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On distributed memory electronic computers, the implementation and association of fast parallel matrix 
multiplication algorithms has yielded astounding results and insights. In this discourse, we use the 
tools of molecular biology to demonstrate the theoretical encoding of Strassen’s fast matrix 
multiplication algorithm with DNA based on an n-moduli set in the residue number system, thereby 
demonstrating the viability of computational mathematics with DNA. As a result, a general scalable 
implementation of this model in the DNA computing paradigm is presented and can be generalized to 
the application of all fast matrix multiplication algorithms on a DNA computer. We also discuss the 
practical capabilities and issues of this scalable implementation. Fast methods of matrix computations 
with DNA are important because they also allow for the efficient implementation of other algorithms 
(that is inversion, computing determinants, and graph theory) with DNA. 
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INTRODUCTION 
 
The multiplication of matrices is a fundamental 
operation applicable to a diverse range of 
algorithms from computing determinants, 
inverting matrices, and solving linear systems to 
graph theory. Indeed, Bunch and Hopcroft (1974) 
successful ly  proved that , given an 
algor i thm for mult iply ing  two n × n matrices 
in O(n

α
) operations where 2 < α ≤ 3, then the 

triangular factorization of a permutation of any n 
× n nonsingular matrix, as well as its inverse can 
be found in O(n

α
) operations. The standard 

method of square matrix multiplication requires 
2n

3
 operations. Let ω be the smallest number 

such that O(n
ω+ε

) multiplications suffice for all 
ε > 0. Strassen (1969) presented a divide-and-
conquer algorithm, using noncommutative 
multiplication to compute the product of two 
matrices (of order m2

k
) by m

3
7

k
 

mul t ipl i cat ions  and (5 +  m)m
2
7

k
 - 6m

2
2

2 k
 

addi t ions. Thus, by recursive appl ication 
of  Strassen‟s algorithm, the product of two 
matrices   can   be   computed  by  at  most 

(4.7)n
l o g

2
7
 operations. Following Strassen‟s work, 

Coppersmith and Winograd (1990) were able to 
improve the exponent to  2.38. 

Their  approaches  and those of 
subsequent  researchers  rely  on the same 
framework. For  some k,  they  devised a 
method to mult iply  matr ices of  order k 
wi th  m k

3
 mul t ipl ications  and recursively  

apply this technique to show that ω < logk m 
(Robinson 2005). Only until recently, it was long 
supposed that, ω could take on the value of 2 
without much evidence. Using a group-theoretic 
construction, Cohn e t  a l .  (2005) rederived the 
Coppersmith-Winograd algorithm to describe 
several families of wreath product groups that 
yield nontrivial upper bounds on ω, the best 
asymptotic result being 2.41. They also 
presented  two conjectures  in  which ei ther  
one would  imply an exponent  o f  2. 

Unfortunately, although these improvements to 
Strassen‟s algorithm are theoretically optimal, 
they  lack  pragmatic  value. In  practice,  only the  



 
 
 
 

Strassen algorithm is fully implemented and 
utilized as such: 

 

 
 
For even integers m, n, and k, let X R

m×k
 and 

Y R
k×n

 be matrices with product Q R
m×n

, and 
set 
 
where X i j R

m/2 ×k/ 2
,  Y i j R

k/ 2 ×n/ 2
,  and  

Q i j R
m/2 ×n/ 2

.  Then per form the fol lowing 
to compute Q = XY ,  
 
M0: = (X00 + X11)(Y00 + Y11), 
M1: = (X10 + X11)Y00, 
M2: = X00(Y01 - Y11), 
M3: = X11(-Y00 + Y10), 
M4: = (X00 + X01)Y11, 
M5: = (-X00 + X10)(Y00 + Y01), 
M6 :  =  (X 0 1 - X11)(Y1 0 + Y11) ,  
Q00 = M0 + M3 - M4 + M6 , 
Q01 = M1 + M3 , 
Q10 = M2 + M4 , 
Q11 = M0  + M 2 - M1  + M5.  
 
Even if the dimension of the matrices is not even 
or if the matrices are not square, it is easy to 
pad the matrices with zeros and perform the 
aforementioned algorithm. Typically, computations 
such as this one are performed using electronic 
components on a silicon substrate. In fact, it is a 
commonly held notion that „most‟ computers 
should follow this model. In the last decade 
however, a newer and more revolutionary form of 
computing has come about, known as DNA 
computing. DNA‟s key advantage is that it can 
make computers much smaller than before, while 
at the same time maintaining the capacity to store 
prodigious amounts of data. Since Adleman‟s 
(1994) pioneering paper, DNA computing has 
become a rapidly evolving field with its primary 
focus on developing DNA algorithms for NP-
complete problems. However, unlike quantum 
computing in recent years, the viability of 
computational mathematics on a DNA computer 
has not yet been fully demonstrated, for the whole 
field of DNA-based computing has merged to 
controlling and mediating information processing 
for nanostructures and molecular movements. In 
fact, only recently have the primitive operations in 
mathematics (that is addition, subtraction, 
multiplication, and division) been implemented 
Thus, the general problem dealt with in this paper 
is to explore the feasibility of computational 
mathematics with DNA. 
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Fujiwara et al. (2004) proved a DNA represen-
tation of binary integers using single strands and 
presented procedures for primitive mathematical 
operations through simple manipulations in DNA. 
It is important to note that, the work of Fujiwara et 
al. (2004) and those of subsequent researchers 
have relied upon a fixed-base number system. 
The fixed-base number system is a bottleneck for 
many algorithms, as it restricts the speed at 
which arithmetic operations can be performed 
and increases the complexity of the algorithm. 
Parallel arithmetic operations are simply not 
feasible in the fixed-base number system 
because of the effect of a carry propagation. 
Recently, Zheng et  al.  (2009) have presented an 
improved DNA representation of an integer based 
on the residue number system (RNS) and give 
algorithms of arithmetic operations in ZM = {0, 1, · 
· · , M - 1} where ZM is the ring of integers with 
respect to modulo M . Their results exploit the 
massive parallelism in DNA mainly because of 
the carry-free property of all arithmetic operations 
(except division, of course) in RNS. 

In this paper, we present a parallelization 
method for performing Strassen‟s fast matrix 
multiplication methods on a DNA computer. 
Although DNA-based methods for the multiplication 
of boolean (Oliver, 1997) and real-numbered 
matrices (Zhang and Wang, 2009) have been 
proven, these approaches run in the traditional 
O(n

3
) t ime, by using digraphs and are not divide-

and-conquer like Strassen‟s algorithm (and hence 
are not particularly efficient when used with 
DNA). Divide-and-conquer algorithms particularly 
benefit from the parallelism of the DNA computing 
paradigm because distinct sub-processes can be 
executed on different processors. The critical 
problem addressed in this paper is to provide a 
DNA implementation of Strassen‟s algorithm, while 
keeping in mind that in recent years, it has been 
shown that the biomolecular operations suggested 
by the Adleman-Lipton model are not very reliable 
in practice. More specifically, the objectives we aim 
to accomplish in this research paper are the 
following: 
 
1. To provide a revised version of the Adleman-
Lipton model that better handles recursive ligation 
and overcomes the confounding of results with the 
complexity of tube content. 
2. To establish a systematic approach of 
representing and adding and subtracting matrices 
using DNA in the RNS system. 
3. Next, based on this representation system, we 
describe an implementation of the Cannon 
algorithm with DNA at the bottom level. 
4. And  lastly,  we   present  a  method  to store the  



12         Int. J. Comput. Eng. Res. 
 
 
 
different sub-matrices in different strands, and we 
prove a mathematical relation between the 
resultant matrix and the sub-matrices at recursion 
level r. 

Our approach uses the Cannon algorithm at the 
bottom level (within a tube containing a memory 
strand) and the Strassen algorithm at the top level 
(between memory strands). We show that the 
Strassen-Cannon algorithm decreases in comple-
xity as the recursion level r increases (Nguyen et  
al . , 2005). If the Cannon algorithm is replaced by 
other parallel matrix multiplication algorithms at 
the bottom level (such as the Fox algorithm), our 
result still holds. The difficulty that arises is that, in 
order to use the Strassen algorithm at the top level, we 
must determine the sub-matrices after the recursive 
execution of the Strassen formula r times and then 
find the resultant matrix. On a sequential machine, 
this problem is trivial; however, on a parallel 
machine this situation becomes much more 
arduous. Nguyen et al. (2005) present a method for 
electronic computers to determine all the nodes at 
the unspecified level r in the execution tree of the 
Strassen algorithm, thereby allowing for the direct 
calculation of the resultant matrix from the sub-
matrices calculated by parallel matrix multiplication 
algorithms at the bottom level. 

Thus, we show that this result can theoretically 
be obtained using DNA, and combined with a 
storage map of sub-matrices to DNA strands and 
with the usage of the Cannon algorithm at the 
bottom level, we have a general scalable imple-
mentation of the Strassen algorithm on Adleman‟s 
DNA computer. The reason why we concentrate on the 
Strassen algorithm is that it offers superior performance 
over the traditional algorithm for practical matrix sizes 
less than 1020 (Nguyen et al., 2005). However, our 
methods are also applicable to „all‟ fast matrix 
multiplication algorithms on a DNA computer, as 
these algorithms are always in recursive form 
(Pan, 1984). In addition, our results can be used 
to implement other algorithms, such as inversion 
and computing determinants on a DNA computer, 
since matrix multiplication is almost ubiquitous in 
application. 
 
 
PRELIMINARY THEORY 
 

The residue number system 
 
Here, we introduce the residue number system 
because it will be used later on as a basis for the 
representation system of matrices using DNA, and 
exploits the mass parallelism of DNA. The residue 
number system is defined by a set of pairwise, 
coprime moduli P = {qn-1 , · · · , q0}. An integer in 
RNS is represented as a vector of residues with 

 
 
 
 
respect to the moduli set P. As a consequence of 
the Chinese remainder theorem, for any integer 
x [0, M - 1] where M =  Π i = 0

i = n - 1
qi,  each 

RNS representation is unique. As stated by 
Zheng et al. (2009), the vector (xn-1 , · · · , x0) 
denotes the residue representation of x. 

It has been previously mentioned that, one of 
the important characteristic of RNS is that, all 
arithmetic operations except for division are 
carry-free. Thus, for any two integers x → (xn-1 , 
· · · , x0) ZM and y → (yn-1 , · · · , y0) ZM we 
obtain the following from Paun et  al.  (1998): 
 

  
in which ◦ is any operation of addition, 
subtraction, or multiplication. 
 
 
The Adleman-Lipton model 
 
Here, we present a theoretical and practical basis 
for our algorithms. By the Adleman-Lipton model, 
we define a test tube T as a multi-set of (oriented) 
DNA sequences over the nucleotide alphabet {A, 
G, C, T}. The following operations can be 
performed as follows: 
 
1. Merge (T1 , T2): Merge the contents in tube T1 
and tube T2 , and store the results in tube T1 ; 
2. Copy (T1 , T2): Make a copy of the contents in 
tube T1 and store the result in tube T2 ; 
3. Detect (T ): For a given tube T , this operation 
returns “True” if tube T contains at least one DNA 
strand, else it returns “False”; 
4. Separation (T1, X, T2 ): From all the DNA 
strands in tube T1 , take out only those 
containing the sequences of X over the alphabet 
{A, G, C, T} and place them in tube T2 ; 
5. Selection (T1 , l, T2): Remove all strands of 

length l from tube T1 into tube T2 ;  
6. Cleavage (T, σ0σ1): Given a tube T and a 
sequence σ0σ1 , for every strand containing then 
the cleavage operation can be performed as such: 

 

 
 
where the overhead bar denotes the 
complementary strand. 
 
7. Annealing (T): Produce all feasible double 
strands in tube T and store the results in tube T  



 
 
 
 
(the assumption here is that ligation is executed 
after annealing); 
8. Denaturation (T): disassociate every double 
strand in tube T into two single strands and store 
the results in tube T ; 
9. Empty (T): Empty tube T . 
 
According to Paun et al . (1998), the complexity of 
each of the aforementioned operations is O(1). 
 
 
Revised Adleman-Lipton model through 
ligation by selection 
 
In practice, the recursive properties of our 
implementation of the Strassen-Canon algorithm 
require a massive ligation step that is not feasible. 
The reason is that, in practice, the biomolecular 
operations suggested by the Adleman-Lipton 
model are not completely reliable. This ligation 
step cannot produce longer molecules as required 
by our implementation, and certainly not more than 
10 to 15 ligations in a row. Not to mention that 
both the complexity of the tube content and the 
efficiency of the enzyme would obscure the 
results. As a result of these considerations, the 
operations Separation (T1, X, T2) and Annealing (T) 
function with questionable success when applied 
to a complex test tube, especially when recursion 
is used. 

Therefore, in order for matrix multiplication 
under the Adleman-Lipton model to be completely 
reliable in practice and the aforementioned 
problems circumvented, these streptavidin based 
operations must be improved upon. That way, the 
parallelization offered by DNA can be utilized as 
an important mathematical tool with performance 
capabilities comparable to the electronics. One 
way we propose to overcome this potential setback 
of ligation is to use a modified ligation procedure 
that can handle longer molecules in place of the 
original, termed “ligation by selection” presented by 
Kodumal and Santi (2004). Ligation by selection 
(LBS) is a method to ligate multiple adjacent DNA 
fragments that does not require intermediate 
fragment isolation and is amenable to parallel 
processing, therefore reducing the obfuscation of 
the results by the complexity of tube content. 
Essentially in LBS, fragments that are adjacent to 
each other are cloned into plasmid markers that 
have a common antibiotic marker, a linking 
restriction site for joining the fragments, a linking 
restriction site on the vector, and each vector has a 
unique site to be used for restriction-purification 
and a unique antibiotic marker. The method is 
applied to efficiently stitch multiple synthetic DNA 
fragments  of   500  to  800 bp  together to produce  
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segments of up to 6000 bp (Kodumal and Santi, 
2004). For a cogent and complete explanation of 
ligation by selection we refer the reader to 
Kodumal and Santi (2004). 

To utilize LBS recursively, the alteration of 
resistance markers and restriction-purification sites 
of acceptor and donor vectors that occur in each 
LBS cycle must be accounted for, in order to 
minimize the number of cycles required in parallel 
processing. As opposed to conventional ligation, 
the advantages that LBS has are (Kodumal and 
Santi, 2004): 
 
1. The avoidance of the need to isolate, purify, and 
ligate individual fragments, 
2. The evasion of the need for specialized MCS 
linkers, 
3. And most importantly, the ease with which 
parallel processing of operations may be applied. 
 
Hence, in order for the Adleman-Lipton model to 
be more reliable in the recursive operations our 
implementation of Strassen‟s algorithm requires, 
we replace the ligation procedure of the Adleman-
Lipton model with LBS. 
 
 
DNA MATRIX OPERATIONS IN RNS 
 
DNA Representation of a matrix in RNS 
 
We extend the DNA representation of integers in 
RNS presented in Zheng et al.  (2009) to 
representing an entire matrix Y in RNS by way of 
single DNA strands. 
 

 
 
The key here is the RNS representation of each 
element yqr in the hypothetical matrix Y with 1 ≤ 
q ≤ t and 1 ≤ r ≤ t by way of DNA strands. We 
first utilize the improved DNA representation of n 
binary numbers with m binary bits as described 
in Zheng et  al .  (2009) for the alphabet ∑: 
 
∑ = {Ai, Bj , C0, C1, E0, E1, D0, D1, 1, 0, #|0 ≤ i 
≤ M - 1, 0 ≤ j ≤ m}. 
 
Here, Ai indicates the address of M integers in 
RNS; Bj denotes the binary bit position; C0 , C1 , 
E0 ,  E1 ,  D0 ,  and  D1  are used in the C leavage  
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operation; # is used in the Separation operation;  
and 0 and 1 are binary numbers. Thus, in the 
residue digit position, the value of the bit yqr with a 
bit address of i and a bit position of j can be  

 
 

 
 
 
 
represented by a single DNA strand (Si,j)yqr  
(Si,j)qr = (D1BjE0E1AiC0C1V D0)yqr, 
for V {0, 1}. Hence, the matrix Y can be 
represented as such:  
 
 

              (2) 
                
Where each strand-element is not necessarily 
distinct. The reader must keep in mind that M 
integers in RNS defined by the n-moduli set P can 
b e  represented by 2M (m + 1) different memory 
strands, whereas in the binary system, the 
representation of M integers requires 2M( 1 
+∑i = 0

i = n - 1
mi) different memory strands. 

 
 

Residue number arithmetic with matrices 
 

From (1), it is apparent that the operation ◦ is 
carry-free, thereby allowing for the employment of 
parallel procedures in all residue digits. In Zheng et  

 
 

 
al.  (2009) two properties are given for the 
modular operation involving two integers x → 
(xn-1 , · · · , x0 ) and y →(yn-1, · · · , y0) in RNS 
defined by the set 

 
Next, the procedures RNSAdd and RNSDiff add 
and subtract two integers in RNS defined by the 
moduli set P, respectively. The pseudocode for 
RNSAdd and RNSDiff is given in Zheng et al .  
(2009), and we refer the reader to that source 
(note that the pseudocode of Zheng et al . 
(2009) for both algorithms utilizes the operations 
of the Adleman-Lipton model extensively). 
 

 

Lemma 1: 

Lemma 2: 

 
 
 
Instead, we provide some background on the 
two procedures. The inputs are 2n tubes Tl

x
 

and Tl
y
 (for l = 0, · · · , n - 1) containing the 

memory strands representing the elements xqr 
and yqr of t × t matrices X and Y ,  respectively. 
Once, either operation is complete, it returns n 
tubes Tl

Rsum
 and Tl

Rdiff
 containing the result of 

residue addition or subtraction, respectively. We 
also use the following n temporary tubes for 
RNSAdd, namely, Ttemp, Tsum, and Tsum. 
Similarly for RNSDiff, the n temporary tubes, 
Ttemp, T 

l
diff, and T 

l
diff’ are used. Thus, based on 

Lemma 1 and 2, we introduce the following two 
algorithms for matrix addition and subtraction in 
RNS which will be used when dealing with the 
block matrices in Strassen‟s algorithm. For the sake of 
example, we are adding (and subtracting) the hypo-
thetical t × t matrices X and Y. Essentially, the 
RNSMatrixAdd and RNSMatrixDiff algorithms 
employ RNSAdd and RNSDiff in a nested FOR 
loop. 

Matrix addition 
 

The procedure RNSMatrixAdd is defined as: 
  

 

 

 

Algorithm 1: 

 
 
 

Matrix subtraction 
 

The procedure RNSMatrixDiff is defined as: 
 

 

 

Algorithm 2: 

 



 
 
 
 
STRASSEN’S ALGORITHM REVISITED 
 
Bottom-level matrix multiplication 
 
Although, a vast repository of traditional matrix 
multiplication algorithms can be used between 
processors (or in our case, test tubes containing 
memory strands; however for the sake of brevity, 
we shall just use the term “memory strand” or 
“strand”), we will employ the Cannon algorithm 
(Cannon, 1969) since it can be used on matrices of 
any dimension. We will only discuss square 
strand arrangements and square matrices for 
simplicity‟s sake. Assume that we have p

2
 

memory strands, organized in a logical sequence 
in a p × p mesh. For i ≥ 0 and j ≤ p - 1, the 
strand in the i

th
 row and j

th
 column has 

coordinates (i, j). 
The matrices X , Y, and their matrix product Q 

are of size t × t, and again as a simplifying 
assumption, let t be a multiple of p. All matrices 
will be partitioned into p × p blocks of s × s sub-
matrices where s = t/p. As described by Nguyen 
et  al .  (2005), the mesh can be perceived as an 
amalgamation of rings of memory strands in both 
the horizontal and vertical directions (opposite 
sides of the mesh are linked with a torus 
interconnection). A successful DNA implementation 
of Cannon‟s algorithm requires communication 
between the strands of each ring in the mesh 
where the blocks of matrix X are passed „ in 
parallel‟ to the left along the horizontal rings and 
the blocks of the matrix Y are passed to the top 
along the vertical rings. Let Xij , Yij , and Qij 
denote the blocks of X, Y, and Q stored in the 
strand with coordinates (i, j). The Cannon 
algorithm on a DNA computer can be described 
as such: 
 

 

Algorithm 3: 

 
 
Note that   the  procedure   UpShift  can be derived  
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from Zheng et al. (2009) LeftShift. Now we examine 
the run-time of the Cannon algorithm. The run 
time can be componentized into the 
communication time and the computation time, 
and the total communication time is 
 
(1) 2pα + (2Bβt

2
)/p, 

 
and the computation time is 
 
(2) (2t

3
tcomp)/p

2
, 

 
Where, tcomp is the execution time for one 
arithmetic operation, α is the latency, β is the 
sequence-transfer rate, the total latency is 2pα, 
and the total sequence-transfer time is 
2pβB(m/p)

2
 with B as the number of sequences 

to store one entry of the matrices. According to 
Nguyen et  al .  (2005), the running time is 
 
(3) T(t) = (2t

3
tcomp)/p

2 
+ 2pα + (2Bβt

2
)/p. 

 
 
Matrix storage pattern 
 
The primary difficulty is to be able to store the 
different sub-matrices of the Strassen algorithm in 
different strands, and these sub-matrices must be 
copied or moved to appropriate strands if tasks 
are spawned. Hence, we present here a storage 
map of sub-matrices to strands based on the result 
of Luo and Drake (1995) for electronic computers. 
Essentially, if we allow each strand to have a 
portion of each sub-matrix at each recursion 
level, then we can make it possible for all 
strands to act as one strand. As a result, the 
addition and subtraction of the block matrices 
performed in the Strassen algorithm at all 
recursion levels can be performed in parallel 
without any inter-strand communication (Nguyen 
et al., 2005). Each strand performs its local sub-
matrix additions and subtractions in RNS (via our 
RNSMatrixAdd and RNSMatrixDiff algorithms). At 
the final recursion level, the block matrix 
multiplications are calculated using our DNA 
implementation of the Cannon algorithm. 

For instance, if we suppose that the recursion 
level in the Strassen-algorithm is r, and let n = t/p, 
t0 = t/2, and n0 = t0 /p for n, t0, n0 N, then the 
run-time of the Strassen-Canon algorithm is: 
 

T(t) = 18Tadd(t/2) + 7T(t/2), 
 

where Tadd(t/2) is the run-time to add or subtract 
block matrices of order t/2. Additionally, according 
to (9) of Nguyen et  al .  (2005), 
Tt = (2(7/8)

r
t
3
tcomp)/p

2
 + (5(7/4)

r
tcomp)/p

2 
+ (7/4)

r
2pα. 

Since        the       asymptotically       significant      term  
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(2(7/8)

r
t
3
tcomp)/p

2
decreases as the recursion level r 

increases, then for t significantly large, the Strassen-
Cannon algorithm should be faster than the Cannon 
algorithm. Even if the Cannon algorithm is replaced 
at the bottom level by other parallel matrix 
multiplication algorithms, the same result holds. 

 
 
Recursion removal 

 
As has been previously discussed, in order to use 
the Strassen algorithm between strands (at the top 
level), we must determine the sub-matrices after 
r times recursive execution and then to determine 
the resultant matrix from these sub-matrices. 
Nguyen e t  a l .  (2005) recently presented a 
method on electronic computers, to ascertain all of 
the nodes in the execution tree of the Strassen 
algorithm at the unspecified recursion level r and to 
determine the relation between the sub-matrices 
and the resultant matrix at level r. We extend it to 
the DNA computing paradigm. At each step, the 
algorithm will execute a multiplication between 2 
factors, namely the linear combinations of the 
elements of the matrices X and Y, respectively. 
Since we can consider that each factor is the sum 
of all elements from each matrix, with coefficient of 
0, -1, or 1 (Nguyen e t  a l . , 2005), then we can 
represent these coefficients with the RNS 
representation of numbers with DNA strands 
described as such: 

 
({D1B1E0E1A0C0C10D0 , D1B0E0E1A0C0C1 0D0}, 
{D1B1E0E1A0C0C1 0D0 , D1B0E0E1A0C0 C10D0}, 
{D1B1E0E1A0 C0C10D0 , D1B0E0E1A0C0C10D0}), 
({D1B1E0E1A-1 C0 C11D0 , D1B0E0E1A-1C0C1 1D0}, 
{D1B1E0E1A-1 C0C11D0 , D1B0E0E1A-1C0 C1 1D0}, 
{D1B1E0E1A-1C0C1 1D0 , D1B0E0E1A-1 C0C11D0}), 
or 
({D1B1E0E1A1C0C10D0 , D1B0E0E1A1C0C1 1D0}, 
{D1B1E0E1A1C0C1 0D0 , D1B0E0E1A1C0 C1 1D0}, 
{D1B1E0E1A1 C0C10D0 , D1B0E0E1A1C0C11D0}), 

 
respectively. For the sake of brevity, we shall 
denote the latter three equations as (0)RNS , (-
1)RNS , and (1)RNS , respectively. This coefficient 
is obtained for each element in each recursive 
call and is dependent upon both the index of the 
call and the location of an element in the division 
of the matrix by 4 sub-matrices (Nguyen et al., 
2005). If we view the Strassen-Cannon algorithm‟s 
execution as an execution tree (Nguyen et  al . , 
2005), then each scalar multiplication is correlated 
on a leaf of the execution tree and the path from 
the root to the leaf represents the recursive calls 
leading to the corresponding multiplication. 
Furthermore, at  the  leaf,  the  coefficient  of each  

 
 
 
 
element (either (0)RNS , (-1)RNS , or (1)RNS) can 
be determined by the combination of all 
computations in the path from the root. The 
reason is that since all of the computations are 
linear, they can be combined in the leaf (which we 
will denote by tl). Utilizing the nomenclature of 
Nguyen et al. (2005), Strassen‟s formula can be 
depicted as such: 
 
For l = 0 · · · 6,  
                      

 
 
And 
 

 
 
in which 
 
SX = 
l\ij 00 01 10 11 
0 (1)RNS (0)RNS (0)RNS  (0)RNS 

1 (0)RNS (1)RNS (0)RNS  (0)RNS 

2 (0)RNS (0)RNS (1)RNS  (1)RNS 

3 (-1)RNS (0)RNS (1)RNS  (1)RNS 

4 (1)RNS (0)RNS (-1)RNS  (0)RNS 

5 (0)RNS (0)RNS (1)RNS  (1)RNS 

6 (0)RNS (0)RNS (0)RNS  (1)RNS 

SY = 
l\ij 00 01 10 11 
0 (1)RNS (0)RNS (0)RNS (0)RNS 

1 (0)RNS (0)RNS (1)RNS (0)RNS 

2 (-1)RNS (1)RNS (0)RNS (0)RNS 

3 (1)RNS (-1)RNS (0)RNS (1)RNS 

4 (0)RNS (-1)RNS (0)RNS (1)RNS 

5 (0)RNS (1)RNS (0)RNS (1)RNS 

6 (-1)RNS (1)RNS (1)RNS (-1)RNS 

SQ = 
l\ij 00 01 10 11 
0 (1)RNS (1)RNS (1)RNS  (1)RNS 

1 (1)RNS (0)RNS (0)RNS  (0)RNS 

2 (0)RNS (1)RNS (0)RNS  (0)RNS 

3 (0)RNS (1)RNS (1)RNS  (1)RNS 

4 (0)RNS (0)RNS (0)RNS  (1)RNS 

5 (0)RNS (1)RNS (0)RNS  (0)RNS 

6 (0)RNS (0)RNS (0)RNS  (1)RNS 

 
At recursion level r, tl can be represented as such: 
 

For l = 0 · · · 7
k
 - 1, 

 

 
 
And 



 
 
 
 

 
  
It is easy to see that SX = SX1, SY = SY1, SQ = SQ1; 
however, the difficulty that arises is to determine the 
values of the matrices SXk, SYk, and SQk in order 
to have a general algorithm. The following 
relations were proved in Nguyen et  al.  (2006), and 
we shall prove that these results hold with DNA: 
 

 
 

 
 

 
 
First, we shall extend the definition of the tensor 
product for arrays of arbitrary dimensions (Nguyen 
et al., 2006) by representing the tensor product in 
RNS by way of single DNA strands. 

 
 
Proposition 

 
Let A and B be arrays of the same dimension l 
and of size m1 × m2 × · · · × ml and n1 × n2 × · · · 
× nl , respectively. The elements of A and B are 
represented using RNA by way of DNA strands as 
presented in detail previously in this paper. The tensor 
product can thus be described as an array of the  
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same dimension and of size m1n1 × m2n2 × · · · × 
mlnl in which each element of A is replaced with 
the product of the element and B. This product can 
be computed with the algorithm RNSMult which is 
recognized by a serial of operations of the 
RNSAdd algorithm detailed in Zheng et al. (2009). 

P = A  B where P [i1 , i2 , · · · , il ] = A[k1 , k2 , · · · , 

kl ]B[h1 , h2 , · · · , hl ]. 1 ≤ j ≤ l, ij = kjnj + hj (kjnj 
and hj will be added with RNSAdd). 

If we let P = i = 1
i = n

Ai = (· · · (A1  A2)  

A3) · · · An) where Ai is an array of dimension l 
and of size mi1 × mi2 × · · · × mil, the following 
theorem allows us to directly compute the 
elements of P.  All products and sums of elements 
can be computed with RNSMult and RNSAdd, 
respectively. 
Theorem 1. If we let 

then 

 
 
Proof: We give a proof by induction. For n = 1 and n = 2, 
the statement is true. Assume it is true with n, then we 
shall prove it is true with n+1. 
 

 where 
 

 
 

for 1 ≤ k ≤ l. Hence, Pn+1 = Pn  An+1. 
 
Furthermore, by definition, 

 
Where 
 

 
 

Theorem 2. SXk = i=1
i=k

 SX, SYk = i=1
i=k

 

SY , and SQk = i=1
i=k

 SQ. 
Proof. We give a proof by induction. For k = 1, the 
statement is true. Assume it is true with k, then 
we shall prove that it is true with k + 1. Thus, at 
level k + 1 of the execution tree, for 0 ≤ l ≤ 7

k+1
 – 

1 

 

 
 
It follows that at level k + 2, for 0 ≤ l ≤ 7

k+1
 - 1  

and 0 ≤ l
 
≤ 6, 

 
 
where Xk+1,ij [i’

 
, j’

 
] and Yk+1,ij [i

 ‘
, j’

 
] are 2

k+2 
× 2

k+2
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matrices obtained by partitioning the matrices 
Xk+1,ij and Yk+1,ij into 4 sub-matrices (we use i’

 

and j’
 

to denote the sub-matrix‟s quarter). We  
represent l, l’

 
in base 7 RNS, and i, j, i’

 
, j’

 
in base 

 
 
 

 
 
 
 

2 RNS. Since Xk+1,ij [i’
 
, j’

 
] = Xk+2,ij [ ii’

 
2 , jj’2  ], then 

for 0 ≤ ll’  
 
(7)  ≤ 7

k+1
 - 1, 

Moreover, for 0 ≤ ll  (7) ≤ 7
k+1

 - 1, 

 

 
 

 
 
We also have 

 

SXk+2( ll’7 , ii’2 , jj’2 ) = SXk+1(l,i,j)SX(l’,i’,j’), 

 
and 
 

SYk+2( ll’7 , ii’2 , jj’2 ) = SYk+1(l,i,j)SY(l’,i’,j’). 

 
Thus, 
 

SXk+2 = SXk+1 SX = i=1
i=k+2

SX, 

SYk+2 = SYk+1 SY = i=1
i=k+2

SY, 

 
and 
 

SQk+2 = SQk+1 SQ = i=1
i=k+2

SQ. 
We can form the following sub-matrices: 
 

 
 
As a result of our storage map of sub-matrices to 
strands presented earlier in this paper, the 
following sub-matrices can be „locally‟ determined 
within each strand, and their product Tl can be 
computed by our DNA implementation of the 
Cannon algorithm: 
 

 
 
And 
 

 

All of the sub-matrices are added with the 
RNSMatrixAdd algorithm presented earlier in this 
paper. Lastly, it is important to note that we have 
derived a method to directly compute the sub-
matrix elements of the resultant matrix via the 
application of matrix additions (using the 
RNSMatrixAdd algorithm) instead of backtracking 
manually down the recursive execution tree to 
compute: 
 

 
 
 
CONCLUSION 
  
Our general scalable implementation can be used 
for all of the matrix multiplication algorithms that 
use fast matrix multiplication algorithms at the  



 
 
 
 
top level (between strands) on a DNA computer. 
Moreover, since the computational complexity of 
these algorithms decreases when the recursion 
level r increases, we can now find optimal 
algorithms for all particular cases. Of course, as 
mentioned previously in this paper, the current 
science of DNA computing does not guarantee a 
perfect implementation of the Strassen algorithm as 
described herein; for now, these results should be 
regarded as primarily theoretical in nature. 
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