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The key to reducing ecological and economic damage caused by invasive plant species is to locate and 
eradicate new invasions before they threaten native biodiversity and ecological processes. We used 
Landsat Enhanced Thematic Mapper Plus imagery to estimate suitable environments for four invasive 
plants in Big Bend National Park, southwest Texas, using a presence-only modeling approach. Giant 
reed (Arundo donax), Lehmann lovegrass (Eragrostis lehmanniana), horehound (Marrubium vulgare) 
and buffelgrass (Pennisteum ciliare) were selected for remote sensing spatial analyses. Multiple 
dates/seasons of imagery were used to account for habitat conditions within the study area and to 
capture phenological differences among targeted species and the surrounding landscape. Individual 
species models had high (0.91 to 0.99) discriminative ability to differentiate invasive plant suitable 
environments from random background locations. Average test area under the receiver operating 
characteristic curve (AUC) ranged from 0.91 to 0.99, indicating that plant predictive models exhibited 
high discriminative ability to differentiate suitable environments for invasive plant species from random 
locations. Omission rates ranged from <1.0 to 18%. We demonstrated that useful models estimating 
suitable environments for invasive plants may be created with <50 occurrence locations and that 
reliable modeling using presence-only datasets can be powerful tools for land managers.  
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INTRODUCTION 
 
Invasive species introductions have led resource mana-
gers to explore predictive theories of community attri-
butes that increase their susceptibility to invasion 
(Rejmanek and Richardson, 1996). Unfortunately, univer-
sal predictive theories are not available because traits 

associated with invasion potential vary by geographic 
location, species and habitat (Alpert et al., 2000; Sakai et 
al., 2001). Nevertheless, habitats that are subject to altered 
disturbance regimes, have a history of prior invasion, 
provide adequate soil and water resources, or experience
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high frequency of propagule introductions and are at 
greater risk to invasive plant incursion (Alpert et al., 2000; 
Rejmanek, 2000). 

The U.S. National Park Service reported that exotic 
plants infested approximately 1.1 million ha in national 
parks (National Park Service, 2005). For example, over 
65 exotic plant species that could potentially influence 
environmental quality, biotic health and ecosystem inte-
grity were documented in Big Bend National Park, (Big 
Bend National Park, 1998; National Parks Conservation 
Association, 2003). 

The key to reducing ecological and economic damage 
caused by invasive species is to locate and eradicate 
new invasions before they threaten native biodiversity 
and ecological processes (Stohlgren et al., 1999). Costs 
associated with ground-based reconnaissance preclude 
resource managers from conducting comprehensive in-
ventories across large landscapes. Further, some invasive 
plants remain dormant between introduction and expan-
sion and may go undetected during surveys. If surveys 
are not conducted at sufficient intervals, these undetec-
ted plants can rapidly spread once environmental condi-
tions are favorable. Unfortunately, as the severity of the 
invasion rapidly increases, so does the cost of managing 
invasive plants. 
 
 
Detecting suitable invasive plant environments using 
remotely sensed data 
 
Remotely sensed data can provide a cost-effective tool to 
estimate environments suitable for invasive plants across 
large landscapes. Once potential areas of suitable habitat 
for invasive species are predicted, selective ground 
reconnaissance can be effectively used for verification 
and control. Potential suitable areas can also be fre-
quently monitored to determine if undetected plants exist 
in the area. There has been a substantial increase in the 
use of remotely sensed and GIS data to model invasive 
species distributions or potential habitats as well as 
identify locations that may be at risk of plant incursion 
(Joshi et al., 2004; Franklin, 2009). This increase coin-
cides with improved development and implementation of 
classification techniques, remote sensing apparatus and 
computer technology (Lass et al., 2005). 

The success of remote sensing data to detect invasive 
plants or habitats is dependent upon the sensors’ spatial 
and spectral (bandwidth) resolution and the sensors' 
repeat cycle (temporal resolution). Sensors that yield high 
spatial resolution data (<5 m) with hyperspectral (>100 
spectral bands) capabilities have the highest likelihood of 
detecting microhabitats or rare plants (Marcus et al., 
2003; Lass et al., 2005; Lawrence et al., 2006). However, 
these data also tend to be expensive and their relatively 
small swath size (ground area represented within the 
image) requires extensive computer processing time and 
storage for analyses of large areas. As such, landscape  
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scale modeling endeavors often compromise bandwidth 
and spatial resolution considerations.  

Landsat Thematic Mapper (Landsat TM) and Landsat 
Enhanced Thematic Mapper Plus (Landsat 7 ETM+) are 
multispectral, medium spatial resolution (30 m) sensors 
and are well suited for modeling endeavors across large 
landscapes. Landsat TM and Landsat 7 ETM+ have been 
extensively used to model vegetation types across a 
variety of landscapes. In some cases, these sensors can 
identify individual plant species with unique spectral or 
temporal characteristics (Parker-Williams and Hunt, 
2002). Dewey et al. (1991) compared Dyer’s woad (Isatis 
tinctoria) locations with spectral classes created from 
Landsat 5 TM data in northern Utah and observed strong 
associations between plant locations and 10 spectral 
classes. The authors demonstrated a remotely sensed 
predictive model that provided resource managers with a 
tool for estimating the plant’s potential distribution. In the 
Great Basin, cheatgrass (Bromus tectorum) was modeled 
using Landsat TM and Landsat 7 ETM+ data (Bradley 
and Mustard, 2005). Shafii et al. (2003) predicted yellow 
starthistle (Centaurea solstitalis) using a land use 
classification based on Landsat data and other GIS 
datasets. 

Landsat TM and Landsat 7 ETM+ data are best used 
for detecting plants that have patch sizes of 0.5 ha or 
larger (Everitt and DeLoach, 1990; Everitt et al., 1992; 
Anderson et al., 1993). Similar spectral signatures bet-
ween targeted plants and the surrounding environment, 
changes in soil color or moisture, and low plant densities 
hinder discrimination efforts for invasive plants. However, 
seasonal differences in plant phenology may enhance the 
detection of invasive plants due to flowering or green-up 
at different periods than the native surrounding vegeta-
tion. Multiple dates of imagery allow the detecting of 
these phenological differences between targeted plants 
and the surrounding landscape. Price et al. (2002) noted 
that increasing the number of Landsat TM bands by using 
multiple dates of imagery improved discrimination accu-
racy of grassland types. As such, imagery dates should 
correspond to critical phenological phases of the targeted 
plant (Zhang et al., 2003; Joshi et al., 2004).  
 
 
Presence-only predictive models 
 
Predictive habitat models are grounded in ecological 
niche theory and are quantitatively related to the likelihood 
of a species occurrence given a set of predictor variables 
(Franklin, 2009). One can discriminate between response 
values (e.g., species presence and absence) using a set 
of environmental predictors. Many analytical approaches 
have been applied to determine statistical relationships 
between species and predictor variables (Guisan and 
Zimmermann, 2000; Elith, 2002; Franklin, 2009). Several 
of the analytical approaches (for example, general linear 
and  logistic regression models) require presence/absence  
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data (Pearce and Ferrier, 2000; Manel et al., 2001; Elith, 
2002). This requirement is a serious limitation for species 
distribution models, since many species have detection 
probabilities <1. A sampling problem is the failure to 
detect a species’ presence in suitable habitats with the 
implication that non-detection occurrences represent spe-
cies’ absence (Mackenzie et al., 2002; Weidong and 
Swihart, 2004). As such, there is a growing interest in 
using presence-only data in modeling efforts (Elith, 2002; 
Graham et al., 2004; Argaez et al., 2005). 

Considerable research has focused on the creation of 
species distribution models using presence and pseudo-
absence (e.g., background data) (Zaniewski et al., 2002; 
Elith et al., 2006; Oliver and Wotherspoon, 2006). Back-
ground locations are randomly selected points generated 
throughout the entire study area or region which may or 
may not include locations where the species was present. 
As such, analyses of background data are sensitive to 
the size of the analytical area (VanDerWal et al., 2009; 
Phillips et al., 2009). Unfortunately, background locations 
do not incorporate ecological knowledge of the species-
habitat relationships. Nevertheless, this type of modeling 
is effective for modeling species’ potential distribution, 
including rare species (Elith et al., 2006).  

The goal of this study was to investigate methods to 
assist in the early detection of invasive plants over a 
large area. Using data and analytical methods that are 
typically accessible to most land management agencies, 
we evaluated the efficacy of using Landsat 7 ETM+ ima-
gery to estimate suitable environments for invasive plants 
across Big Bend National Park. Since reliable absence 
data for the target plants were not available, a presence-
only modeling and validation approach was employed. 
 
 
METHODS 
 
Big Bend National Park is located in the northern Chihuahuan 
Desert in southwest Texas. The Park encompasses roughly 
324,154 ha with elevation ranging from 518 m at the Rio Grande to 
2,388 m at Emory Peak in the Chisos Mountains (Big Bend National 
Park, 2004). Temperatures range from over 37°C in the summer to 
-17°C in the winter; although average summer and winter tempera-
tures are 27°C and 3°C, respectively (Cochran and Rives, 1985). 
Mean annual precipitation in the Park is approximately 33 cm, of 
which 75% falls from April to September as heavy thunderstorms 
(Cochran and Rives, 1985).  

Big Bend National Park has three major environmental zones: 
the Chihuahuan Desert, the Rio Grande and its riparian corridor, 
and the Chisos Mountains (National Park Service, 1983). The Rio 
Grande defines 190 km of the Park’s southern boundary.  

Creosotebush (Larrea tridentata) and lechuguilla (Agave lechu-
guilla) are the dominant plant species in the Chihuahuan Desert 
community, occupying approximately 72% of the Park (Plumb, 
1991). Riparian vegetation along the river is dominated by saltcedar 
(Tamarix spp.), mesquite (Prosopis spp.), cottonwood (Populus 
deltoides), willow (Salix spp.), tree tobacco (Nicotiana glauca), 
Bermuda grass (Cynodon dactylon), and giant reed (Arundo 
donax). The Chisos Mountains are located near the center of the 
Park and considered the southernmost mountains in the continental 
United States (Wauer, 1996). Dominant woodland vegetation 
includes alligator juniper (Juniperus deppeana), red-berry juniper (J.  

 
 
 
 
pinchotii), weeping juniper (J. flaccida), gray oak (Quercus grisea), 
Emory oak (Q. emoryi), Grave’s oak (Q. gravesii) and Chisos oak 
(Q. graciliformis). Mexican pinyon (Pinus cembroides), Ponderosa 
pine (P. ponderosa), quaking aspen (Populus tremuloides) and 
Arizona cypress (Cupressus arizonica) are also found in isolated 
patches.  
 
 
Predictive habitat models 
 
Maxent software version 3.3.1 
(http://www.cs.princeton.edu/~schapire/maxent/) was used to create 
predictive habitat models (Phillips et al, 2004, 2006). Maxent uses 
the principle of maximum entropy to estimate the target probability 
distribution that has the broadest distribution compatible with the 
information available (Phillips et al., 2004; Dudík et al., 2007; 
Phillips and Dudík, 2008). The Maxent procedure employs a 
maximum-likelihood to generate a probability distribution grid of the 
analysis area. The program begins with a uniform distribution, and 
performs multiple iterations that increase the probability of the 
species sample locations (Yost et al., 2008). Maxent uses pixels 
with known species occurrence records and randomly selected 
background points to constitute sample points. Landsat 7 ETM+ 
and GIS datasets provided the environmental variables measured 
at each sample point. A more detailed description of how the 
program functions can be found in the software tutorial, help section 
and from Phillips et al. (2004, 2006, 2009), Phillips and Dudík 
(2008) and Elith et al. (2010).  

The program default settings as described by Phillips and Dudík 
(2008) were used for analyses, including the default regularization 
multiplier to reduce over-fitting (Pearson et al., 2007). Default 
settings included maximum iterations = 500, convergence threshold 
= 10

-5
, number of background points = 10,000 and auto features 

that would select the appropriate feature function (linear, quadratic, 
product, threshold or hinge) based on the number of presence 
records (Phillips et al., 2006; Pearson et al., 2007; Peterson et al., 
2008). Program outputs include a logistic probability surface, and 
tabular and graphical representations of model performance and 
variable contribution. 
 
 
Input occurrence data 
 
Four invasive plant species were selected for remote sensing 
spatial analyses: giant reed, Lehmann lovegrass (Eragrostis 
lehmanniana), horehound (Marrubium vulgare) and buffelgrass 
(Pennisteum ciliare). These species were National Park Service 
priority species, had been or were currently undergoing evaluation 
within Big Bend National Park, with known spatial locations of 
occurrence in the Park. Reliable spatial information on plant 
absences was not available. 

Giant reed, native to eastern Asia (Bell, 1997), is thought to be 
first introduced into the U.S. near Los Angeles, California, for 
erosion control along drainage canals (Hoshovsky, 1987). In Big 
Bend National Park, giant reed displaces native species and forms 
dense stands along waterways (Photo 1). Stands create flood-
control problems, increase fire hazard, and reduce biodiversity and 
habitat for wildlife. Lehmann lovegrass originates from southern 
Africa (Anable et al., 1992), and was introduced in the southwest in 
1932 (Cox et al., 1988). Starting in the early 1950s, commercial 
seed growers produced large quantities of Lehmann lovegrass 
which was planted from Texas to Arizona to prevent soil erosion 
and provide livestock forage (Cox et al., 1988; McClaran and 
Anable, 1992). Lehmann lovegrass spreads aggressively into desert 
and grassland communities where it excludes native plants, espe-
cially after disturbance. This plant alters fire frequency and intensity, 
and reduces biodiversity (Photo 2). Horehound is native to northern 
Africa, Asia and Europe, and is now common across most parts of 



 
 
 
 

 
 

Photo 1. Giant reed along the Rio Grande, Big Bend 
National Park. 

 
 
 

 
 

Photo 2. Lehmann lovegrass clump in southern 
New Mexico. 

 
 
 
the U.S. (Simon et al., 1984). Horehound colonizes disturbed sites 
and reduces native biodiversity (Photo 3). Buffelgrass is native to 
Africa, Asia, and the Middle East and was introduced into the south-
western U.S. for livestock forage (Holt, 1985; Cox et al., 1988; Ibarra 
et al., 1995). Buffelgrass colonizes disturbed sites and reduces 
biodiversity by altering fire frequency and intensity, crowds out 
native grasses and competes for limited resources (Photo 4). 

Personnel of Big Bend National Park provided spatial data (col-
lected by non-probability sampling procedures) on the occurrences 
of the target invasive plants. This dataset included present and 
historical plant locations (areas where eradication and remediation 
efforts were applied) from opportunistic sightings and planned 
roadside surveys from 2001 to 2005. Additional ground surveys 
were conducted in June 2006 throughout the Park to ascertain addi- 
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Photo 3. Horehound inflorescence, Big Bend National Park. 
 
 
 

 
 

Photo 4. Buffelgrass clump along a culvert in Big Bend National 
Park. 

 
 
 
tional locations of target species. A systematic sampling approach 
was used to optimize the chance of detecting additional invasive 
plant populations. Roads, trails, campgrounds, facilities and infra-
structure sites, disturbed sites, arroyos, and springs were systema-
tically surveyed throughout the Park. Additional surveys (randomly 
selected) occurred away from features described above in undistur-
bed areas. Once a targeted species was located, Global Positioning 
System (GPS) locations (UTM Zone 13, GRS 1980 Spheroid and 
NAD 83 Datum) and digital photographs were collected. Spatial 
data provided by Park personnel and from the additional ground 
survey efforts were consolidated for predictive modeling. 

Presence-only datasets and non-probability sampling procedures 
offer a variety of challenges for creating predictive models, since 
most species distribution models rely on the collection of unbiased 
samples (Franklin, 2009; Elith et al., 2010). 

We reduced the bias associated with presence-only datasets by 
eliminating duplicate records (spatial autocorrelation) and by restric-
ting  the  selection  of  our background samples to areas that were 
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Table 1. Dates and seasons of imagery used to model 
potential invasive plant habitat in Big Bend National Park. 

 

Year Season Scene 3140 Scene 3040 

1999 Fall September 30 September 23 

2000 Summer May 27 July 23 

2000 Fall October 02 November 28 

2001 Spring April 28 March 20 

2001 Fall October 21 October 14 

2002 Spring March 30 April 8 

2003 Spring January 28 March 26 
 
 
 

surveyed for invasive plants (Phillips et al., 2009; Elith et al., 2010). 
All duplicate records that were within 30 m of each other were 
removed to ensure that each Landsat 7 ETM+ pixel would only host 
one occurrence record. Model predictions were then projected to 
the areas that were not searched by using the projection facilities in 
Maxent. 
 
 

Environmental datasets 
 

We used Landsat 7 ETM+ spectral data to represent environmental 
variables for this study. The non-classified spectral data were free 
of classification errors (typical in vegetation community or land-
scape maps) and provided a dataset that was free from biases 
associated with interpretations of suitable or unsuitable areas. 
Likewise, Landsat 7 ETM+ provided a computationally efficient 
scale for spatial analyses across the entire park.  

The use of Landsat 7 ETM+ limited the likelihood of detecting 
small populations or individual plants, as the plant’s reflectance 
value would have been masked by more dominant reflectance values 
that occurred in the same pixel. Importantly, Landsat 7 ETM+ did 
not limit the likelihood of detecting landscape features that are 
associated with invasive plant occurrences. As such, the predictive 
habitat models are based on discriminating spectral values asso-
ciated with landscape features at invasive plant locations and 
spectral values at background locations.  

Further, some of the target invasive plants had unique vegetation 
phenology or distinct habitat associations. As such, multiple dates 
and seasons of imagery (Table 1) were used to account for dyna-
mic habitat conditions that result from discrete rainfall events. 
Multiple dates and seasons of imagery also provided a means to 
capture phenological differences among the targeted species and 
the surrounding landscape.  

We acquired Fall 1999, Summer and Fall 2000, Spring and Fall 
2001, Spring 2002, and Spring 2003 Landsat 7 ETM+ data from 
America View (http://www.americaview.org) and the Texas View 
Remote Sensing Consortium (http://www.texasview.org). Data were 
obtained pre-processed to Level 1-G, which includes radiometric 
and geometric correction. Two Landsat scenes were required for 
complete coverage of the Park: WRS3140 and WRS3040. Imagery  
was acquired in UTM Zone 13, WGS 84 projection and was 
reprojected to UTM Zone 13, GRS 1980 Spheroid and NAD 83 
Datum. 

Image mosaic was performed in Erdas Imagine 9.0 using feather 
blending of overlapping regions and clipped to the Park boundary. 
Landsat 7 ETM+ bands 1, 2, 3, 4, 5 and 7 were extracted into Generic 
ASCII raster format for each year/season mosaic for data analyses 
needed by Maxent software. This resulted in 42 potential spectrally 
based environmental variables (seven season/years with six bands 
each) used for analyses. Finally, a Digital Elevation Model (DEM) 
clipped to the Park boundary and extracted into Generic ASCII 
raster format was used to estimate altitude associations resulting in 

 
 
 
 
43 potential environmental variables used for analyses. 
 
 

Variable selection 
 

Maxent has a method for variable selection (regularization parame-
ter). The intent of the regularization parameter is to determine the 
most parsimonious model possible, that is, a model that provides a 
balance between the extremes of having too few parameters (under 
- fitting) and models that have too many parameters (over-fitting) 
(Burnham and Anderson, 1992). Maxent fits a penalized maximum 
likelihood model analogous to Akaike’s Information Criterion (Elith 
et al., 2010). Maxent’s regularization parameter is fairly stable with 
regards to correlated variables, reducing the need to remove 
correlated variables (Elith et al., 2010). 

Maxent also uses a jackknife approach to evaluate which varia-
bles are most important in the model. In addition, Maxent creates 
response curves that evaluate the contribution of a variable in 
relation to the mean of all other variables for the occurrence loca-
tions, and provides a tabular output of variable percent contribution. 

Analyses provided in Maxent were used to guide model variable 
selection (default regularization parameter and model variable con-
tribution). Initially, a model was created that included all 43 environ-
mental variables (global or full model). We noted between 16 and 
37 variables were retained, with several variables contributing <1% 
to the full model. We then created another spatial model that exclu-
ded variables contributing <1% to the full model. The percent con-
tribution of variables in this revised model was inspected. Variables 
with <3% contribution to the revised model were then excluded, and 
another spatial model was created. The intermediate step of exclu-
ding variables with <1% contribution was necessary because some 
variables that were slightly under 3% contribution in the full model 
would return ≥3% after the first variable elimination step. These 
iterative steps greatly reduced the number of unnecessary variables 
retained in the models. We then tested the resulting model for 
variable correlation, since a model with fewer variables (thus higher 
percent contributions) that were correlated may mislead interpreta-
tions. Pearson’s correlation coefficient was calculated using Proc 
Corr in Statistical Analysis Software (SAS 9.1). Correlated variables 
(r ≥ 0.8) were removed from the final model by retaining the variable 
with the highest model contribution, as determined by Maxent 
analyses. The random seed function in Maxent was not used for 
this variable selection process, thus ensuring that the same dataset 
was used for each elimination step.  
 
 

Model performance 

 
Maxent uses threshold-dependent and threshold-independent 
metrics to evaluate model performance. Threshold-dependent 
metrics require a known threshold to classify a response as pre-
sence/absence, or suitable/not suitable. Maxent output yields a 
variety of threshold-dependent values. Users can choose a thres-
hold value based on their objectives (Fieldings and Bell, 1997). For 
example, research or management objectives may require greater 
emphasis placed on the ability to accurately predict species pre-
sence (sensitivity) rather than species absence (specificity). Under 
those conditions, a threshold weighted towards sensitivity would be 
selected. 

Maxent threshold-dependent metrics uses a one-tailed binomial 
test to evaluate if a model performed significantly better than ran-
dom (Phillips et al., 2006). Maxent uses the omission rate (fraction of 
the test localities that fall into pixels not predicted as suitable) and 
the proportion of all the pixels that are predicted as suitable habitat 
to estimate training and testing omission rates. 

Threshold-independent metrics are not based on the selection of 
a specified threshold for classifying the predicted observation into 
binomial outcomes. Instead, model performance is evaluated across 
the  continuum of thresholds from 0 to 1.0, e.g., receiver operating
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Table 2. Number of geo-referenced target invasive plant occurrences (individual plants or populations) and number of training samples used to 
construct predictive habitat models in Big Bend National Park, TX. 

 

Plant name Number of known occurrence Number of training sample Number (percent) of test sample 

Giant Reed  31 26 5 (17%) 

Lehmann lovegrass 253 208 45 (18%) 

Horehound 26 21 5 (20%) 

Buffelgrass 627 552 75 (12%) 
 
 
 

characteristic (ROC) curves. ROC analyses are also independent of 
species prevalence (Pearce and Ferrier, 2000). The area under the 
ROC curve (AUC) provides a summary measure of the model’s 
discrimination ability, that is, its ability to differentiate suitable from 
unsuitable habitats (Phillips et al., 2006). An AUC value of 0.5 
indicates the model preformed no better than a random prediction; 
values between 0.5 and 0.7 indicate low discrimination ability; 
values between 0.7 and 0.9 indicate moderate discrimination ability; 
and values >0.9 indicate high discrimination ability (Pearce and 
Ferrier, 2000; Manel et al., 2001). 

Data used to test model performance were obtained by randomly 
partitioning plant occurrence locations into training data and 
independent test data (Fieldings and Bell, 1997). Replicate models 
(n = 30) per plant species were conducted to assess the average 
behavior of the predictive habitat models (Phillips et al., 2006; Yost 
et al., 2008). Each partition was created through a bootstrap 
procedure where 12 to 20% of the occurrence locations for each 
target species were randomly selected with replacement. The 
random seed function in Maxent ensured a different random subset 
of background locations for each replication. Model performance 
was evaluated using the average testing omission rate, average 
test AUC metrics, and the average regularized training gain (Phillips 
et al., 2006). Gain can be interpreted as representing how much 
better the distribution fits the sample points than the uniform 
distribution. In addition, 95% confidence intervals were estimated 
for the average test AUC and omission rate. 

The final model used to identify suitable environments for the 
target plant species was created by averaging 30 replicate grids in 
Maxent. The amount of suitable habitat for each invasive plant 
species was estimated by applying the average logistic threshold 
that provided an equal tradeoff between test data sensitivity and 

specificity (from Maxent output). 
 
 
RESULTS 
 

Invasive species occurrences 
 

Approximately 400 h were spent systematically searching 
roads, trails, campgrounds, rivers, drainages, developed 
areas, and random locations for invasive plants. Combining 
this survey effort with known occurrences documented by 
Big Bend National Park, and removing duplicate records, 
a total of 937 invasive plant locations were documented 
for the four species of interest (Table 2). 

The number of occurrence points used to generate 
individual species models ranged from 26 to 522 (Table 
2). Small sample sizes (<50 occurrences) occurred with 
giant reed and horehound. As a result, only five samples 
were withheld to evaluate model performance for these 
two species. In contrast, there were >250 occurrences of 
Lehmann  lovegrass  and buffelgrass, which allowed for 
≥45 samples to be used to evaluate model performance. 

Performance of predictive models 
 

All predictive plant models performed better than a ran-
dom prediction (P < 0.001). Average test AUC values 
(0.91 to 0.99) and their associated 95% confidence inter-
vals indicated that plant predictive models had high dis-
criminative ability to differentiate suitable environments 
for invasive plant species from random background loca-
tions (Figure 1a). The average testing omission rate ran-
ged from <1.0 to 18% (Figure 1b). Despite small sample 
sizes for horehound and giant reed, the 95% confidence 
intervals for test omission rates were low, between 0 and 
2% for horehound, and 1v and 7% for giant reed (Figure 
1b). 

In addition to the high test AUC values (0.99), the hore-
hound and giant reed models yielded high model gain 
values (≥3.0) but moderate errors of training omission, 
ranging from 11 to 14% (Table 3). Average test AUC va-
lues for the buffelgrass (0.94 ± 0.01) and Lehmann love-
grass (0.91 ± 0.01) were high, although, these species 
models yielded low (≤1.4) training model gain, indicating 
that the average sample likelihood was ≤ 4.1 times higher 
than that of a random background pixel (Table 3). Test 
omission rate for buffelgrass was 15% (P < 0.001), and 
18% (P < 0.001) for Lehmann lovegrass.  

Test AUC value, regularized training gain, and test 
omission rate were chosen to evaluate predictive model 
performance. Analyses indicated that these three metrics 
were highly correlated. On average, as the test AUC value 
increased, the model gain metric increased (r = 0.95), 
and test omission rate decreased (r = -0.99; Figure 2). 
 
 

Environmental variables retained 
 

Our variable selection process reduced the number of 
environmental variables retained in the models to ≤7 
variables (Table 4). Only 14 of the 43 model input variables 
were retained in the predictive models. The combination 
of variables and their percent contribution to the final 
predictive models were different for each species, although 
Band 4 in the Summer 2000 dataset contributed to all 
species models. All plant species models retained at 
least three years of data, across either two or three seasons, 
which emphasizes the importance of temporal datasets to 
detect plant phenological changes. 
 
 

Predicted suitable environments 
 

Our models reveal that giant reed may have the most limited
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Figure 1. Performance metrics for invasive plant species predictive models in Big Bend National Park. A) 
Average test AUC (vertical bars) and 95% confidence intervals (shaded boxes). Discrimination ability is high 
when values range from 0.90 TO 0.99. B) Average test omission rate (vertical bars) and 95% confidence 
intervals (shaded boxes). 

 
 
 

Table 3. Average performance measurements for invasive species predicted habitat models in Big Bend National Park. Averages were 
calculated from 30 replicate models created per plant species.  
 

 

Common Name 

Threshold independent  Threshold dependent 

Training Test  Equal test sensitivity and specificity 

Gain
a
 AUC

b
 SD  

Logistic 
Threshold 

Training 
omission rate 

Test omission 
rate 

Test omission P-
value 

Giant reed 3.397 0.985 0.011  0.321 0.135 0.040 1.1E-03 

Lehmann lovegrass 1.332 0.910 0.014  0.343 0.141 0.179 5.5E-18 

Horehound 3.008 0.988 0.007  0.320 0.113 0.007 7.7E-05 

Buffelgrass 1.357 0.935 0.009  0.383 0.116 0.147 6.3E-46 
 

a
Regularized model training gain; 

b
AUC = Area under the curve derived from receiver operating characteristic (ROC) 

curves for each plant species. 
 
 
 

potential distribution in the Park, with approximately 3,776 
ha (1%) of the Park surface modeled as potential habitat. 
Giant reed’s modeled distribution was primarily along the 

Rio Grande corridor where large stands are well establis-

hed (Figure 3). The predicted potential distribution of 
horehound was also limited to approximately 16,028 ha 
(5%) of the Park, and was predicted to occur in developed 
areas near the Chisos Mountains and small patches in the
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Figure 2. Relationship between average test AUC value, test omission rate and the regularized 
training gain for predicted habitat models of four invasive plant species in Big Bend National Park. 

 
 
 

 
 
Figure 3. Landsat 7 ETM+ imagery of Big Bend National Park with key predicted 
suitable habitat areas (in call out boxes) that warrant monitoring efforts for giant 
reed, Lehmann lovegrass, horehound and buffelgrass in Big Bend National Park.
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Table 4. Average percent contribution of each environmental variable retained in each invasive plant 
species predictive habitat model. Spaces with a “-” indicate the variable was not retained in the final 
predictive model.  
 

Date Model variable Giant reed Lehmann lovegrass Horehound Buffelgrass 

Fall 1999 

DEM 57.5 - - - 

     

Band 1 - 10.0 38.7 - 

Band 5 9.0 - - - 

      

Summer 2000 
     

Band 4 3.2 27.9 13.5 35.2 

Fall 2000 

     

Band 2 - - - 5.7 

Band 4 - - 29.9 12.2 

Band 5 - 46.5 - - 

Band 6 5.8 - - - 

Spring 2001 

     

Band 4 - - 5.7 4.3 

Band 5 - 15.6 - 14.8 

Band 6 18.5 - - - 

Fall 2001 

     

Band 4 6.1 - - - 

Band 6 - - 12.2 10.5 

Spring 2003 
     

Band 5 - - - 17.2 
 
 
 

the northern part of the park near the Rosillos Mountains 
(Figure 3). 

Buffelgrass presents greater potential to spread 
throughout Big Bend National Park as evidenced in our 
model which described 103,474 ha (32%) of the Park as 
suitable for this species. Lehmann lovegrass exhibited 
similar potential distributions in the Park, with 127,807 ha 
(40%) of suitable environments.  
 
 

DISCUSSION 
 

Performance of predictive models 
 

The evaluation of multiple models is often warranted be-
cause natural landscapes and associated species habitat 
relationships are typically too complex to estimate in a 

single model (McComb et al., 2002). Creating replicate 
models by bootstrapping species occurrence locations 
and background points allowed for a greater level of 
confidence in the modeling results, especially for species 
models created with small sample sizes (e.g., giant reed 
and horehound). 

Although, the sample sizes used to construct and test 
horehound and giant reed models were small, model 
AUC and gain values indicated a high likelihood that a 
random positive occurrence and a random negative loca-
tion would be accurately predicted. The average sample 

likelihood was ≥20 times higher than that of a random 
background pixel. Likewise, the ranges of test omission 
rates for these species were low. Horehound is primarily 
restricted to small isolated patches in the Park, whereas 
giant reed co-occurs with saltcedar along the Rio Grande. 
The co-occurrence of species may have increased the 
variability associated with spectral values at giant reed 
locations and the reduced precision of the model. 

Elith et al. (2006) compared 16 modeling methods over 
226 species from six regions of the world and were 

unable to relate sample size to modeling success. Phillips 
et al. (2004) recommended 50 to 100 samples for optimal 
Maxent models. Peterson et al. (2007) expressed caution 
with models that were evaluated with <5 occurrences, 
and suggest a jackknife validation approach when sam-
ple sizes are <25. Wisz et al. (2008) noted that Maxent 
was less sensitive to sample size considerations as com-
pared to other modeling procedures. Conversely, Her-
nandez et al. (2006) evaluated four modeling methods, 
including Maxent, using different sample sizes of 18 
species representative of different levels of ecological 
specialization. The authors concluded that Maxent was 
the most capable of the four modeling approaches in pro-
ducing models with sample sizes between 5 and 25 
occurrences. Our results were similar to those of Hernan-
dez et al. (2006) and clearly demonstrate the utility of 
invasive species predictive habitat models created with a  



 
 
 
 
small number of sample locations and a maxi-mum 
entropy analytical approach. Approaches that are robust 
to small sample size are critical to early detection needs. 

Although, the buffelgrass and Lehmann lovegrass 
predictive models yielded high discrimination ability, they 
also yielded the highest omission rates (15% to 18%).  
Buffelgrass can be found in mesic environments through-
out Big Bend National Park in large-sized patches that 
are best distinguished from the surrounding landscape 
during the appropriate phenological stage. Lehmann 
lovegrass colonizes disturbed areas and establishes 
easily in roadside areas. Most of the Lehmann lovegrass 
occurrence records were associated with roadside areas 
which support the general observation that the species 
colonizes disturbed areas and establishes easily in 
roadside areas. 

The spatial resolution (30 m) of Landsat 7 ETM+ likely 
contributed to high omission rates for these species, as 
small mesic environments and linear features (small 
roads and drainages) would not have been well repre-
sented on the imagery. From a conservation perspective, 
errors of omission are less acceptable than errors of 
commission (Shrader-Frechette and McCoy, 1993). If the 
predictive model concluded an area was suitable for an 
invasive plant species, and the species was not present 
(commission), then the area would be a good candidate 
to monitor for potential expansion of the species. Of the 
three Maxent metrics chosen to evaluate predictive mo-
del performance (test AUC value, regularized training 
gain, test omission rate), our analyses indicated that 
model performance was adequately addressed using the 
AUC and omission metrics. These two metrics were cor-
related in this study. However, it is possible to achieve 
high AUC values and high omission rates (Peterson et 
al., 2008). Thus, considering the model omission rate in 
addition to the AUC metric may help in detecting a poorly 
performing predictive model. 
 
 

Environmental variables retained 
 
A model that incorporates a large number of environmen-
tal variables is considered to have the highest flexibility in 
fitting the observed data (White, 2001). However, a large 
number of input variables increases the amount of varia-
bility and decreases the precision of the model, effectively 
decreasing the ability to accurately predict suitable habitat. 

Conversely, models with fewer parameters are more 
precise because all the data are being used to estimate 
the parameters; however, these models may have more 
bias associated with them. In other words, as the number 
of variables increases, bias is reduced but precision is 
lost (Franklin et al., 2001). Phillips et al. (2004) noted that 
Maxent models which incorporate a larger number of va-
riables tend to overfit small training sets, but they provide 
a more accurate prediction for large training sets. Like-
wise, VanDerWal et al. (2009) found that as the analytical 
area increased, predictive models retained fewer environ- 
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mental variables. Thus, the size of the analytical area 
also affects precision and bias. 

In this study, the regularization parameter variable used 
in Maxent is considered to be effective in selecting im-
portant variables and disregarding unimportant ones. 
However, when models were created utilizing the default 
regularization parameter, the resulting models retained a 
large number of variables with low percent contributions. 
As such, our study removed variables that yielded <3% 
contribution to the models and removed correlated varia-
bles to obtain a more parsimonious model. Another app-
roach to variable selection would be to increase the regu-
larization parameter value in Maxent (Elith et al., 2010). 

The combination of variables and their percent contri-
bution  to  the  final  predictive  models were different for 
each species, indicating that there was no single best 
combination of remotely sensed data that would ade-
quately describe environmental conditions of occupied 
areas. However, Band 4 wavelength may be important in 
temporal analyses. Landsat 7 ETM+ Band 4 represents 
the near infrared (NIR) spectrum (wavelength 0.75 to 
0.90 µm) and is well suited for vegetation discrimination 
as reflectance values are much higher than in the visible 
bands due to leaf cellular structure. At least two seasons 
of Band 4 were retained for most of the predictive habitat 
models, with the exception of Lehmann lovegrass. 
 
 

Predicted suitable environments 
 

Maxent outputs include a logistic surface with values ran-
ging from 0 to 1, representing the probability of the pixel 
hosting suitable environmental conditions for the species. 
This allows resource managers to prioritize their moni-
toring, control or conservation efforts, focusing on areas 
with high probabilities of suitable environments, followed 
by lower probability values. Comparisons of logistic values 
between species may be inappropriate because probability 
of presence is only defined relative to a given level of 
sampling effort (Elith et al., 2010), which may not be 
equal for different species. 

Additionally, threshold values can be chosen based on 
specific management objectives, and allow for differen-
tiating between suitable and unsuitable environments. 
Habitat suitability thresholds are often selected subjec-
tively (Hirzel et al., 2006), and there has been little research 
to suggest appropriate thresholds for presence-only 
modeling endeavors (Hirzel et al., 2006; Phillips et al., 
2006). In general, appropriate thresholds yield low omission 
rates (Peterson et al., 2007; Phillips, 2008). VanDerWal 
et al. (2009) used a “balance” threshold, while Yost et al. 
(2008) reported results from three different thresholds 
when evaluating a predictive model for sage grouse 
(Centrocercus urophasianus). We chose a threshold that 
provided an equal tradeoff between sensitivity and speci-
ficity, which would balance commission and omission 
errors. 

Our modeled distributions of suitable environments were 
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consistent with the published literature. For exam-ple, the 
model for giant reed revealed that potential suitable envi-
ronments were primarily along the Rio Grande corridor 
where large stands are well established and is consistent 
with its preference for riparian and wetland habitat types, 
floodplains, plains and arroyos (Dick-Peddie, 1993; Tracy 
and DeLoach, 1998). 

Horehound occurs in disturbed sites along roadsides, 
stockyards, fields, pastures, near dwellings and dry river-
banks in scattered patches (Sievers, 1930) which are 
consistent with our modeled results. Buffelgrass is acti-
vely spreading throughout Big Bend National Park and is 
found along roadside runoff areas, developed areas and 
previously disturbed sites. It is common and dense in Rio 
Grande Village, Boquillas Canyon and paved roads, and 
has been found at over 1,525 m (Big Bend National Park, 
1998), although this is considered to be outside its nor-
mal elevation range. Further, Arriaga et al. (2004) noted 
that buffelgrass in northern Mexico have been known to 
invade desert scrub and mesquite woodlands. 

Lehmann lovegrass is well established in disturbed 
roadside run off areas and developed areas (Big Bend 
National Park, 1998). This plant has not been found in 
lower elevation areas along the Rio Grande. It does not 
appear that this species is spreading into undisturbed 
communities of Big Bend; however, areas adjacent to 
established plants are susceptible if moisture regimes 
change or disturbances occur. 
 
 

Conservation implications 
 

Belovsky et al. (2004) noted that modeling activities that 
are removed from the underlying ecology of the organism 
may not be effective. While remotely sensed data may 
not fully represent all ecological parameters, remotely 
sensed spectral values may provide adequate surrogates 
to the location of existing populations and landscape 
features that promote or enhance invasions. We demon-
strated that Landsat 7 ETM+ spectral values, in concert 
with accurate field data, can successfully be used to 
create reliable spatial models. Multi-temporal datasets 
captured a series of unique phenological characteristics 
and were able to differentiate invasive plant populations 
or their habitats from the surrounding landscape. Further, 
the use of Landsat 7 ETM+ removed any bias associated 
with human perception of suitable habitat, and provided 
an empirical estimate of areas where the target species 
may become established. 

No doubt, detecting small or sparse plant populations is 
still hampered by spatial and spectral resolution, and by 
our ability to analyze large datasets. The optimal remote 
sensing data, or combination of data, would have charac-
teristics of hyperspectral sensors and high spatial resolu-
tion sensors. While hyperspectral data facilitate detection 
of individual plants, hyperspectral data have approxi-
mately 75 times higher data volume than an equivalent 
area using Landsat 7 ETM+ (Thenkabail et al., 2004).  

 
 
 
 

Likewise, multispectral, high spatial resolution sensors 
(for example, IKONOS or QuickBird) also show promise 
in detecting invasive plants with spatial resolutions <5 m. 
These sensors, however, are also encumbered by large 
data volumes when used on large areas. The new chal-
lenge will be to develop methods that integrate the required 
spectral resolution with the ideal spatial resolution, yet 
are efficient with the high-dimensional datasets for large 
area analyses. 

We demonstrated that remotely sensed analyses can 
aid in the development of spatially explicit predictive 
models over large areas and can provide land managers 
with early detection tools, a means to evaluate current 
and future control needs, and a means to prioritize con-
servation efforts. Early detection methods increase our 
ability to eradicate invasive plants and ultimately reduce 
control costs (Rejmanek and Pitcairn, 2002). While pre-
dictive modeling is not a substitute for detailed collection 
of field data, Hernandez et al. (2006) demonstrated that 
reasonable models are appropriate for rare species. The 
results of this study are similar with their findings, and 
should encourage land managers to add predictive 
modeling to their toolbox. 
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