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Dialium guineense is a multipurpose species useful in many respects. It is used in agroforestry and 
the trade of most of its organs is source of income for rural populations. Despite the high interests of this 
species to populations, we do not know much about how its spatial distribution could be impacted by 
climate change and which strategies to implement for its sustainable use and conservation. In order to 
overcome these challenges, MaxEnt was used to model the ecological niche of D. guineense and 
different decision thresholds were used to interpret and classify the outputs. Climate will impact the 
distribution of D. guineense. Indeed under Africlim rcp 4.5 horizon 2055, the predicted stable areas of 
species distribution will be about 73% of West Africa when the threshold of the minimum training 
presence is considered and will decrease to 12% when the threshold of the maximum training sensitivity 
plus specificity is considered. Under Africlim 8.5 horizon 2055, the corresponding values for the 
stable areas of the species are, respectively 70 and 8% of the study area. In comparison with the 
global results of West Africa, in Benin, D. guineense will be less threatened by climate change. As 
strategies for sustainable use and conservation of the species, growing and introducing it in its 
favorable areas to account for its absence or low densities, is recommended. Also, building capacities 
to the users of the species so that they can grow it on their farms is recommended. 
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INTRODUCTION 
 
Despite its utmost importance to the survival of 
humanity, biodiversity is submitted to threat of habitat 
destruction, ecosystem overexploitation, invasive alien 
species,   climate   change,   and    pollution    (Millenium 

Ecosystem Assessment (MA), 2005; CBD, 2011; Şevik, 
2012; Şevik et al., 2012; Şevik and Topaçoğlu, 2015; 
Yigit et al., 2016). In certain continents, for example 
Africa,   these   threats  are  furthermore  exacerbated  by 
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many developmental challenges such as endemic 
poverty, complex governance, limited access to capital 
including markets, infrastructure, and technology, 
ecosystems degradation, complex disasters, and 
conflicts (Boko et al., 2007). Warming trends in 
temperature and climate related extremes such as heat 
waves, droughts, floods, cyclones, and wildfires are being 
observed at global scale and across regions (Boko et al., 
2007; IPCC, 2013, 2014). These effects are known to 
particularly affect poorest regions like several African 
countries, impacting agricultural production and causing 
risks of ill-human health and death. They will aggravate 
water stress and inundation and impact ecosystems’ 
composition, structure, and functions. This will result in 
food insecurity, loss of biodiversity and ecosystems 
goods, functions, and services provided to people (Boko 
et al., 2007; Bentz et al., 2010; IPCC, 1997, 2014). 
Under climate change threat, species might respond in 
different ways. For example, species might survive in the 
margins of their actual range, track or colonize new 
areas where ecological conditions are more suitable or 
might even go extinct (IPCC, 1997, 2014; Hannah et al., 
2007; Blach-Overgaard et al., 2010; Sanchez et al. 2011; 
Abrahms, 2017). In order to address the threat of climate 
change to biodiversity, it is important to advance our 
knowledge on species geographic distributions and the 
factors that govern their spatial patterns. 

It is known that climatic and physical factors impact the 
geographic distributions of species at different spatial 
scales (Soberón and Peterson, 2005). At large spatial 
scales, climate is considered more relevant than biotic 
interactions in determining species’ geographic 
distributions (Pearson and Dawson, 2003). Based on 
this, the approach of ecological niche and species 
distribution modeling (ENM and SDM, respectively) use 
the relationship between species occurrence points and 
their related environmental variables to describe the 
ecological niche (climatic preferences) and the potential 
spatial distribution of species (Peterson et al., 2011). Such 
ENM and SDM approaches are currently widely used in 
biogeography, conservation biology and ecology 
(Stockwell and Peterson, 2001; Segurado and Araújo, 
2004; Pearson et al., 2007; Elith et al., 2011). For 
examples, Fandohan et al. (2015) modeled the 
vulnerability of protected areas of Benin to possible 
invasion of Lantana camara (invasive species native to 
South America) under current and future climates; 
Adjahossou et al. (2016) assessed the effectiveness of 
protected areas through the prediction of potential 
favorable areas for the cultivation and conservation of 
some tree species of socio-economic importance in Benin; 
Idohou et al. (2016) used niche models to identify 
potential spatial priorities for the conservation of wild palm 
species across West Africa; Gbètoho et al. (2017) 
applied ecological niche models to predict the suitability 
and ability of some pioneer  forest  species  to  restore  

 
 
 
 
secondary forests in Lama forest reserve in Benin. All 
those studies showed the usefulness of the ENM/SDM 
approach for providing information that can derive in 
adequate strategies to conserve species, communities, 
biomes, and biodiversity as a whole at national, regional 
or more global scales. 

Dialium guineense commonly named black velvet or 
velvet tamarind belongs to the family of Fabaceae- 
Cesalpinioidae (Orwa et al., 2009). It is a multipurpose 
species useful in many respects. The species is used in 
agroforestry and is believed to restore soil fertility in 
fallows (Ewédjè and Tandjiékpon, 2011). Its fruits have 
high nutritional potentialities and selected micronutrients 
(Ayessou et al., 2014). It is recognized that the crude leaf 
extracts of D. guineense exhibit some anti-vibrio activities 
and significant antioxidant and antimicrobial properties 
(David et al., 2011; Ogu et al., 2013). The leaves of this 
species are also used to cure many diseases such as 
diarrhea, cough, stomachaches, malaria fever (Ogu and 
Amiebenomo, 2012). Its wood is said to make good 
firewood and charcoals (Orwa et al., 2009; Ewédjè and 
Tandjiékpon, 2011). The stems of the species are used in 
water ponds for fish-farming purposes and the trade of 
its fruits, firewood and charcoal is a substantial source of 
income for rural populations (Ewédjè and Tandjiékpon, 
2011). Despite those high interests of D. guineense to 
populations, we do not know much about how its spatial 
distribution could be impacted by climate change and 
which strategies to implement for its sustainable use and 
conservation in West Africa [our landscape of interest 
(LOI)] and particularly in Benin. In order to achieve that 
purpose, this study aimed at addressing the following 
research questions: in the context of climate change, 
under different scenarios (IPCC, 2013); (i) what is the 
extent of stable (suitable both at present and in the 
future) areas for the spatial distribution of D. guineense? 
(ii) What is the extent of unsuitable (both at present and 
in the future) areas for the spatial distribution of the 
species? (iii) What is the extent of the areas of the 
spatial distribution of the species that are suitable at 
present but unsuitable in the future? (iv) What is the 
extent of the areas of the spatial distribution of the 
species that are unsuitable at present but will become 
suitable in the future? Answering those questions will 
surely help us address our main research objective that 
is to identify and set in place adequate strategies to 
contribute to the conservation and sustainable use of the 
multiple resources of D. guineense. 
 
 
MATERIALS AND METHODS 
 
Data sources 
 
Study species and presence data 
 
The  natural  distributional  range  of  D.  guineense   encompasses  



 

 

 
 
 
 
many parts of Sub Saharan Africa (Orwa et al., 2009; Ayessou et 
al., 2014) where it is found in humid dense forests, dry dense 
forests, and forest galleries (Ewédjè and Tandjiékpon, 2011). In its 
natural range, the species is submitted to a temperature ranging 
from 25 to 32°C and a mean annual rainfall of 900 to 3000 mm 
(Ewédjè and Tandjiékpon, 2011). Its habitats distribution was 
studied in Benin by Assongba et al. (2013). According to their main 
results, the species was found in D. guineense and Sida acuta-
community that grows on farms, gardens, and fallows; in D. 
guineense and Berlinia grandiflora- community in savannas; and in 
D. guineense and Celtis zenkeri-community in semi-deciduous and 
gallery forests. The occurrence data we used in our study were 
downloaded from GBIF site in October 2016 
(http://doi.org/10.15468/dl.bn7vpz). A final dataset of 947 
georeferenced records was retained to run models with MaxEnt 
(Phillips et al., 2006) after cleaning efforts that consisted in 
eliminating: occurrences data lacking geographic coordinates and 
those falling outside West Africa, our landscape of interest. 
 
 
Environmental variables 
 
Fifteen bioclimatic variables (bio1-bio7 and bio10-bio17) were 
downloaded from Wordclim site (Hijmans et al., 2005; 
http://www.worldclim.org/current) at a resolution of 2.5 arc minutes 
(approximately 5 Km at equator). Those data cover the time period 
1950-2000 (Hijmans, 2005). Corresponding projection 
environmental layers were downloaded on Africlim site (Platts et 
al., 2014; https://webfiles.york.ac.uk/KITE/AfriClim/GeoTIFF_150s 
/) under rcp4.5 and rcp8.5, horizon 2055. Only 15 projection 
environmental layers (bio1-bio7 and bio10-bio17) are available on 
Africlim site, and this justifies why we relied on Worldclim to 
choose the corresponding environmental layers for the present. 
Africlim environmental layers for projections were considered 
advantageous over that of Wordclim because they are more 
adapted to the ecological realities of Africa than the pixel resolutions 
of general circulation models (Platts et al., 2014). Moreover, the 
general circulation models have less confidence simulating surface 
temperature at regional levels than at larger scales and the 
precipitations are not simulated at regional scales because of 
uncertainties in observations (IPCC, 2013). In Africlim ensembles 
derived from two Regional Circulation Models, a range of 
observational baselines were used to empirically downscale the 
models outputs to resolutions that can capture environmental 
local variations and are therefore useful for ecological 
applications at local scales (up to 1 km) (Platts et al., 2014). 
According to Soberón and Peterson (2005) four classes of factors 
affect the distribution of species: 1) abiotic factors in terms of 
climate, topography, soils; 2) biotic factors such as interactions 
between species (competition, mutualism, diseases); 3) accessibility 
of the species to the area studied (availability of seeds and 
dispersers, absence of barriers) from original distribution areas in 
ecological time; 4) evolutionary capacities of species to adapt to 
new environment. Taking into account the case of D. guineense 
with respect to those four classes of factors affecting and explaining 
its actual distribution, we inferred that the actual area where the 
occurrence points are sampled globally defined its region of 
accessibility and represent the region (M) on the Venn Diagram of 
Soberón and Peterson (2005). According to Barve et al. (2011), M 
has important implications in model training as it represents the 
area where background points are sampled. According to the 
same authors, M also affects the model validation because, the 
larger its extent, the better the model predicts suitable areas of the 
distribution of a species. The specification of M is also important in 
model comparison because it impacts the relative similarity of niches 
sampled from that space (Barve et al., 2011).  We  considered  that  
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region (M) as our Landscape of Interest (LOI) and clipped the 
environmental layers to that LOI (Figure 1). As we know, one 
fundamental limitation to presence-only data is sample bias whereby 
some areas in the landscape are sampled more intensively than 
others (Phillips et al., 2009). In order to account for that, we 
considered that in West Africa, where the species grows, the 
countries don’t inventory or publish their data at the same rate / 
intensity; we therefore added bias grids on a scale of 1 (less effort in 
inventorying and publishing data) to 4 (most effort in inventorying 
and publishing data) to represent sampling efforts across the LOI 
(Elith et al., 2011) (Figure 1). This enabled us to provide a bias file 
to run MaxEnt. 
 
 
Model fitting 
 
We used MaxEnt to achieve our modeling purpose. In order to 
calculate the probability of the species’ presence, MaxEnt uses 
background data which are randomly sampled in the LOI (Phillips et 
al., 2006, 2009). According to Phillips et al. (2009), the purpose of 
selecting background data is also to characterize the 
environmental factors shaping the geographic distribution of 
presence records. That approach is important for presence-only 
data since it alleviates bias in samples and improves the prediction 
performance of models (Phillips et al., 2009). The MaxEnt method 
is however somehow limiting as the reliable estimation of the 
probability of the presence of a species over a LOI requires true-
absence data (Soberón and Peterson, 2005; Pearce et al., 2006; 
Soberón and Nakamura, 2009). It is however known that MaxEnt 
has a better predictive ability than other algorithms like the Genetic 
Algorithm for Rule-Set Prediction (GARP) (Pearson et al., 2007). 
It is indeed evident that in general, MaxEnt predicted a larger 
proportion of the presence of species and is therefore more 
helpful in exploration purposes designed to discover new 
distributional areas of species (Pearson et al., 2007). With respect 
to the types of the data, MaxEnt also performed well compared to a 
set of algorithms (Genetic algorithm for Rule-Set prediction, 
Generalized linear models, Boosted regression trees, Random 
forests) in predicting the relationship of species to environment, 
mapping predictions, and extrapolating predictions beyond the 
training data (Elith and Graham, 2009). 

In order to run MaxEnt, we converted the environmental layers 
into ascii format using QGIS 2.16.2. We used the default value 1 
as regularization multiplier (beta value). We then proceeded to 
the selection of appropriate environmental variables. For that 
purpose, the Receiver Operating Characteristic (ROC) curve and its 
related Area Under Curve (AUC) (Phillips et al., 2006), the 
percentage contribution table of variables, and the Jackknife charts 
were taken into account to judge the most important contributing 
variables to the models and these were bio3 (isothermality), bio4 
(temperature seasonality), bio12 (annual precipitation), and bio15 
(precipitation seasonality). In order to run MaxEnt, we used the 
following settings options: 25 as value of random test percentage; 
10,000 as maximum number of background points; remove 
duplicate presence records. The remaining options were set to 
default. 

The models simulating climate changes are based on scenarios 
of anthropogenic forcings (IPCC, 2013). In the framework of the 
fifth assessment report (AR5) of the Intergovernmental Panel on 
Climate Change (IPCC), a new set of scenarios, the 
Representative Concentration Pathways (RCPs), was used for 
the new climate model simulations led by the Coupled Model 
Inter comparison Project Phase 5 (CMIP5) of the World Climate 
Research Program. The magnitude of projected changes in 
climate is substantially affected by the choice of emission 
scenarios   (IPCC,   2013).  Four  RCP  scenarios  are  used   within  

http://www.worldclim.org/current
https://webfiles.york.ac.uk/KITE/AfriClim/GeoTIFF_150s%20/
https://webfiles.york.ac.uk/KITE/AfriClim/GeoTIFF_150s%20/
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Figure 1. Occurrence points and sampling efforts of Dialium guineense across the Landscape 
of Interest (LOI). Data derived from GBIF.org (27th October 2016) GBIF Occurrence Download 
http://doi.org/10.15468/dl.bn7vpz. 

 
 
 

CMIP5. They are identified by the 21st century peak or stabilization 
of the radiative forcings (RF) derived from reference model (IPCC, 
2013). We therefore had the lowest RCP scenario corresponding 
to a RF of 2.6 W m-2 by 2100; two medium RCP scenarios 
corresponding respectively to RF of 4.5 and 6 W m-2  by 2100 and 
the highest RCP scenario that corresponds to a RF of 8.5 W m-2 by 
2100. Among all those scenarios, emissions would need to decline 
drastically in order to reach the level of 2.6 W/m² by the end of the 
century. According to Van Vuuren et  al .  (2011), to achieve that 
purpose, the cumulative emission reduction over the century will be 
about 70% compared to the baseline trends. This will need great 
efforts and involvement of every country in improving energy 
efficiency, replacement of unabated use of fossil fuels by renewable 
energy, nuclear power (Van Vuuren et al., 2011). As of today, both at 
national and international levels,  little is done to achieve that 
purpose and even, countries among the big greenhouse gases 
emitters don’t agree on actions to be taken forward to reduce 
emissions. The recent withdrawal of USA from the climate change 
agreements is an illustration of lack of consensus in that field. 
Therefore, achieving the purpose of the scenario of RCP 2.6 is not 
obvious. In this context, in predicting the distribution of D. 
guineense, we used two of the above scenarios: RCP 4.5 (the low 
medium) where some mitigation efforts by governments and world 
populations are supposed to limit RF at 4.5 W m-2 by 2100 and 
RCP 8.5 (the highest scenario) where mitigation efforts are 
supposed to be at their least. After selecting the most relevant 
variables, we ran MaxEnt with 10 replicates using the bootstrapping 
as replicated run type. In the bootstrapping replication process, 
the training data is selected by sampling with replacement from 
the presence points, with the number of samples equaling the total 
number  of   presence   points   (Phillips,   2010).  This  option  will 

compensate the little numbers of presence points in parts of our 
LOI. Projection layers under each scenario were provided 
accordingly. 
 
 
Model evaluation 
 
We proceeded to the selection of models using threshold-
independent tests. For this purpose, we took into account the 
Receiver Operating Characteristic (ROC) curve and its related Area 
Under Curve (AUC) (Phillips et al., 2006); for more model 
validation, we also used the Partial ROC test (Peterson et al. 
2008; http://shiny.conabio.gob.mx:3838/nichetoolb2/). Furthermore, 
we used a threshold-dependent test (the True Skill Statistic (TSS) 
(Allouche et al., 2006); to appraise the decision thresholds we 
chose to classify MaxEnt outputs as unsuitable, suitable or highly 
suitable for the presence of the species in geographic space. 
 
 
Impact of climate change evaluation 
 
Using QGIS 2.16.2 adequate algorithms of the Geospatial Data 
Abstraction Library (GDAL), we reclassified, converted, and 
polygonize (raster to vector) appropriate output layers and 
calculated the extent of the spatial distribution of the species with 
respect to decision thresholds at present and in the future (horizon 
2055) under the considered scenarios. The decision thresholds we 
used are “the minimum training presence” representing areas 
where ecological factors for the occurrence of D. guineense are as 
favorable as those found at the occurrence points (conservative and 
most ecologically reasonable option)  (Pearson  et  al.,  2007);  the  
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Figure 2. Average Receiver Operating Characteristic (ROC) and related Area Under Curve (AUC) of the 10 
bootstrap replicates of the model retained. 

 
 
 
maximum training sensitivity plus specificity (least conservative 
and most likely presence option). With respect to the decision 
thresholds, we categorized the whole distribution area of the 
species into a) stable area, that is the area suitable (pixels where the 
probability of presence of the species is more or equal to the 
logistic threshold related to the decision threshold considered) at 
present and predicted to be so in the future under either scenarios; 
b) unsuitable area (pixels where the probability of presence of the 
species is less than the logistic threshold related to the decision 
threshold considered) at present and predicted to remain so in the 
future under either scenarios; c) suitable area at present but 
predicted to be unsuitable in the future under either scenarios; d) 
unsuitable area at present but predicted to become suitable in the 
future under either scenarios. This helped us derive potential 
spatial distributions of D. guineense and use them as tools to 
inform the potential impact of climate change, which in turn 
allowed us suggesting strategies for the sustainable use and 
conservation of the species. 

 
 
RESULTS 
 
Model validation 
 
The average training Area Under Curve (AUC) for the 
10 bootstrap replicate runs was 0.895 with a standard 
deviation of 0.010 (Figure 2). This low value of the standard 
deviation indicates a limited dispersion of AUC values 
among  the  replicates.  The  results  of  Partial  ROC  test 

showed that after 500 simulations, the mean value for 
AUC ratio at 0.05 omission rate is 1.86 and that of AUC is 
0.93. Furthermore, the test showed that the difference 
between the AUC from model prediction and the AUC at 
random is highly significant and therefore, the model 
performs better than random. The values of the True 
Skill Statistic (TSS) test at the threshold values of 0.043 
(minimum training presence, conservative option) and 
0.311 (maximum training sensitivity plus specificity, least 
conservative and most likely presence option) are 
respectively 0.288 and 0.586 and also showed that the 
model performed better than random. 

 
 
Environmental variables controlling the spatial 
distribution of D. guineense 
 
From our knowledge on the ecology of the species, D. 
guineense is a Guinean species, growing optimally in 
equatorial and subequatorial zones characterized by 
abundant and regular rainfall. Its presence in drier zones 
is usually linked to water galleries and swampy zones. 
The Jackknife tests of variable importance (Figures 3a, b, 
and c) and the table of variable contributions (Table 1) 
helped us identify four environmental variables as 
contributing most to the  spatial  distribution  of  Dialium  



 

 

378          Int. J. Biodivers. Conserv. 
 
 
 

 
 
Figure 3. Jackknife tests of variable importance. a) with regularized training gain; b) with test gain; c) 
with AUC. 

 
 
 

Table 1.  Percentage contribution and permutation importance of 
the variables. 
  

Variable Percent contribution Permutation importance 

bio4 31.7 20.1 

bio15 31.2 30 

bio3 20.3 22.1 

bio12 16.7 27.8 

 
 

 

guineense. They are bio3 (isothermality), bio4 
(temperature seasonality), bio12 (annual precipitation), 
and bio15 (precipitation seasonality). The Jackknife tests  
of variable importance showed that leaving out any of 
those four variables did not allow achieving the training 
gain, AUC and test gain levels of the whole set of 
variables. Consistent with the Jackknife tests, the table of 
variable importance (Table 1) showed that bio 4 
(temperature    seasonality)    was    the    most   important 

contributing variable to the model among the set of the 
four variables retained in the model. Bio 15 (precipitation 
seasonality) decreases the gain the most when omitted 
and appears to be the most informative variable of the 
model. The response curves of those variables to the 
suitability prediction of the species are in Figures 4a, b, c, 
and d. Bio3 clearly showed the responsiveness of the 
species to monthly diurnal temperature variability relative 
to that of the year. We deduced that the prediction of 
higher suitability for the species coincides with a 
percentage variation of about 62 to 75% of diurnal 
monthly range temperature relative to the annual one 
(Figure 4a). The species is therefore not linked to the 
extreme fluctuations of monthly diurnal temperature. The 
response curve of the species to bio4 (temperature 
seasonality) showed that the highest probabilities of its 
presence are linked to the least seasonality (1 to 15%) 
and that higher values are likely limiting its presence. 
The response curve of the species to bio 12 (annual 
precipitation)  is  also  consistent  with   its   ecology  and  
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Figure 4. Response curves of most contributing variable. 
 
 
 

indicated values of precipitation of 1000 mm and more as 
optimal values for the species high suitability prediction. 
The response of the species to bio15 (precipitation 
seasonality) showed that the prediction of highest 
suitability for the species is linked to the highest values 
(15 to 40%) of that variable. This result is also consistent 
with the known ecology of the species that is alternately 
exposed to dry and rainy seasons in its natural range. 
 
 
Spatial distribution of the species at present 
 
The present spatial distribution of D. guineense in the 
landscape of interest (LOI) is presented on Figure 5a. In 
the LOI, the prediction of suitability is higher southwards, 
mostly limited to coastal zones of West African countries. 
However, gaps of suitability (or low suitable areas) were 
predicted to occur all over the coastal zones. The northern 
parts of the LOI are the domain of unsuitable prediction, 
which may be related to the mostly dry Sahelian climate 
that is inconsistent with the ecology of the species. In 
Benin (Figure 5b), the distribution of the species is globally 
similar to that of the LOI. Consistent with the general 
distributions, we noticed that high  suitability  prediction  is 

concentrated in the South of the country and more 
precisely in the six southern departments (Ouémé, 
Plateau, Littoral, Altlantique, Mono, and Kouffo) that are 
influenced by a subequatorial climate consistent with the 
ecology of the species. The suitability prediction is also 
noted in the central part of the country whereas the 
unsuitable prediction is mostly concentrated in the 
northern departments (Donga, Atakora, Borgou, and 
Alibori) mostly characterized by a Sudanian Sahelian 
climate, unsuitable for the ecology of D. guineense. 
 
 
Projected distribution of the species in the future 
 
The projected distributions of D. guineense for 2055 
across the LOI are presented in Figures 6a and 7a, 
respectively under Africlim rcp 4.5 and rcp 8.5. Compared 
to the distribution at present (Figure 5a), we noted that the 
suitability prediction progressively decreases in most of 
the countries under both scenarios with a maximum decay 
under rcp 8 .5. In Benin (Figures 6b and 7b), consistent 
with the general predictions across the LOI, only the 
departments of Atlantique and Mono respectively in 
South    Center   and   South West   of   the   country,   are  
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Figure 5. Spatial distribution of Dialium guineense at present: a) across the Landscape of Interest; b) across Benin. 

 
 
 

 

a 
b 

 
 
Figure 6. Predicted spatial distribution of Dialium guineense under Africlim RCP 4.5 horizon 2055: a) across theLandscape of Interest; b) 
across Benin. 

 
 
 
predicted to remain suitable for the species under rcp 8.5. 
 
 
Impact of climate change on the spatial distribution of 
D. guineense 
 
We  noted  that  under  Africlim  rcp   4.5   horizon   2055 

(Figures 8 and 9; Tables 2 to 5), the predicted stable 
areas of the distribution of the species will be about 73% 
of the LOI when we considered the threshold of the 
minimum training presence and will decrease to 12% of 
the LOI when the threshold of the maximum training 
sensitivity plus specificity is considered. Under Africlim 
8.5 horizon 2055, the corresponding values  we  noted  for  
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(b)

 

 

 
 
 
 
 
 
 
 

 
 

Figure 7. Predicted spatial distribution of Dialium guineense under Africlim RCP8.5 horizon 2055: a) across the Landscape 
of Interest; b) across Benin. 

 
 
 

 

a b 

 
 
Figure 8. Impact of climate change on Dialium guineense at the threshold of minimum training presence 
under Africlim RCP4.5, horizon 2055: a) across the Landscape of Interest; b) across Benin. 

 
 
 
the stable areas are respectively 70 and 8% of the LOI 
(Figures 10 and 11; Tables 2 to 5). Globally, under 
Africlim rcp 4.5 at horizon 2055 (Figures 8 and 9; Tables 
2 to 5) the predicted suitable areas for the distribution of 
D. guineense will be about 74% of the LOI at the 
threshold of the minimum training presence and will 
decrease to about 17% of the LOI at the threshold of the 
maximum training sensitivity plus specificity. Under 
Africlim 8.5 horizon 2055, the corresponding values of 
the predicted suitable area for the distribution of D. 
guineense will be respectively  70  and  11%  of  the  LOI 

(Figures 10 and 11; Tables 2 to 5). At the threshold of the 
minimum training presence, under Africlim 4.5, horizon 
2055, the predicted suitable areas of D. guineense is 
mostly concentrated on coastal countries with however a 
thorough extension northwards except a South Eastern 
part of Liberia at the border of Côte- d’Ivoire. Only the 
upmost northern parts coinciding with the Sahelian zones 
of the LOI are predicted unsuitable for the species. At the 
same threshold, under Africlim rcp 8.5, horizon 2055, the 
predicted suitable areas of the distribution of the species 
is   close   to   its   extension  under  Africlim  rcp  4.5  with  
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Figure 9. Impact of climate change on Dialium guineense at a more liberal threshold maximum training sensitivity plus specificity under Africlim 
RCP4.5, horizon 2055: a) across the Landscape of Interest; b) across Benin. 

 
 
 

Table 2. Impact of climate change across the landscape of Interest at the threshold of the minimum training presence. 
 

Status of spatial distribution 
RCP 4.5 RCP 8.5 

Area (km²) Percentage (%) Area (km²) Percentage (%) 

Both suitable 2586571,09 72,69 2480447,96 69,71 

unsuitable at present but suitable in the future 40409,30 1,14 23945,64 0,67 

Subtotal 2626980,39 73,83 2504393,6 70,38 

Both unsuitable 883892,02 24,84 900355,72 25,30 

Suitable at present but unsuitable in the future 47291,79 1,33 153414,89 4,31 

Subtotal 931183,81 26,17 1053770,6 29,62 

Total 3558164,2 100 3558164,2 100 

 
 
 

Table 3.  Impact of climate change across Benin at the threshold of the minimum training presence. 
 

Status of spatial distribution 
RCP 4.5 RCP 8.5 

Area (Km²) Percentage (%) Area (Km²) Percentage (%) 

Both suitable 106163,20 94,28 103571,95 91,98 

unsuitable at present but suitable in the future 1773,71 1,58 305,70 0,27 

Subtotal 107936,91 95,86 103877,65 92,25 

Both unsuitable 4051,28 3,60 5519,29 4,90 

Suitable at present but unsuitable in the future 611,81 0,54 3203,07 2,84 

Subtotal 4663,09 4,14 8722,36 7,75 

Total 112600 100 112600 100 
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Table 4. Impact of climate change across the landscape of Interest at the liberal threshold of maximum training sensitivity plus specificity. 
 

Status of spatial distribution 
RCP 4.5 RCP 8.5 

Area (Km²) Percentage (%) Area (Km²) Percentage (%) 

Both highly suitable 421500,59 11,85 281694,02 7,92 

Not highly suitable at present but suitable in the fuute 171466,05 4,82 117623,25 3,31 

Subtotal 592966,63 16,66 399317,27 11,22 

Both highly unsuitable 2751656,24 77,33 2850265,46 80,10 

Highly suitable at present but unsuitable in the future 213541,33 6,00 308581,47 8,67 

Subtotal 2965197,57 83,34 3158846,93 88,78 

Total 3558164,20 100,00 3558164,20 100,00 

 
 
 

Table 5. Impact of climate change across Benin at the liberal threshold of maximum training sensitivity plus specificity. 
 

Status of spatial distribution 
RCP 4.5 RCP 8.5 

Area (Km²) Percentage (%) Area (Km²) Percentage (%) 

Both highly suitable 31345.55 27.84 15625.79 13.88 

Not highly suitable at present but suitable in the fuute 6352.68 5.64 943.29 0.84 

Subtotal 37698.23 33.48 16569.08 14.72 

Both highly unsuitable 52025.31 46.20 61600.84 54.71 

Highly suitable at present but unsuitable in the future 22876.46 20.32 34430.08 30.57 

Subtotal 74901.77 66.52 96030.92 85.28 

Total 112600 100 112600 100 

 
 
 

however a remarkable reduction at the northern parts of 
the LOI. At the threshold of the maximum sensitivity plus 
specificity, only portions of some coastal countries are 
predicted suitable to the species and this distribution 
worsted up under Africlim 8.5, horizon 2055 (Figures 8 to 
11; Tables 2 to 5). 

In Benin, the predictions are globally similar to the 
general trends of the LOI though, some particularities 
are noted. At the threshold of minimum training presence, 
only an upmost northern part of the country (4663 Km², 
4% of the country) covering the national park W in the 
Department of Albori is predicted unsuitable for the 
species under Africlim 4.5 horizon 2055 (Figure 8a and 
Table 3). Under Africlim 8.5 horizon 2055, the predicted 
unsuitable area of the distribution of the species 
extended southwards (87722 Km², 7.75% of the country) 
and encompassed the forest reserves of Djona and 
Alibori (Figure 10b, Table 3). At the threshold of maximum 
training sensitivity and specificity, the predicted suitable 
area of the species is about 33% of the total area of the 
country (112600 Km²) under rcp 4.5 horizon 2055 (Figure 
9b; Table 5) and will decrease by more than 50% under 
rcp 8.5 at the same horizon (Figure 11b, Table 5). 
Moreover at that threshold, when we focused on Benin 
under rcp 4.5 at horizon 2055 (Figure 9b), we realized 
that only few protected areas, namely the forests of 
Djigbé in the Department of Atlantique in South Benin, 

Lama in South and Center Benin, Kétou-Dogo in the 
Department of Plateau (South East Benin), Agrimey, Dan, 
Atchérigbé at the Center part of the country in the 
Department of Zou, and Agoua forest in the Department of 
Collines (Center northern part of Benin) are globally 
predicted to be suitable for the distribution of the species. 
The remaining protected areas, particularly those of the 
North of the country are predicted to be unsuitable for the 
distribution of the species. Under rcp 8.5 at the same 
horizon of 2055 (Figure 11b), only Djigbé, Lama, and 
Agrimey forests will remain suitable for the distribution of 
the species. 
 
 
DISCUSSION 
 
Consistency of the environmental variables 
controlling the spatial distribution of D. guineense 
with regards to the ecology of the species 
 
D. guineense grows in Sub Saharan Africa (Orwa et al., 
2009; Ayessou et al., 2014) in humid dense forests, dry 
dense forests, and forest galleries (Ewédjè and 
Tandjiékpon, 2011). In its natural range, the species is 
submitted to a temperature ranging from 25 to 32°C and a 
mean annual rainfall of 900 to 3000 mm (Ewédjè and 
Tandjiékpon,   2011).  In  dry  zones,  its  occurrence  is 
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Figure 10. Impact of climate change on D. guineense at the threshold of minimum training presence under Africlim RCP8.5, horizon 2055: 
a) across the Landscape of Interest; b) across Benin. 
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Figure 11. Impact of climate change on D. guineense at a more liberal threshold (maximum training sensitivity plus specificity) 
under Africlim RCP8.5, horizon 2055: a) across the Landscape of Interest; b) across Benin. 



 

 

 
 
 
 
always linked to waterways and swampy zones. Our 
findings are therefore reliable with regards to the ecology 
of the species. Indeed, the annual precipitation (bio 12) 
and its seasonality (bio 15) are among the most 
contributing variables to the prediction model of the 
spatial distribution of the species. Precipitation 
seasonality (bio 15) is a measure of the variation in 
monthly precipitations over the course of the year 
(O’Donnell and Ignizio, 2012). Our results showed that 
the highest probabilities (>0.5) for the presence of the 
species are obtained between 15 and 40% of bio 15 
avoiding then the extreme variations of precipitation. 
Water has many functions in the plants and is found to 
impact the distribution patterns of species at finer scales 
(Willis and Whittaker, 2002) as compared to global 
scales. It is a solvent for mineral nutrients and the 
complex organic matters produced within the plant; it 
also acts as a temperature regulator during the process of 
plant transpiration and serves as raw material in the 
process of photosynthesis which is the basic process 
underlying all life (Ferguson, 1959). Plants can be 
stressed by lack of moisture as well as an excess of 
moisture (Haferkamp, 1987). Because of those important 
functions, the presence of water in the environment of 
plants is quite important. It is therefore understandable 
that large variations in water supply, that is high values (> 
40) of bio 15, can limit the growth and therefore the 
presence and extension of D. guineense. Our results are 
supported by many others. Indeed, high values of bio 
15 can be associated with drought or water deficit. 
Drought is the most significant environmental stress in 
agriculture worldwide. Drought induces water deficit that 
is known to be harmful for plants and cause among 
others, a decline in stem elongation, reduction in 
photosynthetic performance and then reduce plant growth, 
development, survival and productivity (Boyer, 1982; 
Cattivelli et al., 2008; Ings et al., 2013). Although D. 
guineense is found in dry areas (Sudanian Sahelian 
regions) along waterways or in swampy areas, in its 
natural range (Guinean regions), the species grows on 
well drained soils and is alternatively submitted to dry and 
rainy seasons. Low values of bio 15 (<5%) are 
associated with little variation in water supply. We can 
therefore understand that in the natural range of D. 
guineense, constant water supply or little water supply 
variation (low values of bio 15 (<5%)) can affect the  
species’ physiology and therefore limit the presence of 
a non-hydrophilic or non- hygrophilous plant species like 
D. guineense. 

Although annual mean temperature (bio 1) was not 
among the most important contributors to the distribution 
model of D. guineense, its variations in terms of 
isothermality (bio 3) and temperature seasonality (bio 4) 
proved to significantly control the spatial distribution of 
the species. It is useful to underline here that the rate of 
plant   growth   and   development  is  controlled  by  its  
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surrounding temperature and each plant has a specific 
temperature range characterized by a minimum, 
maximum and optimum (Hatfield and Prueger, 2015). 
Isothermality (bio 3) quantifies how large the day to night 
temperatures oscillate relative to annual oscillations 
(O’Donnell and Ignizio, 2012) and the highest 
probabilities (>0.5) of our modeled species’ presence 
was achieved with values of bio 3 between 65 to 75% 
(mean to high values of the parameter). The temperature 
seasonality (bio 4) is the amount of temperature 
variation over a given year based on the standard 
deviation of monthly temperature averages (O’Donnell 
and Ignizio, 2012). The highest probabilities (>0.5) of our 
species’ presence was achieved with values of bio 4 
between 5 to 15% (small variations of temperature). 
According to Hatfield and Prueger (2015), vegetative 
development increases as temperature rises to the 
species optimum level and for most plant species 
vegetative development usually has a higher optimum 
rate than for the reproductive development. In light of 
their findings we can understand that large variations of 
temperature (high value of bio 4) can affect the optimum 
temperature of D.  guineense and then impact its 
distribution and development both at vegetative and 
reproductive phases. We therefore deduce that the 
maximum value of bio 4 beyond which the distribution of D. 
guineense can be negatively impacted is 15%. The rate 
of daily temperature variation relative to the annual 
oscillation (bio 3) must be less relevant for plant growth 
and development than temperature variation along the 
year (bio 4) and this can explain the relative tolerance of 
D. guineense displaying its maximum presence 
probabilities between 65 to 75% (mean to high values) of 
bio 3. The generalization of a model depends on the 
choice of the variables used to run it (Elith et al., 2011). 
In our case, the variables bio 3 and bio 4 measured 
availability and variability of light and heat to the species 
while bio 12 and bio 15 measured respectively the 
availability and variability of water for D. guineense. As 
those variables controlling the spatial distribution of the 
species are fundamental primary conditions, our model 
can be generalized to regions outside the study areas and 
serve the purpose of species management in such regions 
(Elith et al., 2011). 
 
 
Impact of climate change on the distribution of the 
species with regards to the decision thresholds 
 
As pointed out by Pearson et al. (2007), we understand 
that niche modeling to estimate the impact of climate 
change on species depends both on environmental 
factors taken into account when building the models and 
the thresholds used to interpret the outputs. The outputs 
must therefore be interpreted with caution. At the 
threshold of minimum training presence,  the  impact  of  
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climate change on D. guineense is at its minimal since 
more than 70% of our LOI and more than 90% of Benin 
will remain suitable for the distribution of the species 
under rcp 4.5 and 8.5 at horizon 2055. In contrast, when 
we considered the least conservative option at the 
threshold of maximum training sensitivity plus specificity, 
the suitable area for the distribution of the species 
sharply decreased to 17 and 34% respectively in the LOI 
and in Benin under rcp 4.5 and to 11 and 15% 
respectively in the LOI and in Benin under rcp 8.5. Our 
findings therefore confirmed that the choice of decision 
thresholds greatly matters. When we considered the 
impact of climate change on other species, we found that 
Lantana camara is projected to cover 65% of the Pendjari 
Biosphere reserve in Benin and about 6% of the W 
National Park (Fandohan et al., 2015). As this projection 
will remain so in the future (Fandohan et al., 2015), 
under rcp 8.5 and at the liberal threshold of maximum 
training sensitivity plus specificity, D. guineense will be 
more threatened by climate change than Lantana 
camara at least in the northern protected areas of the 
country. Likewise, the seven species studied by 
Adjahossou et al. (2016), Afzelia Africana, Prosopis 
africana, Khaya senegalensis, Detarium microcarpum, 
Anogeissus leiocarpa, Burkea Africana, and Daniellia 
oliveri, are predicted to have globally suitable areas for 
their cultivation and conservation in North Benin at the 
threshold of 10 percentile training presence. Therefore 
they appear to be less threatened than D. guineense in 
the North of the country at the liberal threshold of 
maximum training sensitivity plus specificity under rcp 
8.5 horizons 2055. Furthermore, under the threshold of 
minimum training presence, Dialium guineense will be 
less threatened than Lonchocaprus serinaceus and 
Anogeissus leiocarpa across Benin (Gbètoho et al., 2017) 
both under rcp 4.5 and rcp 8.5 horizons 2055. In contrast 
however, under the threshold of maximum training 
sensitivity plus specificity, D. guineense will be more 
threatened than Lonchocaprus serinaceus and 
Anogeissus leiocarpa across Benin under both scenarios 
at horizon 2055 (Gbètoho et al., 2017). The advantage of 
the threshold of minimum training presence, the most 
conservative option, is that it has a direct ecological 
interpretation, in identifying sites that are at least as 
suitable as those where a species’ presence has been 
recorded (Pearson et al., 2007). In contrast, the 
threshold of maximum training sensitivity plus specificity 
is a more liberal, yet least conservative but most likely 
presence option. This latter threshold, as shown by our 
results, is less explorative and therefore less appropriate 
to identify the maximum of the potential areas of the 
distribution of the species. As MaxEnt is known to have a 
high predictive ability (Pearson et al., 2007) we inferred 
that our results at the threshold of minimum training 
presence showed the largest potential spatial distribution 
of the species in the future. 

 
 
 
 
Considerations on the strategies of the conservation 
and sustainable use of D. guineense 
 
In our model building, we considered only environmental 
factors. Doing so has some limitations and uncertainty 
(Abrahms, 2017) in predicting species distribution. 
Indeed, ecological niche models predict the 
environmental space that corresponds to the 
fundamental niche of the species (Soberón and Peterson, 
2005). It can yield both false positives and false negatives 
in the presence of the species in the predicted geographic 
areas (Thuiller et al., 2005). False positives occur when 
other factors than climate control the distribution of the 
species and prevent it from growing in the potential 
area considered (Thuiller et al., 2005; Blach-Overgaard 
et al., 2010), whereas false negatives appear when 
lack of information in the background sample or 
incomplete sampling efforts prevent from accurately 
predicting the presence of the species. Implicitly, those 
other factors not associated with climate, can be related 
to biotic interactions and accessibility (that is dispersal 
capacity) of the species to reach geographic areas 
presenting conditions of its fundamental niche (Soberon 
and Peterson, 2005) and thus impacting the distribution of 
the species although it is well known that at very broad 
continental and global scales, climate is the most 
important factor to predict the distribution of species 
(Woodward, 1987; Willis and Whittaker, 2002; Thuiler et 
al., 2005; Blach-Overgaard et al., 2010). 

Another factor to be considered is human pressure 
as a consequence of demography explosion. For 
decades, Benin is losing about 50,000 ha of forest every 
year (FAO, 2015) due to human pressure and therefore 
the depletion of D. guineense, a multipurpose species, 
from its suitable areas is common at least in the South of 
the country. This contributes to increase the false 
positives in the prediction of our models. Therefore, our 
results under both scenarios illustrated the possible 
distribution of the species from an optimistic and 
explorative option at the threshold of minimum training 
presence to a more pessimistic, yet more likely presence 
but least explorative option at the threshold of maximum 
training presence plus specificity. We agree here with 
Pearson et al. (2007) that the choice of a decision 
threshold should depend on proposed application of the 
models. In order to conserve D. guineense with respect to 
the impacts of climate change, we recommend a more 
conservative and explorative option that consists in 
considering the distribution of species under both 
scenarios but at the threshold of minimum training 
presence. Some actions can therefore be undertaken. 
First, we recommend a field inventory in the predicted 
suitable areas of the species to find out where the 
species is actually absent or present at low densities (for 
example less than 10 trees / ha). Second, we recommend 
that forest administration and its related  offices  grow  the  



 

 

 
 
 
 
species in nurseries and introduce it in the areas 
previously identified as of low densities or absence of 
the species; in such areas, after planting, tending 
operations (weeding, liana cuttings, thinning…) should be 
carried out by forest administration to ensure the survival 
of D. guineense along the successional stages of the 
vegetation growth. Third, because the species is well 
appreciated by populations and to lighten pressure on it, 
we recommend capacity building of populations to raise 
their ability in growing the species in nurseries, and in 
planting and tending operations on the field or home 
gardens. Fourth and more globally, forest administration 
can organize workshops to raise the awareness of 
populations on the issues of threats to biodiversity and the 
adequate behaviors compatible with its conservation. 
Fifth, we also recommend an adaptive approach to the 
conservation of the species (Williams and Brown, 2012) 
that will consist in evaluating in the coming future possible 
new trends in the evolution of its population’s traits 
(densities, regeneration processes, survival, growth 
through developmental stages of vegetation) and the 
environmental or non-environmental factors involved in 
such evolution so as to develop new strategies and 
actions to a more effective conservation of the species 
with time. 
 
 

Conclusion 
 
Our study revealed that, consistent with its ecology, the 
spatial distribution of D. guineense, a Guinean species is 
controlled by four environmental variables bio3 
(isothermality), bio4 (temperature seasonality), bio12 
(annual precipitation), and bio15 (precipitation 
seasonality). At present the prediction of suitable area of 
the species in West Africa is higher southwards, mostly 
limited to coastal zones with however some gaps of 
occurrence all over its spatial distribution. Climate will 
impact the spatial distribution of the species because the 
suitability prediction will progressively decrease in most 
of the countries of our study area under both scenarios 
with a maximum decay under rcp 8 .5. We need therefore 
to apply adaptive strategies to conserve the species. We 
then suggest that the species be planted in the predicted 
suitable areas to account for insufficient existing densities 
or absence of the species. Populations should also be 
trained so as to be capacitated to grow, plant and carry 
out tending operations on the species. 

As future investigation, since a species does not grow 
alone on the field, it will be useful to find out, how plant 
communities including D. guineense can be resilient to 
the climate and global changes in the future. 
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