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Blind Signal Separation is the task of separating signals when only their mixtures are observed. 
Recently, Independent Component Analysis has become a favorite method of researchers for attacking 
this problem. We propose a new score function based on Generalized Laplace Distribution for the 
problem of blind signal separation for supergaussian and subgaussian. To estimate the parameters of 
such score function we used Nelder-Mead algorithm for optimizing the maximum likelihood function of 
Generalized Laplace Distribution. To blindly extract the independent source signals, we resort to 
FastICA approach. Simulation results show that the proposed approach is capable of separating 
mixture of signals. 
 
Key words: Independent component analysis (ICA), generalized laplace distribution (GLD), maximum 
likelihood (ML), Nelder-Mead (NM). 

 
 
INTRODUCTION 
 
A blind source separation (BSS) algorithm aims to 
recover sources from a number of observed mixtures. 
The problem that it is solving can be formulated 
statistically as follows: given M-dimensional random 

variable vector 
T

M1 (t)]x,(t),...[x(t)=x  that arises from 
linear combination of the mutually independent 
components of N-dimensional unknown random variable 

T
N1 (t)]s,(t),...[s(t)=s  represented mathematically as 

 
M,1,2,...(t)(t) == tsAx ,                                      (1) 

 

Where 
NM , RsRx ∈∈ and A is an M x N mixing matrix. 

Here, R denotes the field of real numbers. The class of 
algorithms that handle such a problem is also called 
independent component analysis (ICA). When the 
number of the mixtures is equal to that of the sources 
(that is, M=N), the objective can be refined to find an N x 
N invertible square matrix W such that 
 

N,1,2,...(t)(t) == txWu ,                                    (2) 
 
 
 
*Corresponding author. E-mail: abd_el_aziz_m@yahoo.com. 

Where the components of estimated source 
T

N1 (t)]u,(t),...[u(t) =u are mutually independent as 
much as possible. This must be done as accurately as 
possible with the assumption that no more than one 
source has a Gaussian distribution. Current algorithms 
can meet this objective within a permutation and scaling 
of the original sources. In general, the majority of BSS 
approaches perform ICA, by essentially optimizing the 
negative log-likelihood (objective) function with respect to 
the unmixing matrix W such that 
 

� −= |)det(|log)](upE[log),L( iu i
WWu

                 (3) 
 
Where E [.] represents the expectation operator and 

)( iu up
�  is the model for the marginal probability density 

function (pdf) of iu  , for all ni ,...,2,1= . Normally, matrix 
W is regarded as the parameter of interest and the pdfs 
of the sources are considered to be nuisance 
parameters. In effect, when correctly hypothesizing upon 
the distribution of the sources, the maximum likelihood 
(ML) principle leads to estimating functions, which in fact 
are the score functions of the sources (Cardoso, 1998). 
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In principle, the separation criterion in (3) can be 
optimized by any suitable ICA algorithm where contrasts 
are utilized (Cardoso, 1998). A popular choice of such a 
contrast-based algorithm is the so-called fast (cubicly) 
converging Newton-type (fixed-point) algorithm, normally 
referred to as FastICA (Hyvarinen and Oja, 1997), and 
based on: 
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Where, as defined in Karvanen and Koivunen (2002) 
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With 
T

nn2211 )](u),....,(u),(u[(t) ϕϕϕϕ =  being valid 

for all ni ,...,2,1= . In the ICA framework, accurately 
estimating the statistical model of the sources at hand is 
still an open and challenging problem (Cardoso, 1998). 
Practical BSS scenarios employ difficult source 
distributions and even situations where many sources 
with very different pdfs are mixed together. Since these 
densities are often unknown, unrealistic assumptions 
about the score functions employed that can seriously 
compromise the performance and convergence 
properties of the algorithms in question can be made. 
This calls for a FastICA method that introduces source 
adaptively through a well-matched parametric (adaptive) 
score function (Kokkinakis and Nandi, 2006). 
 
 
GENERALIZED LAPLACE DISTRIBUTION (GLD) 
 
Subbotin (1923) proposed a generalization of the Laplace 
distribution with pdf: 
 

�
�

�

�

�
�

�

� −
−

+Γ
−=

i

i

i

i

ii p
pi

p
i

ip
p

i
ipii p

x

pp
pxf

σ
µ

σ
σµ exp

)11(2
1

),,|( 1

              
                                                                                (7) 
 

Where iµ,∞<<∞− x is the location parameter, ipσ
 

is the scale parameter, 0>ip  is the shape parameter 

and )(αΓ is the Gamma function, defined by 
 

�
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The incomplete gamma function defined by  
 

�
−−=

x
z dzezx

0
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The complementary incomplete gamma function defined 
by 
 

�
∞

−−=Γ
x

z dzezx 1),( αα
 

 
The generalized Laplace is sometimes referred to as the 
exponential power function distribution. This distribution 
is widely used in Bayesian inference (Box and Tiao, 
1962; Tiao and Lund, 1970). Estimation issues related to 
Equation (7) are discussed in [Agr ‘o, 1995; Zeckhauser 
and Thompson, 1970). Using the definition of the 
incomplete gamma functions, one can write the cdf 
corresponding to (7) as 
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Example for GLD 
 
Consider random numbers generated form GLD with 

parameters 3] 4, 2,[=p  , ] 4, 0, -2,[==µ  and 
] .9 .1,0 0.5,0[=σ  in which its probability density 

function (pdf) (g, h, f) respectively as shown in Figure 1. 
In this example we see that the GLD contain (Laplace 
and Gaussian as special case). 
 
 
THE OBJECTIVE FUNCTION 
 
Based on Equation (4) we can obtain family of parametric 
or score functions by twice differentiable GLD of Equation 
(7). By substituting Equation (7) into (4) for the source 

estimates iu , it quickly becomes obvious that our 
proposed objective function 
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Figure 1. Probability density function for GLD with different parameters. 

 
 
 
This objective function can be used to modeling large 
amount of signals such as speech and types of 
challenging heavy- and light-tailed distributions. We can 

obtain special case of Equation (9) at 0=iµ , 1=ip and 
1=iσ   

 

)()( iii usignu =ϕ                                                   (10) 
 

In which this special case is the standard threshold 
activation function which is suitable for speech signals or 
(Laplacian pdf). 
 
 
ESTIMATION OF THE GLD PARAMETERS 
 

To refine those further, we can resort to ML. For a 
sequence of mutually independent Data 

]u,...,u,[u N21=u  of sample size N with density as 

defined in Equation (7) 
),,|( pug pii σµ

 the ML 
estimates are uniquely defined by their log-likelihood 
function as 
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                                    (11) 

 

Usually, ML parameter estimates are obtained by first 
differentiating the log-likelihood function in Equation (11) 
with respect to the GLD parameters and then by equating 
those derivatives to zero (Shin et al., 2005). 

Estimation of the location and scale parameters 
 
By deriving the log-likelihood function with respect to µ  

and pσ
and by equalizing the obtained expressions to 

zero, we have the following equations: 
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The Equation (12) does not have, in general, an explicit 
solution and is solved by means of numerical methods, 
while from Equation (13) we get the maximum likelihood 
estimator of σ,  as follow: 
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Estimation of the shape parameter p 
 
The methods presented in literature are based on the 
likelihood function and on indices of kurtosis. 
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Estimation of p by means of the maximum likelihood 
method 
 
If we want to determine the maximum likelihood estimator 
of the shape parameter p, the equation that we obtain by 
deriving the log-likelihood function (11) is: 
 

|log|||�u|)�([log
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                                                                                 (14) 
 

Where (.)Ψ  is the digamma function, which is the first 
derivative of the logarithm of the gamma function. The 
equation (14) can be solved by using numerical methods. 
Moreover, Agr ò (1995) uses this method showing that it 
does not work well for small samples, even though it 
provides good results for samples of size greater than 50 
- 100. 
 
 
Estimation of p by means of indices of kurtosis 
 
These estimation procedures take into account the 
relationship between the shape parameter p and the 
kurtosis. The usually used indices of kurtosis are: 
 

22
2

4
2 )]/3([

)/5()/1(
p

pp
Γ

ΓΓ==
µ
µβ

                                   (15) 
 

)/2(
)/3()/1(

1

2

p
pp

IV
Γ

ΓΓ
==

µ
µ

                              (16) 
 

IV
I

1=
                                                                   (17) 

 

12

2 +== p
p

p
p µ

µ
β

                                                    (18) 
 
Where  
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Is the absolute moment of grade r . The index pβ
, called 

generalized index of kurtosis, the estimators of the 
indices of kurtosis above described are given by: 
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Where M  is the arithmetic mean. 
 
Alternative method used to maximize the ML equation in 
(11) to ensure the estimated parameters, this done by 
resorting to the Nelder-Mead (NM) method direct search 
method. The appeal of the NM optimization technique lies 
in the fact that it can minimize the negative of the log-
likelihood objective function given in Equation (11), 
essentially without relying on any derivative information. 
Despite the danger of unreliable performance (especially 
in high dimensions), numerical experiments have shown 
that the NM method can converge to an acceptably 
accurate solution with substantially fewer function 
evaluations. Good numerical performance and a 
significant improvement in computational complexity for 
our estimation method. Therefore, optimizations with the 
NM technique produce a good estimation for three 
parameters in GLD. 
 
 
SIMULATIONS 
 
Here, simulation results are shown to verify the 
performance of the proposed algorithm using 
Generalized Laplace Distribution as objective (cost) 
function in which we used NM to estimate the parameters 
before using FastICA. 
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Figure 2. The mixing signals in left and original signals in right. 

 
 
 

 
 
Figure 3. The estimated signals in left with scales, permutation and original signals in right. 

 
 
 
Example 1 
 
Consider three speech signals as sources, mixing matrix 
A and demixing matrix W are given as follow  
 

�
�
�

�

�

�
�
�

�

�

=
.48.32.17

.56.65.75

.37.79.56
A

 And 
�
�
�

�

�

�
�
�

�

�

=
.0017.0192.0339
.0415.0467.0024
.260.0340.0109

W

 
 

By using the equation sAx =  we obtain mixed signals 
as shown in Figure (2) where mixing signals in left and 
original signals in right. We recover the source by using 
FastICA and we show the estimated signals in left with 
scales, permutation and original signals in right in Figure 
(3). 
 
 
Example 2 
 

Consider   a   three  sources  in  which  they  are  random 

number from GLD but with parameters 6] 1, 2,[=p  , 
] 4, 0, -2,[==µ  and ] .9 .1,0 0.5,0[=σ   

 

,n) p(3), �(3), ),GLDrnd(µ(3  

,n) p(2), �(2), ),GLDrnd(µ(2  

,n) p(1), �(1), ),GLDrnd(µ(1  

3

2

1
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=
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s
s
s

 
 
At n=600 
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�

�

�

=
.5.92.25
.60.65.35
.37.6.50

A

 And 
�
�
�
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�

=
0.312-0.84.4333-
9.809.91-2.03
0.84-.1.40-2.55

W
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Figure 4. The mixing signals in left and original signals in right. 

 
 
 

 
 
Figure 5. The estimated signals in left with scales, permutation and original signals in right. 

 
 
 
Based on the equation of mixed X = AS we obtain mixed 
signals as shown in Figure (4) where mixing signals in left 
and source signals in right. We obtain the source signals 
by using FastICA and we show the estimated signals in 
left and original signals in right in Figure (5). 
 
 
Conclusions 
 
This paper introduces a new family of score functions 
based on Generalized Laplace Distribution for BSS in 
which this family contain Laplace and Gaussian 
distributions as special cases. To estimate the 
parameters of these functions, we have chosen to 
maximize the ML equation with the NM optimization 
method as alternative method to derive the ML equation. 
To   blindly   extract   the   source   signals   we  resort  to 

FastICA. Simulation results show that the proposed 
approach is capable of separating mixtures of signals. 
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