International Journal of
Computer Engineering Research

  • Abbreviation: Int. J. Comput. Eng. Res.
  • Language: English
  • ISSN: 2141-6494
  • DOI: 10.5897/IJCER
  • Start Year: 2010
  • Published Articles: 33

Full Length Research Paper

Optimized mask selection for person identification and camera distance measurement based on interocular distance

Khandaker Abir Rahman1*, Shafaeat Hossain1, Al-Amin Bhuiyan2, Tao Zhang3, Md. Hasanuzzaman1 and H. Ueno4
1Department of Computer Science and Engineering, University of Dhaka, Dhaka-1000, Bangladesh. 2Department of Electronics and Computer Science, Jahangirnagar University, Savar, Bangladesh. 3Department of Automation, Tsinghua University, Beijing, China. 4National Institute of Informatics (NII), Tokyo, Japan.
Email: [email protected]

  •  Accepted: 04 February 2010
  •  Published: 30 April 2010

Abstract

This paper presents a multi-resolution masks based pattern matching method for person identification. The system is commenced with the construction of multi-resolution mask cluster pyramid, where the mask size is chosen depending on the distance between two eyes, computed from the detected face. Experimental results show the effectiveness of the system with significantly higher precision, recall rates and matching probability comparing with conventional single resolution mask based person identification systems. This paper also presents a novel person to camera distance measuring system based on eye-distance. The distance between centers of two eyes (interocular distance) is used for measuring the person to camera distance. The variation in eye-distance (in pixels) with the changes in camera to person distance (in inches) is used to formulate the distance measuring system. Experimental results show the effectiveness of the distance measurement system with an average accuracy of 94.11%.

 

Key words: Single resolution mask, multi-resolution masks, person to camera distance, person identification.