 2018). 

 
 
Data processing and analysis 

 
To illustrate the fungal taxonomic composition associated with the 
rhizosphere of the target EcM trees, we constructed a Krona wheel 
for each tree using Protax-fungi in PlutoF platform from ASV 
diversity. Alpha diversity was determined for each EcM tree by 
calculating species richness and the Shannon diversity index. The 
similarity analysis (ANOSIM) was used to assess the similarity 
between the fungal communities associated with EcM trees. 
Through principal component analysis, we highlight fungal species 
affiliation with each EcM tree, and to identify the potential fungal 
species which better characterize each EcM tree. Finally, the 
Jaccard similarity index was calculated to compare the proportion of 
species shared by different EcM trees. All these analyses were 
carried out using the vegan package (Oksanen et al. 2022) with the 
statistical software R version 3.6.2 (R Core Team, 2019) and the 
ggplot2 package (Wickham, 2016) was used to create the nMDS 
graph. 
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Figure 2. Krona-Wheels illustrating the taxonomic distribution of fungi in soil samples. Results of samples associated with the rhizosphere of Berlinia grandiflora (A) and  Isoberlina doka 
(B).  
Source: Authors 

 
 
 

RESULTS 
 
Taxonomic composition of fungal communities 
associated with the rhizosphere of targeted 
EcM trees 
 
Grouping the sequences into  amplicon  sequence  

variants (ASVs) gave a total of 1147 ASVs. In 
sum, 1051 ASV (91.63%) were identified as fungi. 
On the Krona wheels (Figures 2 to 4, 
Supplementary materials A, B, C, D and E for 
more detail), the color scales show the type and 
confidence level of each taxonomic placement. 
Color scales 1  to  3  correspond  to  the  identified 

taxonomic units for which the proportion of reliable 
identifications ranges from 50… 100% (1), 0… 
50% (2) or 0 % Color 3. Scales 4 to 6 correspond 
to unknown taxonomic units. In total, four 
taxonomic groups of fungi such as Basidiomycota, 
Ascomycota, Glomeromycota, Zygomycota were 
identified  from   the  rhizosphere  of  the  targeted 
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34          Int. J. Biodivers. Conserv. 
 
 
 

 
 

Figure 3. Krona-Wheels illustrating the taxonomic distribution of fungi in soil samples. Results of samples associated with the rhizosphere of Isoberlina tomentosa (C) and Monotes 
kerstingii (D). 
Source: Authors 

 
 
 
EcM trees. These latter are unevenly distributed 
for each EcM tree. For example, Basidiomycota 
are most dominant under B. grandiflora (42%) and 
I. tomentosa (49%); while Ascomycota are the 
most dominant under I. doka (50%), M. kerstingii 
(56%), and U. togoensis (50%). Glomeromycota 
and  Zygomycota  are  weakly  represented  under 

the target EcM trees. Sixteen percent of the 
sequences associated with B. grandiflora and I. 
doka are unidentified or unknown. Fourteen 
percent of the fungi sampled under M. kerstingii 
and U. togoensis are unidentified, whilst unknown 
taxa make up to 13% of total fungal community 
under I. tomentosa. 

In general, Russulales is the most dominant 
fungal group under B. grandiflora, I. doka, U. 
togoensis, and M. kerstingii, while Agaricales is 
more abundant in the rhizosphere of I. tomentosa 
(Figure 5). Sebacinales are more represented 
under M. kerstingii than the other trees 
investigated  in  contrast  to  Boletales,  which  are 

 

C D 
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Figure 4. Krona-Wheels illustrating the taxonomic distribution of fungi in soil samples. Results of samples 
associated with the rhizosphere of Uapaca togoensis (E). 
Source: Authors 

 
 
 
more represented under B. grandifolia. I. doka and I. 
tomentosa have the highest proportion of Pezizales. 
Cantharellales, an important group of edible fungi in 
tropical Africa, is best represented under I. tomentosa. 
 
 
Genera representativeness under the different forest 
species 
 
A total of 1051 ASV, including 810 (77.07%) belonging to 
90 species from 84 genera, 71 families, 40 orders, 19 
classes, and 04 phyla have been recorded. Moreover, 
66.67% of this specific richness is observed under B. 
grandiflora (60 species), against 62.22% for I. doka (56 
species), 53.33% for I. tomentosa (48 species), 48.89% 
for U. togoensis (44 species), and 47.78% for M. 
kerstingii (43 species). The real diversity is probably 
much higher because about 60% of the genera (50 
genera  for   all   EcM   trees   combined)   could   not   be 

identified up to species level. About 22.93% (241) of the 
ASV remained unidentified and were not included in this 
analysis. Russula is better represented under B. 
grandiflora, I. doka, U. togoensis, and M. kerstingii unlike 
Inocybe that is much more observed under I. tomentosa 
(Figure 6). 
 
 
Diversity of belowground fungal communities of five 
EcM trees 
 
Table 1 presents the intraspecific diversity of the 
belowground fungal communities of the different tree 
species in the EcM. At the genus level, the belowground 
fungal communities were found to be the most diverse for 
Isoberlinia doka (G = 63, H' = 2.81, J = 0.679) and the 
least diverse for Monotes kerstingii (G = 54, H' = 1.78, J = 
0.447). On the other hand, fungal generic diversity 
affiliated  with  Uapaca  togoensis  (G = 53, H' = 2.39, J =  

 

E 
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Figure 5. Representativeness of fungal taxa under target forest species. 
Source: Authors 
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Figure 6. Distribution of the best-represented genera within the different EcM tree species. 
Source: Authors 

 
 
 

Table 1. Genus level intraspecific diversity of belowground fungal community of 
ectomycorrhizal host trees. 
 

Forest trees Richness Shannon Evenness 

Isoberlinia doka 63 2.81 0.679 

Isoberlinia tomentosa 62 2.48 0.6 

Uapacca togoensis 53 2.39 0.603 

Berlinia grandiflora 67 2.24 0.533 

Monotes kerstingii 54 1.78 0.447 
 

Source: Authors 

 
 
 

Table 2. Similarity index of Jaccard among the forest trees. 
 

Species I. doka I. tomentosa M. kerstingii B. grandiflora 

I. tomentosa 0.831 
   

M. kerstingii 0.692 0. 692 
  

B. grandiflora 0.658 0.725 0.725 
 

U. togoensis 0.635 0.676 0.700 0.800 
 

Source: Authors 

 
 
 

0.603) was approximately equal to that of Isoberlinia 
tomentosa (G = 62, H' = 2.48, J = 0.6).  

Considering pairwise EcM trees, Jaccard's similarity 
index (Table 2) indicated generally large proportions of 
shared fungal genera. Indeed, similarity (0.635) was 
obtained between I. doka and U. togoensis; but I. doka 
and I. tomentosa shared the largest number of taxa 
(Jaccard index = 0.831). Although the proportion of 
genera shared was greater than 0.6 in all pairwise cases, 
the similarity analysis (ANOSIM) supported the  evidence 

that at the genus level, the belowground fungal 
community associated with the rhizosphere of at least 
one of the five EcM trees differed significantly from the 
others (P < 0.05, Figure 7). 
 
 
Categorization of below-ground fungal species 
according to EcM hosts 
 
Figure   8   presents   the   projection   of   fungal   genera  
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Figure 7. Similarity distance between the compositions of the fungal microbiome found under forest species. 
(B_gran) Berlinia grandiflora; (I_doka) Isoberlinia doka; (I_tom) Isoberlinia tomentosa; (M_kers) Monotes kestingii; 
(U_tog) Uapaca togoensis. 
Source: Authors 

 
 
 
generated for each EcM tree according to the principal 
components 1 and 2. Figure 8 suggests that EcM trees 
hardly cluster separately and share a large number of 
fungal genera as the similarity index of Jaccard indicated 
it. This makes it difficult to clearly identify the genera that 
characterized the fungal community of each tree. 
Nevertheless, through the projection of the circles, the 
genus Russula seems to cluster more with B. grandiflora; 
while Sebacina seems more associated with M. kerstingii 
and I. tomentosa; and the genus Inocybe clusters more 
with I. tomentosa. 
 
 
DISCUSSION  
 
To assess the diversity and community composition of 
fungi found in the rhizosphere of five West African native 
trees, high throughput sequencing was employed. Out of 
1051 ASVs generated, a significant percentage of 
22.93% remained unidentified. This could potentially be 
explained by the incompleteness of the reference 
databases or taxonomic placement (Somervuo et al., 
2016; Abarenkov et al., 2018). Secondly, the high 
percentage of unknown taxa suggests that a large 
proportion of taxa remain to be described. In a global 
study on soil fungi, Tedersoo et  al.  (2014)  estimate  that 

about 80% of all soil fungal taxa cannot be identified to 
the species level, and 20% reliably assigned to known 
orders. The data, therefore, opens new perspectives for 
future work on the analysis of undescribed or at least not 
yet sequenced fungal species, the estimation of below-
ground fungal diversity and therefore calls for a greater 
sampling effort in West African soils (Crous et al., 2006). 
Basidiomycota are better represented under I. tomentosa 
(49%) and B. gandiflora (42%); unlike the Ascomycota 
that are more recorded under M. kerstingii (56%), I. doka 
(50%), and U. togoensis (50%). Also, the genus Russula 
is most abundant under B. grandiflora, I. doka, U. 
togoensis, and M. kerstingii; unlike Inocybe that is more 
frequently observed under I. tomentosa. These results 
largely corroborate previous observations that EcM 
fungal communities in West Africa are dominated by fungi 
in Russulaceae families (Bâ et al., 2012; Tedersoo and 
Smith, 2013, 2017; Ebenye et al., 2017). Meild et al. 
(2021) also reported the dominance of the genera 
Russula and Inocybe in the same geographical areas. 
The high proportion of Ascomycota (Peziza) in the soil 
fungal community highlights the presence of trophic 
groups other than EcM and their potential role as 
important decomposers of a wide variety of dead organic 
matter in forest ecosystems through the production of a 
wide range of hydrolytic enzymes, including cellulase and  

 

 



Tchan et al.          39 
 
 
 

 
 

Figure 8. Prioritization of fungal species according to the EcM tree species. 
Source: Authors 

 
 
 
phenol oxidases (Egger, 1986).  The absence or low 
representativeness of certain groups of fungi with large 
fruit bodies such as Polyporales and Hymenochaetales, 
has also been evidenced regarding soil fungi in 
temperate ecosystems (Tedersoo et al., 2020). This 
suggests a general pattern indicative of soil fungal 
communities and a limitation of exchange between the 
fungal communities of the phyllosphere and dead wood 
within the soil. Moreover, the effective presence of 
Glomeromycota highlights the probable duality of EcM 
and AMF of these trees. It has been demonstrated that 
some local forest trees form both EcM and AMF 
symbioses (Houngnandan et al., 2009; Djotan et al., 
2021).  

The diversity indices indicate a higher species diversity 
for Isoberlinia doka (G = 63, H' = 2.81, J = 0.679). For the 
other forest species (I. tomentosa; U. togoensis; M. 
kerstingii and B. grandiflora), the diversity is low with an 
average distribution between genera. Fonton et al. (2012) 
argued that I. doka is a good early colonizer because it 
can reproduce from suckers and grows quickly. As such, 
I. Doka can connect to a larger number of below-ground 
fungal networks (Diédhiou et al., 2010; Gorzelak et al., 
2015; Mcguire, 2017). Also, the density or uneven 
distribution of stands dominated by target EcM trees 
could explain this observation, but also other factors 
including different soil characteristics, altitude, and host 
specificity (Corrales et al., 2018). Indeed, the increasing 
proportion of phosphorus, clay, nitrogen, and  soil  pH,  is 

negatively correlated with fungal community diversity, 
abundance, and composition (LeDuc et al., 2013; Zhang 
et al., 2016). This difference in belowground fungal 
community diversity among EcM trees is strongly 
correlated with canopy composition, stand age, EcM tree 
density, and canopy cover rate (Johnson et al., 2004; 
Gebhardt et al., 2007; Burke et al., 2009; Henry et al., 
2021; Meidl et al., 2021). However, the Jaccard similarity 
index shows that a large proportion of genera are shared. 
I. doka and I. tomentosa share the greatest number of 
common genera (J = 0.831); unlike I. doka and U. 
togoensis, which display the lowest number (J = 0.635). I. 
doka and I. tomentosa are two EcM sister species within 
the same family (Fabaceae). Such phylogenetic proximity 
could explain why both tree species obtained the highest 
value of the similarity index. However, the similarity 
analysis (AnoSim) indicates that the generic fungal 
composition differs significantly between the five EcM 
trees (P = 0.001) at the 5% level. 

Based on nMDS results, only three of the fungal genera 
are more specific to certain woody species. This could be 
explained by the preference or specificity of certain fungal 
partners in symbiotic relationships with EcM trees. 
Previous studies highlighted the close preference 
between certain bellowground fungal communities and 
their host plants (Kretzer et al., 1996; Taylor and Bruns, 
1997; Taylor et al., 2002). For example, Lactarius 
deliciosus (L.) Gray, L. deterrimus Gröger and L. 
salmonicolor R. Heim and  Leclair  are  specific  to  Pinus  
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sylvestris Baumg., Picea abies (L.) H.Karst. and Abies 
alba (Aiton) Michx., respectively (Giollant et al., 1993). 
Still, the specificity of this fungal community is closely 
linked to a genus or family of partner plants (Massicotte 
et al., 1994; Molina and Trappe, 1994). These results 
corroborate those of Toju et al. (2013), who pointed out 
that some fungi of the Russulaceae family have been 
detected exclusively on specific oak species (Quercus 
spp.). Other research confirms the specificity of some 
genera of soil fungi with respect to their host plants 
(Ishida et al., 2007; Tedersoo et al., 2008). This is the 
case for fungal species such as Rhizopogon spp. and 
Suillus spp., which are almost exclusively associated with 
Pinaceae and sometimes Monotropaceae (Massicotte et 
al., 1994; Molina and Trappe, 1994; Kretzer et al., 1996; 
Taylor and Bruns, 1997; Taylor et al., 2002). 

While the recent work of Meidl et al. (2021) aimed to 
document the effect of vegetation types on the 
mycobiome of soils associated with EcM trees, the 
present study targets the relation between selected EcM 
trees and the mycobiome immediately within their 
rhizosphere (all vegetation combined). The findings 
corroborate previous work by Massicotte et al. (1994), 
Molina and Trappe (1994), Kretzer et al. (1996), Taylor 
and Bruns (1997), Taylor et al. (2002), Ishida et al. 
(2007), Tedersoo et al. (2008), which highlighted different 
mechanisms of microbiome specification by host plants. 
The results, therefore, supplement those of Meild et al. 
(2021) not only by confirming host preference but more 
importantly by highlighting the specialist genera 
partnered with valuable native tree species of West 
Africa. 
 
 
Conclusion 
 
Until recently, estimates of total fungal diversity did not 
include results from large-scale environmental 
sequencing methods, especially in West African regions. 
This study constitutes the first major exploration of the 
edaphic fungal communities of West African ecosystems, 
revealing insufficient sampling effort in currently 
neglected ecosystems and regions. The authors’ data 
provide a baseline for phylogenetic placement and 
taxonomic resolution of environmental sequences of five 
EcM trees of socio-economic importance in West Africa. 
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