Full Length Research Paper

Avian diversity and its association with vegetation structure in different elevational zones of Nainital district (Western Himalayan) of Uttarakhand

Kamal Kant Joshi¹*, Dinesh Bhatt² and Aashish Thapliyal³

 ¹Department of Environmental Science, Graphic Era Hill University, Dehradun, Uttarakhand, India.
²Avian Diversity and Bioacoustics Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri University, Haridwar 249 404, Uttarakhand, India.
³Uttarakhand State Biotechnology Department, Government of Uttarakhand, Dehradun, Uttarakhand, India.

Accepted 24 May, 2012

Avian diversity was studied in the Nainital district of Uttarakhand, India at different elevations. A total of 174 bird species belonging to 38 families were identified along with the elevational zone of forest habitats. We sampled in different elevational forest habitats to understand the vegetation structure and its effect on avian community. Field studies were conducted during January 2006 to January 2008. Results illustrate that bird community value in terms of species richness (7.74) and species diversity (3.68) was higher at mid elevation (1450 to 1700 m asl). Avian species diversity and richness were positively correlated (r = 0.21, 0.78, 0.22, 0.95, 47, 92, 0.95 and 0.83) with the plant species diversity (BSD versus PSD, r = 0.95 and BSR versus PSD, r = 0.83) and foliage height diversity (BSR versus FHD, r = 0.78 and BSR versus FHD, r = 0.92). It is suggested that vegetation structure of the habitat seems to be one of the key features which influence the avian species at local level.

Key words: Avian diversity, vegetation association, elevation zone, Nainital district, bird species diversity.

INTRODUCTION

Biodiversity is not evenly distributed across the earth. It may be influenced by biogeography (Karr, 1976). Some landscape exhibit high richness in biological diversity whereas others show an impoverished flora and fauna. Mountain ecosystems are usually recognized as biodiversity hotspots harboring rich biota often with high number of endemic species. In these mountains decrease in species richness with increasing elevation is a widely recognized pattern (Begon et al., 1990). While, others suggest a unimodal relationship with a peak in species richness at low to mid elevations (Rahbek, 1995; Stotz et al., 1996; Stotz, 1998; Brown, 2001; Lomolino, 2001; Kattan and Franco, 2004: Gaston, 2004).

Generally, organisms do not respond directly to the elevational gradient as such, but to variables correlated with the gradient such as climate or productivity (Terborgh, 1977; Brown, 2001). In addition factors operating at multiple spatial and temporal scales may also influence species diversity. For example local climate, ecotones, competition, habitat structure and heterogeneity play a prominent role in determining species diversity at local level (Terborgh, 1977, 1985; Ricklefs and Schluter, 1993; Huston, 1999; Lomolino, 2001).

As elevation increases, the availability of resources for birds diminishes reflecting differences in forest stand structure, site productivity, vegetation composition, distribution pattern, secondary biotic interactions and available land area (Able and Noon, 1976; McCoy, 1990; Rahbek, 1995; Sabo, 1980; Hofer et al., 1999; Waterhouse et al., 2002). In fact avian community composition and diversity along elevational gradient has not received enough attention in India.

A few studies have, however, been conducted to look at avian diversity mainly in South Indian forests (Price, 1979; Joshua and Johnsing, 1986; Pramod et al., 1997;

^{*}Corresponding author. E-mail: kamal_josi@yahoo.com.

Kunte et al., 1999). Though many researchers tried to explain factors responsible for the species distribution along the elevations (Lee, 2004; Joshi, 2009; Bhatt and Joshi, 2011), however, almost nothing is known about the influence of factors, which vary with elevation (for example, forest structure) on bird species distribution. Some studies had established a close relationship between bird species diversity and vegetation (Terborgh, 1971, 1985; Able, 1976; Hawkins, 1999) and predict the species distribution along the elevation depend on vegetation.

In the present study, we made an attempt to compare the avian distribution and vegetation composition with the elevation as well as the study tried to understand the factors influencing distribution of avian species along the elevations.

MATERIALS AND METHODS

We selected three elevational sections of forest habitats across three study sites of Nainital district (Western Himalaya; 29° N 79° E): (A) Nainital (high elevation 1900 to 2450 m asl, 29° 24' 04"N, 79° 26' 38"E), (B) Bhowali (mid elevation 1450 to 1700 m asl, 29° 22' 38"N, 79° 31' 59"E) and (C) Haldwani (low elevation 350 to 500 m asl, 29° 13' 00"N, 79° 31' 00"E) along different elevational gradients (Figures 1a, b, c and 2 and Table 1).

Forest habitat consisted of oaks *Quercus leucotrichophora* and deodar *Cedrus deodara* (Nainital; high elevation), oaks *Q. leucotrichophora* and pines *Pinus roxburghii* (Bhowali; mid elevation) and sal *Shorea robust* and khair *Acacia catechu* (Haldwani; low elevation) (Saxena and Singh, 1982; Singh and Singh, 1992).

Field studies were conducted over two years from January 2006 to 2008. Field binoculars (7x50) were used to observe the birds and GPS (e-trex Vista) used to mark the location. Here, we adopted a transect method (Verner, 1985) whereas line transects allow the observer to cover a wider range while simultaneously recording (Buckland et al., 2001). We recorded all birds seen in a 50 m wide strip on each side of the transect, while walking. Transects were located randomly and transects were sufficiently separated (about 400 m) to avoid double counting of birds.

At each study area, three 1 km transects were used and each transect was visited monthly. The total number of transects was 18 (each transect was 5 km): 4 transects (forest habitat) \times 3 study areas (Low mid and High). We visited each transect 12 times in the first year and were revisited 12 times in the following year. The time of sampling was between 07:30 to 10:30 during winter and 05:00 to 08:00 during summer. Sampling was avoided on rainy days. Identification of birds in the field was based on Grimmett et al. (1998).

To understand the bird-vegetation associations in different elevational zones, I did vegetation sampling in the forest habitat. The vegetation samples were collected along the line transects (5 km) of the study areas. Quadrates of 10×10 m size were laid to sample trees; 5×5 m was used for shrubs and 1×1 m for herb species into the tree sample site (Mumby et al., 1997; Hudon, 1997; Fernandez-Alaez et al., 2002).

Twenty quadrates were laid in each transect line with 50 m intervals and the mean value was used for analysis (Daniels, 1991). Canopy cover was measured walking on the 1000 m strip and scoring the foliage overhead as 0 when there is none, 1 when adjacent crowns barely meet; 2 when they overlap; 3 when sky is no longer visible. This was done at 50 m intervals and obtains a total of 20 points scores. Foliage height was measured directly in

meters. Twenty readings were taken in each habitat and the average was used for analysis (Greig-Smith, 1983).

We pooled the data across years for the assessment of bird species richness (BSR) and bird species diversity (BSD). Maximum detection was taken to the assessment of number of species. The mean value of individuals of each species was used to calculate the number of individuals and the average of monthly mean abundance of both years was accounted for abundance of the species. This value was then used to measure BSD and BSR. The mean value for individuals was also used to statistically compare abundance of species between habitats.

BSD and BSR were measured using Shannon's index (H`) and Margalef's index, respectively (MacArthur and MacArthur, 1961, Magurran, 1988). To know the similarity among species composition at different elevations, Sorensen's quantitative index (Magurran, 1988) was used. Beta diversity ($\beta = S/\dot{c}$) value was obtained between micro forest habitats of each study area (low, mid and high elevation) to know extent of variation among the study area. Pearson's correlations coefficient (*r*) and ANOVA test (Zar,1984)were used for analysis of bird – vegetation relationship and species distribution among the sites.

RESULTS

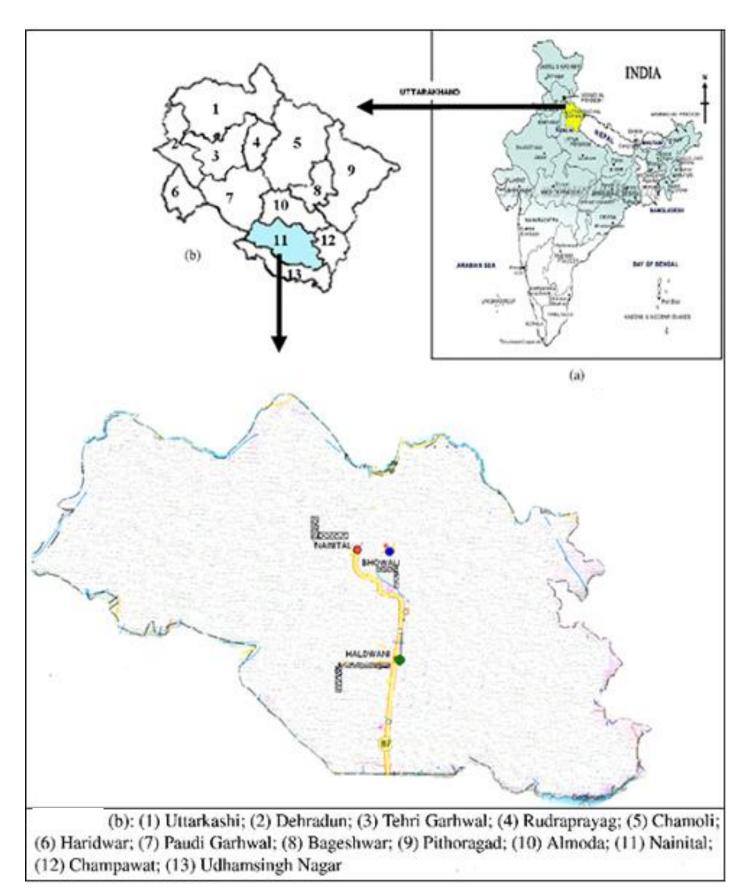
A diverse population of birds has been identified in the Nainital district at different elevations either as breeding populations, wintering, and summer visitors or during migration. A total of 174 bird species belonging to 38 families were reported in the forest habitats of Nainital region (See Appendix). It was noted that Muscicapidae (27.01%) followed by Picidae (9.19%), Corvidae (5.17%) and Accipitridae (4.59%) were the most dominant families among the study sites.

Muscicapidae emerged as the most dominant family with 47 species. Out of 174 species, 18 species were found exclusively in site A (Nainital, 1900 to 2450 m asl), 38 species were found exclusive to site B (Bhowali, 1450 to 1700 m asl) and 25 species were found exclusively in site C (Haldwani, 350 to 500 m asl). The most dominant exclusive species in among the forest habitat were large billed crow (*Corvus macrorhynchos*), Himalayan bulbul (*Pycnonotus leucogenys*) and Jungle babbler (*Turdoides striatus*), respectively.

The site B (Bhowali) at 1450 to 1700 m asl (mid elevation) had more complex bird community structure in terms of higher species richness and species diversity (Table 2). Analysis shows that a significantly higher BSR (Anova single factor: F2 = 7.07, P < 0.002) and BSD (F2 = 3.28, P < 0.01) were observed at mid elevations (Bhowali) than low (Haldwani) and high elevations (Nainital).

A comparison of bird communities among the elevational zone of forest habitats revealed that high beta diversity values in elevation zone (0.58 high, 0.38 mid and 0.48 low elevation zone) showing the greater variation in species composition among the elevational zone (Table 3). However, bird communities were compared among forest habitats high beta diversity values were observed between high and low elevation forest habitats.

Figure 1. A: Showing site A, Nainital forest (elevation 1900 to 2450 m asl). B: Showing site B, Bhowali forest (elevation 1450 to 1700 m asl). A: Showing site C, Haldwani (low elevation 350 to 500 m asl.


The vegetation structure that is, mean canopy cover, trees density, foliage height density and plant species diversity [Canopy Cover (CC), Tree density (TD), Foliage height density (FHD) and Plant species diversity (PSD)] in different elevation zones, were high at site B forest (Table 2). The correlation between avian diversity parameters and vegetation structure revealed that BSR and BSD are significantly positively correlated with the vegetation foliage height density (FHD, $r^2 = 0.92$; $r^2 = 0.60$), plant species diversity (PSD, $r^2 = 0.04$) and canopy cover (CC, $r^2 = 0.22$; $r^2 = 0.04$) (Table 4).

Among all the parameters of vegetation the plant species diversity (PSD) and foliage height density (FSD)

was significantly high (ANOVA single factor: PSD, F2 = 2.24, P < 0.01; FHD, F2 = 2.42, P < 0.01) at mid elevational zone. However, the abundance, bird species richness and bird species diversity was highest (106) at the site B (Pine mixed forest) followed by the site C (95, Sal forest) and site A (88, Deodar) forest habitat.

DISCUSSION

ANOVA test separately carried out among the bird communities of the forest habitats and plant species diversity of the study sites revealed that mid elevation zone forest had higher birds species diversity (BSD), bird

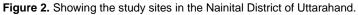


Table 1. Characteristic of the different elevation zone forest in Nainital district.

Parameter	Pine forest	Mixed pine forest	Oak mixed forest
Elevation	950-1350 m asl	1350-1800 m asl	1800-2250 m asl
Dominant tree species	Cheer Pine	Cheer Pine + Oak	Deodar
Landscape	Hills	Hills	Hills
Fire	Common	Rare	Rare
Human disturbance	Common	Common	Moderate

Table 2. Comparison of bird species diversity parameter in different elevation forest types.

Parameter	Site A (Nainital 1900 to 2450 m asl)	Site B (Bhowali 1450 to 1700 m asl)	Site C (Haldwani 350 to 500 m asl)
Shannon Species diversity (H')	3.38	3.68	3.50
Exclusive species	18	25	38
Species richness (<i>R</i>)	6.38	7.74	7.16
Total species abundance (N ₀)	88	106	95
Species Individuals (N)	6029	9443	8726
Plant species diversity (PHD)*	2.11	2.30	2.23
Foliage height density (FHD)*	2.26	2.41	2.19
Canopy Cover (CC %)	68.53	70.26	42.20
Tree density (TD)	109	116	96

*Significant P<0.01.

Table 3. Showing the beta diversity values among the forest habitat of study sites.

Forest site	A (Nainital) forest	B (Bhowali) forest	C (Haldwani) forest
А	0	0.38	0.58
В		0	0.48
С			0

Table 4. Correlation values between bird species richness (BSR) / bird species diversity (BSD) with vegetation structure of forest habitat.

Parameter	Correlation value, r	P-value	R ²
BSR Versus CC	0.47	0.6	0.22
BSR Versus FHD	0.92	0.2	0.84
BSR Versus TD	0.95	0.1	0.90
BSR Versus PSD	0.83	0.3	0.67
BSD Versus CC	0.21	0.8	0.04
BSD Versus FHD	0.78	0.4	0.60
BSD Versus TD	0.22	0.8	0.04
BSD Versus PSD	0.95	0.2	0.90

species richness (BSR) and plant species diversity (PSD) than other forests, which is understandable that variety of plant species or plant species diversity provide food, good shelter and roosting sites to the bird communities.

Some studies indicates positive correlation between plant species diversity (PSD), foliage high density (FHD)

and bird species diversity (BSD) and have shows the variety of plant species supports more bird species in tropical area as compare to temperate habitats (Orians, 1969; Lee and Rotenberry, 2005). On the other hand, tree density (TD) and canopy cover (CC) exhibited positive correlation with BSD and BSR but could not

seem significant role to determining BSD and BSR in the study areas.

Although, some studies (James, 1971) suggested that the TD and CC were the most important variables that affected BSD. Willson (1974) has also shown a linear correlation between BSD and TD. Daniels (1989) found that bird diversity was negatively correlated with canopy density but positively correlated with the coefficient of variation of canopy density suggesting that a uniform canopy has lesser number of bird species. Aleixo (1999) reported that the loss of large canopy trees had the negative impacts on the abundance of bird species.

The present study found the variation in forest habitat, FHD could account for some 84% of the variation in BSD. This data allow us to assume that FHD has also important factor to increase BSD in forest. Mac-Arthur (1961) found that BSD was correlated with FHD and predicted that tropical regions would contain more bird species if there were more FHD and if bird recognized the same vegetation layers as in temperate regions. Cody (1985) found that variation in FHD could account for some 80% of the variation in species diversity of birds. In the forest structure element such as FHD has advantage for managing bird habitat (Poulsen, 2002). However, some studies have disproved this relationship (Ralph, 1985).

Able and Noon (1976), Sabo (1980), McCoy (1990), Rahbek (1995, 1997), Hofer et al. (1999), Waterhouse et al. (2002), Lee et al. (2004) and Romdal and Grytnen (2007) have determined that elevation increases the availability of resources diminish, reflecting differences in forest stand structure, site productivity, vegetation species composition and distribution pattern. According to them secondary biotic interactions and available land area is influencing factor of the species distribution along the elevation.

In the present study found that avian species were significantly higher at mid elevation than the low and high elevations. The fact that a number of avian species do overlap at mid elevation forest this may be connected to the availability of variety and number of plant species. The results of this study also showed that BSD and BSR were highly correlated with the PSD and FHD in forest habitats. At the mid elevation forest of the study site, the study found the maximum PSD and FHD. Vegetation structure is thought to be one of the key features influencing avian species richness / diversity at the local level (Roth, 1976; Finch, 1989, 1991; Wiens, 1989).

REFERENCES

- Able KP, Noon BR (1976). Avian community structure along elevation gradients in the northeastern United States. Oecologia, 2: 275-294.
- Aleixo A (1999). Effects of selective logging on a bird community in the Brazilian Atlantic forest. The Condor, 101: 537-548.
- Begon M, Harper JL, Townsend CR (1990). Ecology: individuals, populations, communities. London: Blackwell Scientific Publications, pp. 203-325.

- Bhatt D, Joshi K (2011). Distribution and abundance of avifauna in relation to elevation and habitat types in Nainital district (Western Himalaya) of Uttarakhand state. India. Curr. Zool., 57(3): 318-329.
- Brown JH (2001). Mammals on mountainsides: elevational patterns of diversity, Glob. Ecol. Biogeogr., 10: 101-109.
- Cody ML (1985). Habitat selection in birds. Academic Press, New York.
- Daniels RJR (1989). A conservation strategy for the birds of the Uttara Kannada district. Phd Thesis. Bangalore: Indian institute of science.
- Daniels RJR (1991). Practical methods for studying bird vegetation associations in the forests of the Western Ghats, pp. 21-28.
- Fernandez-Alaez M, Fernandez-Alaez C, Rodriguez S (2002). Seasonal changes in biomass of charophytes in shallow lakes in the northwest of Spain, Aquat. Bot., 72: 335–348.
- Finch DM (1989). Habitat use and habitat overlap of riparian birds in three elevational zones, Ecol., 70: 866-880.
- Finch DM (1991). Positive associations among riparian bird species correspond to elevational changes in plant communities. Canadian. J. Zool., 69: 951-963.
- Greig-Smith P (1983). Quantitative Plant Ecology (third edition). Oxford: Black well Scientific Publications.
- Gaston KJ, Spicer JI (2004). Biodiversity: an introduction. 2nd Edition. Blackwell Publication.
- Grimmett R, Inskipp C, Inskipp T (1998). Birds of the Indian subcontinent. New Delhi: Oxford University Press.
- Hawkins AFA (1999). Altitudinal and latitudinal distribution of east Malagasy forest bird communities. J. Biogeogr., 26: 447-458.
- Hofer UL, Bersier D, Felix Borcard D (1999). Spatial organization of herptofauna on an elevational gradient, Ecol., 80: 976-988.
- Hudon C (1997). Impact of water level fluctuations on St. Lawrence River aquatic vegetation, Can. J. Fish. Aquat. Sci., 54: 2853–2865.
- Huston MA (1999). Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos, 86: 393-401.
- James FC (1971). Ordinations of habitat relationship among breeding birds, Wilson bull., 83: 215-236.
- Joshua J, Johnsingh AJT (1986). Observation on birds on Mundathurai Platen, Tamilnadu, J. Bombay Nat. Hist. Soc., 75: 1028-1035.
- Joshi KK, Bhatt D (2009). Avian species distribution in Pine forest and urban habitat of Almora, Uttarakhand, India BERKUT, 18 (1):16-21. ISSN, 1727-0200.
- Karr JR (1976). Seasonality resource availability and community diversity in tropical bird communities, Am. Nat., 105: 423-435.
- Kattan GH, Franco P (2004). Bird diversity along elevation gradients in the Andes of Colombia, J. Biogeogr., 13: 451–458.
- Kunte K, Jogleker A, Utkarsh G, Pramod P (1999). Patterns of butterfly, bird and tree diversity in the Western Ghats, Curr. Sci. 77(4): 577-586.
- Lee PF, Ding TS, Hus FH, Geng S (2004). Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization, J. Biogeogr., 31: 307-314.
- Lee PY, Rotenberry JT (2005). Relationships between bird species and tree species assemblages in forested habitats of eastern North America, J. Biogeogr., 32: 1139-1150.
- Lomolino MV (2001). Elevation gradients of species density historical and prospective views, Global Ecol. Biogeogr., 10: 3-13.
- MacArthur RH, MacArthur JW (1961). On bird species diversity, Ecol., 42: 594-598.
- Magurran AE (1988). Measuring Biological Diversity. Australia: Blackwell publishing.
- McCoy ED (1990). The distribution of insects along elevation gradients. Oikos, 58: 313-322.
- Mumby PJ, Edwards AJ, Green EP, Anderson CW, Ellis AC, Clark CD (1997). A visual assessment technique for estimating seagrass standing crop. Aquat. Conserv. Marine Freshw. Ecosystem. 7: 239– 251.
- Orians GH (1969). The number of bird species in some tropical forests, Ecol., 50: 783-801.
- Poulsen BO (2002). Avian richness and abundance in temperate Danish forests: tree variables important to birds and their conservation, Biol. Cons., 11: 1551-1566.
- Pramod P, Joshi NV, Ghate U, Gadgil M (1997). On the hospitability of Western Ghats habitats for bird communities, Curr. Sci., 73: 122-127.

- Price TD (1979). The seasonality and occurrence of birds in the Eastern Ghats of Andhra Pradesh, J. Bombay Nat. Hist. Soc., 76: 379-422.
- Rahbek C (1995). The elevational gradient of species richness: auniform pattern, Ecography, 18: 200-205.
- Rahbek C (1997). The relationship among area, elevation and regional species richness in Neotropical birds. Am. Nat., 149: 875-902.
- Ralph CJ (1985). Habitat association patterns of forest and steppe birds of Northern Patagonia, Argentina, The Condor., 87: 471-483.
- Ricklefs RE, Schluter D (1993). Species diversity: regional and historical influences. In: Ricklefs RE, Schluter D ed. *Species diversity* in ecological communities: historical and geographical perspective. Cambridge: University of Chicago, pp. 350-363.
- Romdal TS, Grytnen JA (2007). An indirect area effect on elevational species richness patterns. *Ecography*, 30: 440-448.
- Roth R (1976). Spatial heterogeneity and bird species diversity. Ecology. 57: 773-782.
- Sabo SR (1980). Niche and habitat relations in sub alpine bird communities of the White Mountains of New Hampshire. Ecol. Monog, 50: 241-259.
- Saxena ÅK, Singh JS (1982). A physiological analysis of woody species in forest communities of a part of Kumaon Himalaya.Vegetation, 50: 3–22.
- Singh JS, Singh SP (1992). Structure, Functioning and Impact of Man, In: Forest of Himalayas, Nainital, Gyanodaya Prakashan.
- Stotz DF (1998). Endemism and species turnover with elevation in montane avifauna in neotropics: implications for conservation. In: Mace GM, Balmford A, Ginsberg JR ed. Conservation in a changing world. Cambridge: University, pp. 161-180.
- Stotz DF, Fitzpatrick JW, Parker TA and Moskovits DK (1996).

Neotropical birds: ecology and conservation. Chicago. University.

- Terborgh J (1971). Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecol., 52: 23-40.
- Terborgh J (1977). Bird species diversity on an Andean elevational gradient.. Ecol., 58: 1007-1019.
- Terborgh J (1985). The role of ecotones in the distribution of Andean birds. Ecol., 66: 1237- 1246.
- Verner J (1985). Assessment of counting technique. Curr. Ornithol., 2: 247-463.
- Waterhouse FL, Mather MH and Seip D (2002). Distribution and abundance of birds relative to elevation and biogeoclimatic zones in coastal old – growth forests in southern British Columbia. B.C. journal of Ecosystem and Management. 2(2): 1-13.
- Wiens A (1989). The ecology of bird communities volume I. Foundation and patterns. UK: Cambridge University press.
- Willson MF (1974). Avian community organization and habitat structure Ecol., 55: 1017-1029.
- Zar JH (1984). Biostatistical Analysis. Prentice- Hall, New Jersey Englewood cliffs.

Distribution Alt. range Feeding Conservation Conservation Scientific name S/N Family Common name guild status (IUCN) status (IWPA) (m asl) status Black - shouldered kite Elanus caeruleus R Schedule IV B - CSC R Black kite Schedule IV A - CMilvus migrans sc -R Schedule IV С Booted hawk eagle* Hieraaetus pennatus atc -Common buzzard Buteo buteo atc Wv Schedule IV А -Accipitridae 1 Egyptian vulture R Schedule IV С Neophron percnopterus tc -A – B Gyps himalayensis Schedule IV Himalayan griffon tc am -Schedule IV В Besra sparrow hawk* Accipiter virgatus sc r -White - rumped vulture Gyps bengalensis CR Schedule I в tc r В Eurasian skylark Alauda arvensis Schedule IV gse wv -2 Alaudidae Oriental skylark Alauda gulgula Schedule IV В gse wv -Ceryle rudis Pied kingfisher* Schedule IV А wc r -3 Alcedinidae White - throated kingfisher Halcyon smyrnensis wc r Schedule IV A-B-C Apodidae House swift Apus affinis ai Schedule IV A-B-C 4 r -Bubulcus ibis Schedule IV С Cattle egret gli r -5 Ardeidae Intermediate egret* Mesophoyx intermedia Schedule IV С gli r -С 6 **Bucerotidae** Grey horn bill Ocyceros birostris fse Schedule IV r B-C Bar - winged flycatcher-shrike Hemipus picatus ai r/am Schedule IV -Schedule IV С Common wood shrike Tephrodornis pondicerianus usi r -7 Campephagidae Large cuckoo shrike Coracina macei Schedule IV A - C to r/am -Long - tailed minivet Pericrocotus ethologus si wv Schedule IV A-B-C Small minivet Schedule IV A - C Pericrocotus cinnamomeus ai r -Blue - throated barbet Megalaima asiatica Schedule IV B - C fse r -Brown - headed barbet* Megalaima zeylanica fgi Schedule IV С r С Megalaima haemacephala Schedule IV 8 Capitonidae Coppersmith barbet* fgis r -Megalaima virens A - B Great hill barbet r/am Schedule IV fgis -Large green barbet* Megalaima lineata fgsi Schedule IV С r -Bar - tailed treecreeper Certhia himalayana Schedule IV А bgi wv -Certhiidae 9 Certhia familiaris A - B Eurasian treecreeper bgi r/am Schedule IV -

Appendix. List of the avian species recorded during the study along the elevation (2006 to 2008).

Appendix. Cont

0	Charadriidae	Red - wattled lapwing	Vanellus indicus	gli	r/am	-	Schedule IV	B - C
		Blue rock pigeon	Columba livia	gse	r	-	Schedule IV	A-B-C
		Emerald dove*	Chalcophaps indica	gse	r	-	Schedule IV	В
1	Columbidae	Oriental turtle dove	Streptopelia orientalis	gse	r/wv	-	Schedule IV	A-B-C
		Eurasian collared dove	Streptopelia decaocto	gse	r/am	-	Schedule IV	A-B-C
		Spotted dove	Streptopelia Chinensis	gse	r/am	-	Schedule IV	A-B-C
2	Coraciidae	Indian roller	Coracias benghalensis	ai	r	-	Schedule IV	С
		Black - headed jay	Garrulus lanceolatus	ato	r/am	-	Schedule IV	A-B
		Common crow	Corvus splendens	ato	r/am	-	Schedule IV	A-B-0
		Common raven	Corvus corax	ato	r/am	-	Schedule IV	A
		Eurasian jay	Garrulus glandarius	fgis	r/am	-	Schedule IV	A-B
3	Corvidae	Grey tree pie	Dendrocitta formosae	ato	r/am	-	Schedule IV	A-B
		Large - billed crow	Corvus macrorhynchos	ato	r/am	-	Schedule IV	A-B-0
		Red - billed blue magpie	Urocissa erythrorhyncha	ato	r/am	-	Schedule IV	A-B
		Rufous treepie	Dendrocitta vagabunda	ato	r	-	Schedule IV	B-C
		Yellow billed blue magpie	Urocissa flavirostris	ato	r/am	-	Schedule IV	А
		Asian koel	Eudynamys scolopacea	ato	r	-	Schedule IV	A-B-0
		Eurasian cuckoo	Cuculus canorus	ato	SV	-	Schedule IV	B-C
4	Cuculidae	Greater coucal	Centropus sinensis	to	r	-	Schedule IV	B-C
+	Cuculidae	Indian cuckoo	Cuculus micropterus	ato	r	-	Schedule IV	A-B-0
		Lesser coucal	Centropus bengalensis	to	r	-	Schedule IV	A-B-0
		Pied crested cuckoo	Clamator jacobinus	ato	SV	-	Schedule IV	С
5	Dicaeidae	Fire - breasted flower pecker	Dicaeum ignipectus	bgi	am	-	Schedule IV	A-B
5	Dicaeiuae	Thick - billed flowerpecker	Dicaeum agile	bgi	am	-	Schedule IV	A-B
6	Dicruridae	Black drongo	Dicrurus macrocercus	ai	r	-	Schedule IV	A-B-0
0		Spangled drongo	Dicrurus hottentottus	ai	r	-	Schedule IV	B-C
7	Emberizidae	Crested bunting *	Melophus lathami	ai	sv	-	Schedule IV	В
В	Estrildidae	Scaly - breasted munia	Lonchura punctulata	gse	r/am	-	Schedule IV	B-C
9	Hirundinidae	Common swallow	Hirundo rustica	ai	sv	-	Schedule IV	A-B-C
3	imunumuae	Wire - tailed swallow *	Hirundo smithii	ai	r	-	Schedule IV	С

Appendix. cont

20	Irenidae	Common iora *	Aegithina tiphia	usi	r	-	Schedule IV	С
20	ITELIIUAE	Orange - bellied leafbird *	Chloropsis hardwickii	fgi	r/am	-	Schedule IV	В
21	1 Laniidae	Bay - backed shrike	Lanius vittatus	ai	r/am	-	Schedule IV	B-C
1	Lannuae	Grey - backed shrike	Lanius tephronotus	ai	SV	-	Schedule IV	A-B-C
22	Meropidae	Green bee eater	Merops orientalis	ai	r/am	-	Schedule IV	С
		Grey wagtail	Motacilla cinerea	gli	WV	-	Schedule IV	A-B-C
		Paddyfield pipit	Anthus rufulus	gse	r	-	Schedule IV	В
3	Motacillidae	Tree pipit	Anthus trivialis	gse	wv	-	Schedule IV	В
		Upland pipit	Anthus sylvanus	gse	r/wa	-	Schedule IV	B-C
		White wagtail	Motacilla alba	gli	WV	-	Schedule IV	A-B-C
		Aberrant bush warbler	Cettia flavolivacea	si	r	-	Schedule IV	С
		Asian Paradise fly catcher	Terpsiphone paradisi	ai	sv	-	Schedule IV	A-B-C
		Black - backed forktail	Enicurus immaculatus	fgi	r	-	Schedule IV	В
		Blue - capped rock thrush	Monticola cinclorhynchus	si	SV	-	Schedule IV	В
		Blue - throated flycatcher*	Cyornis rubeculoides	si	sv	-	Schedule IV	А
		Blue whistling thrush	Myophonus caeruleus	gsi	r/am	-	Schedule IV	A-B-C
		Brown rock - chat	Cercomela fusca	gsi	r	-	Schedule IV	С
		Buff - barred warbler	Phylloscopus pulcher	usi	wv	-	Schedule IV	A-B
		Common babbler	Turdoides caudatus	fgi	r	-	Schedule IV	С
		Common stone chat	Saxicola torquata	ai	r/am	-	Schedule IV	B-C
		Common tailorbird	Orthotomus sutorius	si	r	-	Schedule IV	С
		Striated prinia	Prinia criniger	ai	r	-	Schedule IV	С
24	Muscicapidae	Greenish warbler	Phylloscopus trochiloides	usi	wv	-	Schedule IV	A-B-C
		Golden – spectacled warbler	Seicercus burkii	usi	r/am	-	Schedule IV	А
		Grey - headed canary flycatcher	Culicicapa ceylonensis	usi	r/am	-	Schedule IV	A-B-C
		Grey - hooded warbler	Seicercus xanthoschistos	usi	r/am	-	Schedule IV	А
		Grey - sided bush warbler	Cettia brunnifrons	usi	am	-	Schedule IV	А
		Grey - winged blackbird	Turdus boulboul	fgi	r/am	-	Schedule IV	А
		Ashy - throated warbler	Phylloscopus maculipennis	ai	r	-	Schedule IV	В
		Indian robin	Saxicoloides fulicata	fgi	r	-	Schedule IV	С
		Jungle babbler	Turdoides striatus	fgi	r	-	Schedule IV	B-C
		Lemon - rumped warbler	Phylloscopus chloronotus	usi	r/am	-	Schedule IV	A-B
		Lesser whitethroat *	Sylvia curruca	usi	WV	-	Schedule IV	В
		Oriental Magpie robin	Copsychus soularis	ali	r	-	Schedule IV	B-C

Appendix. cont

		Pale footed bush warbler	Cettia pallidipes	usi	r	-	Schedule IV	В
		Pied bush chat	Saxicola caprata	si	r/am	-	Schedule IV	A-B-C
		Plumbeous water redstart	Rhyacornis fuliginosus	si	r	-	Schedule IV	A-B
		Red throated fly catcher	Ficedula parva	si	WV	-	Schedule IV	В
		Rufous - bellied niltova	Niltava sundara	si	r/am	-	Schedule IV	В
		Streaked laughingthrush	Garrulax lineatus	fgi	r	-	Schedule IV	A-B
		Rufous sibia	Heterophasia capistrata	bgi	r	-	Schedule IV	A-B
		Rusty cheeked sumiter babbler	Pomatorbinus erythrogenys	bgi	r	-	Schedule IV	В
		Small niltava	Niltava macgrigoriae	si	r	-	Schedule IV	В
		Striated babbler	Turdoides earlei	bgi	r	-	Schedule IV	С
		Ticklle's leaf warbler	Phylloscopus affinis	usi	WV	-	Schedule IV	A-B
		Verditer fly catcher	Eumyias thalassina	ai	sv	-	Schedule IV	A-B-C
		Whiskered yuhina	Yuhina flavicollis	si	r/am	-	Schedule IV	A-B
		White - tailed rubythroat*	Luscinia pectoralis	si	sv	-	Schedule IV	В
		White - throated laughingthrush	Garrulax albogularis	gli	r/am	-	Schedule IV	A-B
		White - capped water redstart	Chaimarrornis leucocephalus	si	r/am	-	Schedule IV	A-B
		White crested laughingthrush	Garrulax leucolophus	fgi	r	-	Schedule IV	A-B
		White - throated fantail	Rhipidura albicollis	usi	r/am	-	Schedule IV	A-B
		Yellow - bellied fantail	Rhipidura hypoxantha	usi	r/am	-	Schedule IV	А
		Yellowish - bellied bush warbler*	Cettia acanthizoides	usi	r	-	Schedule IV	С
25	Nectariniidae	Crimson sunbird	Aethopyga siparaja	na	r/am	-	Schedule IV	A-B-C
25	Nectarinidae	Purple sunbird	Nactarinia asiatica	nai	SV	-	Schedule IV	A-B-C
26	Oriolidae	Black hooded oriole	Oriolus xanthornus	fr	r	-	Schedule IV	С
20	Onolidae	Eurasian golden oriole	Oriolus oriolus	fse	WV	-	Schedule IV	B-C
		Black - lored tit	Parus xenthogenys	usi	r	-	Schedule IV	A-B
		Black - throated tit	Aegithalos concinnus	usi	r	-	Schedule IV	A-B
		Great tit	Parus major	usi	r	-	Schedule IV	A-B-C
27	Paridae	Green - backed tit	Parus monticolus	usi	r	-	Schedule IV	A-B-C
		Grey - crested tit	Parus dichrous	usi	r	-	Schedule IV	А
		Rufous - vented tit*	Parus rubidiventris	usi	r	-	Schedule IV	А
		Spot - winged tit	Parus melanolophus	usi	r	-	Schedule IV	А
20	Dooooridoo	Baya weaver	Ploceus philippinus	gse	r	-	Schedule IV	С
28	Passeridae	Chestnut shouldered petronia	Petronia xanthocollis	fgi	r	-	Schedule IV	С

Appendix. Cont cont

		Common rosefinch	Carpodacus erythrinus	gse	WV	-	Schedule IV	А
		House sparrow	Passer domesticus	gse	r	-	Schedule IV	A-B-C
		Russet sparrow	Passer rutilans	fgsi	am	-	Schedule IV	A-B
		Black francolin	Francolinus francolinus	fgsi	r	-	Schedule IV	В
		Cheer pheasant (* Vocal)*	Catreus wallichii	fgsi	е	VU	Schedule 1	А
		Common quail	Coturnix coturnix	fgsi	r	-	Schedule IV	B-C
29	Phasianidae	Indian peafowl	Pavo cristatus	to	r	-	Schedule 1	С
		Kalij pheasant	Lophura leucomelanos	fgsi	am	-	Schedule IV	A-B
		Koklass pheasant	Pucrasia macrolopha	fgsi	am	-	Schedule IV	А
		Red jungle fowl	Gallus gallus	fgsi	r	-	Schedule IV	A-C
		Brown - fronted woodpecker	Dendrocopos auriceps	fgi	r/am	-	Schedule IV	A-B
		Brown - capped pygmy woodpecker	Dendrocopos nanus	fgi	r	-	Schedule IV	С
		Black - rumped flameback	Dinopium benghalense	fgi	r	-	Schedule IV	С
		Yellow- crowned woodpecker	Dendrocopos mahrattensis	fgi	SV	-	Schedule IV	С
		Fulvous - breasted woodpecker	Dendrocopos macei	fgi	r	-	Schedule IV	A-B-C
		Great slaty woodpecker*	Mulleripicus pulverulentus	fgi	r	-	Schedule IV	С
	Picidae	Greater flameback woodpecker	Chrysocolaptes lucidus	fgi	r	-	Schedule IV	В
30		Grey - capped pygmy woodpecker	Dendrocopos canicapillus	fgi	r	-	Schedule IV	A-B-C
30	FICIUAE	Grey - headed woodpecker	Picus canus	fgi	r	-	Schedule IV	A-B-C
		Himalayan flameback woodpecker	Dinopium shorii	fgi	r	-	Schedule IV	A-B-C
		Himalayan woodpecker	Dendrocopos himalayensis	fgi	r	-	Schedule IV	A-C
		Lesser yellownape woodpecker	Picus chlorolophus	fgi	r	-	Schedule IV	A-B-C
		Rufous - bellied wood pecker	Dendrocopos hyperythrus	fgi	r	-	Schedule IV	A-B
		Scaly - bellied woodpecker	Picus squamatus	fgi	r	-	Schedule IV	A-B-C
		Speckled piculet	Picumnus innominatus	fgi	r	-	Schedule IV	А
		Streak - throated woodpecker*	Picus xanthopygaeus	fgi	r	-	Schedule IV	С
		Alexandrine parakeet	Psittacula eupatria	fse	r	-	Schedule IV	B-C
31	Psittacidae	Plum - headed parakeet	Psittacula cyanocephala	fse	r	-	Schedule IV	B-C
51	i Sillacidae	Rose - ring parakeet	Psittacula krameri	fse	r	-	Schedule IV	B-C
		Slaty - headed parakeet	Psittacula himalayana	fse	r	-	Schedule IV	A-B
		Black bulbul	Hypsipetes leucocephalus	fi	r	-	Schedule IV	A-B
32	Pycnonotidae	Himalayan bulbul	Pycnonotus leucogenys	fi	r	-	Schedule IV	A-B-C
52	r yononoliuae	Red - whiskered bulbul	Pycnonotus jocosus	fi	r	-	Schedule IV	С
		Red vented bulbul	Pycnonotus cafer	fi	r	-	Schedule IV	A-B-C

Appendix. Cont

33	Sittidae	Chestnut - bellied nuthatch	Sitta castanea	bgi	r	-	Schedule IV	A
		Brown wood owl *	Strix leptogrammica	atc	r	-	Schedule IV	A-B
34	Strigidae	Jungle owlet	Glaucidium rodiatum	atc	r	-	Schedule IV	С
		Spotted owlet	Athene brama	atc	r	-	Schedule IV	В
		Bank myna	Acridotheres ginginianus	to	r	-	Schedule IV	B-C
		Brahminy starling	Sturnus pagodarum	to	r	-	Schedule IV	С
25	Cturre i de e	Chestnut-tailed starling	Sturnus malabarica	ai	r/am	-	Schedule IV	С
35	Sturnidae	Common myna	Acridotheres tristis	to	r	-	Schedule IV	A-B-C
		Jungle myna	Acridotheres fuscus	to	r	-	Schedule IV	В
		Pied myna	Sturnus contra	to	r	-	Schedule IV	С
		Ashy prinia	Prinia socialis	usi	r	-	Schedule IV	B-C
36	Sylviinae	Jungle prinia	Prinia sylvatica	fgi	r	-	Schedule IV	С
		Plain prinia	Prinia inornata	gli	r	-	Schedule IV	С
37	Upupidae	Common hoopoe	Upupa epops	gli	r/am	-	Schedule IV	B-C
38	Zosteropidae	Oriental white eye	Zosterops palpebrosus	usi	r	-	Schedule IV	A-B-C

r = resident, am = altitudinal migratory, sv = summer visitor, wv = winter visitor, vu = vulnerable, e = endemic, cr = critical rare, ai = Aerial insectivore, bgi = Bark gleaning insectivore, fgi = foliage gleaning insectivore, si = sallying insectivore, usi = under-storey insectivore, gli = grass land insectivore, to = terrestrial omnivore, ato = arboreal terrestrial omnivore, gse = granivore seed eater, fgse = frugivore insectivore, sc = sallying carnivore, atc = arboreal terrestrial carnivore, wc = wading carnivore, ni = nectarivore, Rare species of the sites (RA < 0.001), IWPA = Indian wildlife protection Act, IUCN = International Union for Conservation of Nature and Natural resources, A = Nainital, 1900 – 2450m asl, B = Bhowali, 1450 – 1700 m asl, C = Haldwani, 350 to 500 m asl).