
International Journal of Computer Engineering Research Vol. 3(1), pp. 10-19, January 2012
Available online at http://www.academicjournals.org/IJCER
DOI: 10.5897/IJCER10.016
ISSN 2141-6494 ©2012 Academic Journals

Full Length Research paper

Fast matrix multiplication techniques based on the
Adleman-Lipton model

Aran Nayebi

727 Moreno Avenue, Palo Alto, California, United States of America 94303-3618. E-mail: aran.nayebi@gmail.com.

Accepted 24 February, 2011

On distributed memory electronic computers, the implementation and association of fast parallel matrix
multiplication algorithms has yielded astounding results and insights. In this discourse, we use the
tools of molecular biology to demonstrate the theoretical encoding of Strassen’s fast matrix
multiplication algorithm with DNA based on an n-moduli set in the residue number system, thereby
demonstrating the viability of computational mathematics with DNA. As a result, a general scalable
implementation of this model in the DNA computing paradigm is presented and can be generalized to
the application of all fast matrix multiplication algorithms on a DNA computer. We also discuss the
practical capabilities and issues of this scalable implementation. Fast methods of matrix computations
with DNA are important because they also allow for the efficient implementation of other algorithms
(that is inversion, computing determinants, and graph theory) with DNA.

Key words: DNA computing, residue number system, logic and arithmetic operations, Strassen algorithm.

INTRODUCTION

The multiplication of matrices is a fundamental
operation applicable to a diverse range of
algorithms from computing determinants,
inverting matrices, and solving linear systems to
graph theory. Indeed, Bunch and Hopcroft (1974)
successful ly proved that , given an
algor i thm for mult iply ing two n × n matrices
in O(n

α
) operations where 2 < α ≤ 3, then the

triangular factorization of a permutation of any n
× n nonsingular matrix, as well as its inverse can
be found in O(n

α
) operations. The standard

method of square matrix multiplication requires
2n

3
 operations. Let ω be the smallest number

such that O(n
ω+ε

) multiplications suffice for all
ε > 0. Strassen (1969) presented a divide-and-
conquer algorithm, using noncommutative
multiplication to compute the product of two
matrices (of order m2

k
) by m

3
7

k

mul t ipl i cat ions and (5 + m)m
2
7

k
 - 6m

2
2

2 k

addi t ions. Thus, by recursive appl ication
of Strassen‟s algorithm, the product of two
matrices can be computed by at most

(4.7)n
l o g

2
7
 operations. Following Strassen‟s work,

Coppersmith and Winograd (1990) were able to
improve the exponent to 2.38.

Their approaches and those of
subsequent researchers rely on the same
framework. For some k, they devised a
method to mult iply matr ices of order k
wi th m k

3
 mul t ipl ications and recursively

apply this technique to show that ω < logk m
(Robinson 2005). Only until recently, it was long
supposed that, ω could take on the value of 2
without much evidence. Using a group-theoretic
construction, Cohn e t a l . (2005) rederived the
Coppersmith-Winograd algorithm to describe
several families of wreath product groups that
yield nontrivial upper bounds on ω, the best
asymptotic result being 2.41. They also
presented two conjectures in which ei ther
one would imply an exponent o f 2.

Unfortunately, although these improvements to
Strassen‟s algorithm are theoretically optimal,
they lack pragmatic value. In practice, only the

Strassen algorithm is fully implemented and
utilized as such:

For even integers m, n, and k, let X R

m×k
 and

Y R
k×n

 be matrices with product Q R
m×n

, and
set

where X i j R

m/2 ×k/ 2
, Y i j R

k/ 2 ×n/ 2
, and

Q i j R
m/2 ×n/ 2

. Then per form the fol lowing
to compute Q = XY ,

M0: = (X00 + X11)(Y00 + Y11),
M1: = (X10 + X11)Y00,
M2: = X00(Y01 - Y11),
M3: = X11(-Y00 + Y10),
M4: = (X00 + X01)Y11,
M5: = (-X00 + X10)(Y00 + Y01),
M6 : = (X 0 1 - X11)(Y1 0 + Y11) ,
Q00 = M0 + M3 - M4 + M6 ,
Q01 = M1 + M3 ,
Q10 = M2 + M4 ,
Q11 = M0 + M 2 - M1 + M5.

Even if the dimension of the matrices is not even
or if the matrices are not square, it is easy to
pad the matrices with zeros and perform the
aforementioned algorithm. Typically, computations
such as this one are performed using electronic
components on a silicon substrate. In fact, it is a
commonly held notion that „most‟ computers
should follow this model. In the last decade
however, a newer and more revolutionary form of
computing has come about, known as DNA
computing. DNA‟s key advantage is that it can
make computers much smaller than before, while
at the same time maintaining the capacity to store
prodigious amounts of data. Since Adleman‟s
(1994) pioneering paper, DNA computing has
become a rapidly evolving field with its primary
focus on developing DNA algorithms for NP-
complete problems. However, unlike quantum
computing in recent years, the viability of
computational mathematics on a DNA computer
has not yet been fully demonstrated, for the whole
field of DNA-based computing has merged to
controlling and mediating information processing
for nanostructures and molecular movements. In
fact, only recently have the primitive operations in
mathematics (that is addition, subtraction,
multiplication, and division) been implemented
Thus, the general problem dealt with in this paper
is to explore the feasibility of computational
mathematics with DNA.

N ay eb i 11

Fujiwara et al. (2004) proved a DNA represen-
tation of binary integers using single strands and
presented procedures for primitive mathematical
operations through simple manipulations in DNA.
It is important to note that, the work of Fujiwara et
al. (2004) and those of subsequent researchers
have relied upon a fixed-base number system.
The fixed-base number system is a bottleneck for
many algorithms, as it restricts the speed at
which arithmetic operations can be performed
and increases the complexity of the algorithm.
Parallel arithmetic operations are simply not
feasible in the fixed-base number system
because of the effect of a carry propagation.
Recently, Zheng et al. (2009) have presented an
improved DNA representation of an integer based
on the residue number system (RNS) and give
algorithms of arithmetic operations in ZM = {0, 1, ·
· · , M - 1} where ZM is the ring of integers with
respect to modulo M . Their results exploit the
massive parallelism in DNA mainly because of
the carry-free property of all arithmetic operations
(except division, of course) in RNS.

In this paper, we present a parallelization
method for performing Strassen‟s fast matrix
multiplication methods on a DNA computer.
Although DNA-based methods for the multiplication
of boolean (Oliver, 1997) and real-numbered
matrices (Zhang and Wang, 2009) have been
proven, these approaches run in the traditional
O(n

3
) t ime, by using digraphs and are not divide-

and-conquer like Strassen‟s algorithm (and hence
are not particularly efficient when used with
DNA). Divide-and-conquer algorithms particularly
benefit from the parallelism of the DNA computing
paradigm because distinct sub-processes can be
executed on different processors. The critical
problem addressed in this paper is to provide a
DNA implementation of Strassen‟s algorithm, while
keeping in mind that in recent years, it has been
shown that the biomolecular operations suggested
by the Adleman-Lipton model are not very reliable
in practice. More specifically, the objectives we aim
to accomplish in this research paper are the
following:

1. To provide a revised version of the Adleman-
Lipton model that better handles recursive ligation
and overcomes the confounding of results with the
complexity of tube content.
2. To establish a systematic approach of
representing and adding and subtracting matrices
using DNA in the RNS system.
3. Next, based on this representation system, we
describe an implementation of the Cannon
algorithm with DNA at the bottom level.
4. And lastly, we present a method to store the

12 Int. J. Comput. Eng. Res.

different sub-matrices in different strands, and we
prove a mathematical relation between the
resultant matrix and the sub-matrices at recursion
level r.

Our approach uses the Cannon algorithm at the
bottom level (within a tube containing a memory
strand) and the Strassen algorithm at the top level
(between memory strands). We show that the
Strassen-Cannon algorithm decreases in comple-
xity as the recursion level r increases (Nguyen et
al . , 2005). If the Cannon algorithm is replaced by
other parallel matrix multiplication algorithms at
the bottom level (such as the Fox algorithm), our
result still holds. The difficulty that arises is that, in
order to use the Strassen algorithm at the top level, we
must determine the sub-matrices after the recursive
execution of the Strassen formula r times and then
find the resultant matrix. On a sequential machine,
this problem is trivial; however, on a parallel
machine this situation becomes much more
arduous. Nguyen et al. (2005) present a method for
electronic computers to determine all the nodes at
the unspecified level r in the execution tree of the
Strassen algorithm, thereby allowing for the direct
calculation of the resultant matrix from the sub-
matrices calculated by parallel matrix multiplication
algorithms at the bottom level.

Thus, we show that this result can theoretically
be obtained using DNA, and combined with a
storage map of sub-matrices to DNA strands and
with the usage of the Cannon algorithm at the
bottom level, we have a general scalable imple-
mentation of the Strassen algorithm on Adleman‟s
DNA computer. The reason why we concentrate on the
Strassen algorithm is that it offers superior performance
over the traditional algorithm for practical matrix sizes
less than 1020 (Nguyen et al., 2005). However, our
methods are also applicable to „all‟ fast matrix
multiplication algorithms on a DNA computer, as
these algorithms are always in recursive form
(Pan, 1984). In addition, our results can be used
to implement other algorithms, such as inversion
and computing determinants on a DNA computer,
since matrix multiplication is almost ubiquitous in
application.

PRELIMINARY THEORY

The residue number system

Here, we introduce the residue number system
because it will be used later on as a basis for the
representation system of matrices using DNA, and
exploits the mass parallelism of DNA. The residue
number system is defined by a set of pairwise,
coprime moduli P = {qn-1 , · · · , q0}. An integer in
RNS is represented as a vector of residues with

respect to the moduli set P. As a consequence of
the Chinese remainder theorem, for any integer
x [0, M - 1] where M = Π i = 0

i = n - 1
qi, each

RNS representation is unique. As stated by
Zheng et al. (2009), the vector (xn-1 , · · · , x0)
denotes the residue representation of x.

It has been previously mentioned that, one of
the important characteristic of RNS is that, all
arithmetic operations except for division are
carry-free. Thus, for any two integers x → (xn-1 ,
· · · , x0) ZM and y → (yn-1 , · · · , y0) ZM we
obtain the following from Paun et al. (1998):

in which ◦ is any operation of addition,
subtraction, or multiplication.

The Adleman-Lipton model

Here, we present a theoretical and practical basis
for our algorithms. By the Adleman-Lipton model,
we define a test tube T as a multi-set of (oriented)
DNA sequences over the nucleotide alphabet {A,
G, C, T}. The following operations can be
performed as follows:

1. Merge (T1 , T2): Merge the contents in tube T1
and tube T2 , and store the results in tube T1 ;
2. Copy (T1 , T2): Make a copy of the contents in
tube T1 and store the result in tube T2 ;
3. Detect (T): For a given tube T , this operation
returns “True” if tube T contains at least one DNA
strand, else it returns “False”;
4. Separation (T1, X, T2): From all the DNA
strands in tube T1 , take out only those
containing the sequences of X over the alphabet
{A, G, C, T} and place them in tube T2 ;
5. Selection (T1 , l, T2): Remove all strands of

length l from tube T1 into tube T2 ;
6. Cleavage (T, σ0σ1): Given a tube T and a
sequence σ0σ1 , for every strand containing then
the cleavage operation can be performed as such:

where the overhead bar denotes the
complementary strand.

7. Annealing (T): Produce all feasible double
strands in tube T and store the results in tube T

(the assumption here is that ligation is executed
after annealing);
8. Denaturation (T): disassociate every double
strand in tube T into two single strands and store
the results in tube T ;
9. Empty (T): Empty tube T .

According to Paun et al . (1998), the complexity of
each of the aforementioned operations is O(1).

Revised Adleman-Lipton model through
ligation by selection

In practice, the recursive properties of our
implementation of the Strassen-Canon algorithm
require a massive ligation step that is not feasible.
The reason is that, in practice, the biomolecular
operations suggested by the Adleman-Lipton
model are not completely reliable. This ligation
step cannot produce longer molecules as required
by our implementation, and certainly not more than
10 to 15 ligations in a row. Not to mention that
both the complexity of the tube content and the
efficiency of the enzyme would obscure the
results. As a result of these considerations, the
operations Separation (T1, X, T2) and Annealing (T)
function with questionable success when applied
to a complex test tube, especially when recursion
is used.

Therefore, in order for matrix multiplication
under the Adleman-Lipton model to be completely
reliable in practice and the aforementioned
problems circumvented, these streptavidin based
operations must be improved upon. That way, the
parallelization offered by DNA can be utilized as
an important mathematical tool with performance
capabilities comparable to the electronics. One
way we propose to overcome this potential setback
of ligation is to use a modified ligation procedure
that can handle longer molecules in place of the
original, termed “ligation by selection” presented by
Kodumal and Santi (2004). Ligation by selection
(LBS) is a method to ligate multiple adjacent DNA
fragments that does not require intermediate
fragment isolation and is amenable to parallel
processing, therefore reducing the obfuscation of
the results by the complexity of tube content.
Essentially in LBS, fragments that are adjacent to
each other are cloned into plasmid markers that
have a common antibiotic marker, a linking
restriction site for joining the fragments, a linking
restriction site on the vector, and each vector has a
unique site to be used for restriction-purification
and a unique antibiotic marker. The method is
applied to efficiently stitch multiple synthetic DNA
fragments of 500 to 800 bp together to produce

Nayebi 13

segments of up to 6000 bp (Kodumal and Santi,
2004). For a cogent and complete explanation of
ligation by selection we refer the reader to
Kodumal and Santi (2004).

To utilize LBS recursively, the alteration of
resistance markers and restriction-purification sites
of acceptor and donor vectors that occur in each
LBS cycle must be accounted for, in order to
minimize the number of cycles required in parallel
processing. As opposed to conventional ligation,
the advantages that LBS has are (Kodumal and
Santi, 2004):

1. The avoidance of the need to isolate, purify, and
ligate individual fragments,
2. The evasion of the need for specialized MCS
linkers,
3. And most importantly, the ease with which
parallel processing of operations may be applied.

Hence, in order for the Adleman-Lipton model to
be more reliable in the recursive operations our
implementation of Strassen‟s algorithm requires,
we replace the ligation procedure of the Adleman-
Lipton model with LBS.

DNA MATRIX OPERATIONS IN RNS

DNA Representation of a matrix in RNS

We extend the DNA representation of integers in
RNS presented in Zheng et al. (2009) to
representing an entire matrix Y in RNS by way of
single DNA strands.

The key here is the RNS representation of each
element yqr in the hypothetical matrix Y with 1 ≤
q ≤ t and 1 ≤ r ≤ t by way of DNA strands. We
first utilize the improved DNA representation of n
binary numbers with m binary bits as described
in Zheng et al . (2009) for the alphabet ∑:

∑ = {Ai, Bj , C0, C1, E0, E1, D0, D1, 1, 0, #|0 ≤ i
≤ M - 1, 0 ≤ j ≤ m}.

Here, Ai indicates the address of M integers in
RNS; Bj denotes the binary bit position; C0 , C1 ,
E0 , E1 , D0 , and D1 are used in the C leavage

14 Int. J. Comput. Eng. Res.

operation; # is used in the Separation operation;
and 0 and 1 are binary numbers. Thus, in the
residue digit position, the value of the bit yqr with a
bit address of i and a bit position of j can be

represented by a single DNA strand (Si,j)yqr
(Si,j)qr = (D1BjE0E1AiC0C1V D0)yqr,
for V {0, 1}. Hence, the matrix Y can be
represented as such:

 (2)

Where each strand-element is not necessarily
distinct. The reader must keep in mind that M
integers in RNS defined by the n-moduli set P can
b e represented by 2M (m + 1) different memory
strands, whereas in the binary system, the
representation of M integers requires 2M(1
+∑i = 0

i = n - 1
mi) different memory strands.

Residue number arithmetic with matrices

From (1), it is apparent that the operation ◦ is
carry-free, thereby allowing for the employment of
parallel procedures in all residue digits. In Zheng et

al. (2009) two properties are given for the
modular operation involving two integers x →
(xn-1 , · · · , x0) and y →(yn-1, · · · , y0) in RNS
defined by the set

Next, the procedures RNSAdd and RNSDiff add
and subtract two integers in RNS defined by the
moduli set P, respectively. The pseudocode for
RNSAdd and RNSDiff is given in Zheng et al .
(2009), and we refer the reader to that source
(note that the pseudocode of Zheng et al .
(2009) for both algorithms utilizes the operations
of the Adleman-Lipton model extensively).

Lemma 1:

Lemma 2:

Instead, we provide some background on the
two procedures. The inputs are 2n tubes Tl

x

and Tl
y
 (for l = 0, · · · , n - 1) containing the

memory strands representing the elements xqr
and yqr of t × t matrices X and Y , respectively.
Once, either operation is complete, it returns n
tubes Tl

Rsum
 and Tl

Rdiff
 containing the result of

residue addition or subtraction, respectively. We
also use the following n temporary tubes for
RNSAdd, namely, Ttemp, Tsum, and Tsum.
Similarly for RNSDiff, the n temporary tubes,
Ttemp, T

l
diff, and T

l
diff’ are used. Thus, based on

Lemma 1 and 2, we introduce the following two
algorithms for matrix addition and subtraction in
RNS which will be used when dealing with the
block matrices in Strassen‟s algorithm. For the sake of
example, we are adding (and subtracting) the hypo-
thetical t × t matrices X and Y. Essentially, the
RNSMatrixAdd and RNSMatrixDiff algorithms
employ RNSAdd and RNSDiff in a nested FOR
loop.

Matrix addition

The procedure RNSMatrixAdd is defined as:

Algorithm 1:

Matrix subtraction

The procedure RNSMatrixDiff is defined as:

Algorithm 2:

STRASSEN’S ALGORITHM REVISITED

Bottom-level matrix multiplication

Although, a vast repository of traditional matrix
multiplication algorithms can be used between
processors (or in our case, test tubes containing
memory strands; however for the sake of brevity,
we shall just use the term “memory strand” or
“strand”), we will employ the Cannon algorithm
(Cannon, 1969) since it can be used on matrices of
any dimension. We will only discuss square
strand arrangements and square matrices for
simplicity‟s sake. Assume that we have p

2

memory strands, organized in a logical sequence
in a p × p mesh. For i ≥ 0 and j ≤ p - 1, the
strand in the i

th
 row and j

th
 column has

coordinates (i, j).
The matrices X , Y, and their matrix product Q

are of size t × t, and again as a simplifying
assumption, let t be a multiple of p. All matrices
will be partitioned into p × p blocks of s × s sub-
matrices where s = t/p. As described by Nguyen
et al . (2005), the mesh can be perceived as an
amalgamation of rings of memory strands in both
the horizontal and vertical directions (opposite
sides of the mesh are linked with a torus
interconnection). A successful DNA implementation
of Cannon‟s algorithm requires communication
between the strands of each ring in the mesh
where the blocks of matrix X are passed „ in
parallel‟ to the left along the horizontal rings and
the blocks of the matrix Y are passed to the top
along the vertical rings. Let Xij , Yij , and Qij
denote the blocks of X, Y, and Q stored in the
strand with coordinates (i, j). The Cannon
algorithm on a DNA computer can be described
as such:

Algorithm 3:

Note that the procedure UpShift can be derived

Nayebi 15

from Zheng et al. (2009) LeftShift. Now we examine
the run-time of the Cannon algorithm. The run
time can be componentized into the
communication time and the computation time,
and the total communication time is

(1) 2pα + (2Bβt

2
)/p,

and the computation time is

(2) (2t

3
tcomp)/p

2
,

Where, tcomp is the execution time for one
arithmetic operation, α is the latency, β is the
sequence-transfer rate, the total latency is 2pα,
and the total sequence-transfer time is
2pβB(m/p)

2
 with B as the number of sequences

to store one entry of the matrices. According to
Nguyen et al . (2005), the running time is

(3) T(t) = (2t

3
tcomp)/p

2
+ 2pα + (2Bβt

2
)/p.

Matrix storage pattern

The primary difficulty is to be able to store the
different sub-matrices of the Strassen algorithm in
different strands, and these sub-matrices must be
copied or moved to appropriate strands if tasks
are spawned. Hence, we present here a storage
map of sub-matrices to strands based on the result
of Luo and Drake (1995) for electronic computers.
Essentially, if we allow each strand to have a
portion of each sub-matrix at each recursion
level, then we can make it possible for all
strands to act as one strand. As a result, the
addition and subtraction of the block matrices
performed in the Strassen algorithm at all
recursion levels can be performed in parallel
without any inter-strand communication (Nguyen
et al., 2005). Each strand performs its local sub-
matrix additions and subtractions in RNS (via our
RNSMatrixAdd and RNSMatrixDiff algorithms). At
the final recursion level, the block matrix
multiplications are calculated using our DNA
implementation of the Cannon algorithm.

For instance, if we suppose that the recursion
level in the Strassen-algorithm is r, and let n = t/p,
t0 = t/2, and n0 = t0 /p for n, t0, n0 N, then the
run-time of the Strassen-Canon algorithm is:

T(t) = 18Tadd(t/2) + 7T(t/2),

where Tadd(t/2) is the run-time to add or subtract
block matrices of order t/2. Additionally, according
to (9) of Nguyen et al . (2005),
Tt = (2(7/8)

r
t
3
tcomp)/p

2
 + (5(7/4)

r
tcomp)/p

2
+ (7/4)

r
2pα.

Since the asymptotically significant term

16 Int. J. Comput. Eng. Res.

(2(7/8)

r
t
3
tcomp)/p

2
decreases as the recursion level r

increases, then for t significantly large, the Strassen-
Cannon algorithm should be faster than the Cannon
algorithm. Even if the Cannon algorithm is replaced
at the bottom level by other parallel matrix
multiplication algorithms, the same result holds.

Recursion removal

As has been previously discussed, in order to use
the Strassen algorithm between strands (at the top
level), we must determine the sub-matrices after
r times recursive execution and then to determine
the resultant matrix from these sub-matrices.
Nguyen e t a l . (2005) recently presented a
method on electronic computers, to ascertain all of
the nodes in the execution tree of the Strassen
algorithm at the unspecified recursion level r and to
determine the relation between the sub-matrices
and the resultant matrix at level r. We extend it to
the DNA computing paradigm. At each step, the
algorithm will execute a multiplication between 2
factors, namely the linear combinations of the
elements of the matrices X and Y, respectively.
Since we can consider that each factor is the sum
of all elements from each matrix, with coefficient of
0, -1, or 1 (Nguyen e t a l . , 2005), then we can
represent these coefficients with the RNS
representation of numbers with DNA strands
described as such:

({D1B1E0E1A0C0C10D0 , D1B0E0E1A0C0C1 0D0},
{D1B1E0E1A0C0C1 0D0 , D1B0E0E1A0C0 C10D0},
{D1B1E0E1A0 C0C10D0 , D1B0E0E1A0C0C10D0}),
({D1B1E0E1A-1 C0 C11D0 , D1B0E0E1A-1C0C1 1D0},
{D1B1E0E1A-1 C0C11D0 , D1B0E0E1A-1C0 C1 1D0},
{D1B1E0E1A-1C0C1 1D0 , D1B0E0E1A-1 C0C11D0}),
or
({D1B1E0E1A1C0C10D0 , D1B0E0E1A1C0C1 1D0},
{D1B1E0E1A1C0C1 0D0 , D1B0E0E1A1C0 C1 1D0},
{D1B1E0E1A1 C0C10D0 , D1B0E0E1A1C0C11D0}),

respectively. For the sake of brevity, we shall
denote the latter three equations as (0)RNS , (-
1)RNS , and (1)RNS , respectively. This coefficient
is obtained for each element in each recursive
call and is dependent upon both the index of the
call and the location of an element in the division
of the matrix by 4 sub-matrices (Nguyen et al.,
2005). If we view the Strassen-Cannon algorithm‟s
execution as an execution tree (Nguyen et al . ,
2005), then each scalar multiplication is correlated
on a leaf of the execution tree and the path from
the root to the leaf represents the recursive calls
leading to the corresponding multiplication.
Furthermore, at the leaf, the coefficient of each

element (either (0)RNS , (-1)RNS , or (1)RNS) can
be determined by the combination of all
computations in the path from the root. The
reason is that since all of the computations are
linear, they can be combined in the leaf (which we
will denote by tl). Utilizing the nomenclature of
Nguyen et al. (2005), Strassen‟s formula can be
depicted as such:

For l = 0 · · · 6,

And

in which

SX =
l\ij 00 01 10 11
0 (1)RNS (0)RNS (0)RNS (0)RNS

1 (0)RNS (1)RNS (0)RNS (0)RNS

2 (0)RNS (0)RNS (1)RNS (1)RNS

3 (-1)RNS (0)RNS (1)RNS (1)RNS

4 (1)RNS (0)RNS (-1)RNS (0)RNS

5 (0)RNS (0)RNS (1)RNS (1)RNS

6 (0)RNS (0)RNS (0)RNS (1)RNS

SY =
l\ij 00 01 10 11
0 (1)RNS (0)RNS (0)RNS (0)RNS

1 (0)RNS (0)RNS (1)RNS (0)RNS

2 (-1)RNS (1)RNS (0)RNS (0)RNS

3 (1)RNS (-1)RNS (0)RNS (1)RNS

4 (0)RNS (-1)RNS (0)RNS (1)RNS

5 (0)RNS (1)RNS (0)RNS (1)RNS

6 (-1)RNS (1)RNS (1)RNS (-1)RNS

SQ =
l\ij 00 01 10 11
0 (1)RNS (1)RNS (1)RNS (1)RNS

1 (1)RNS (0)RNS (0)RNS (0)RNS

2 (0)RNS (1)RNS (0)RNS (0)RNS

3 (0)RNS (1)RNS (1)RNS (1)RNS

4 (0)RNS (0)RNS (0)RNS (1)RNS

5 (0)RNS (1)RNS (0)RNS (0)RNS

6 (0)RNS (0)RNS (0)RNS (1)RNS

At recursion level r, tl can be represented as such:

For l = 0 · · · 7
k
 - 1,

And

It is easy to see that SX = SX1, SY = SY1, SQ = SQ1;
however, the difficulty that arises is to determine the
values of the matrices SXk, SYk, and SQk in order
to have a general algorithm. The following
relations were proved in Nguyen et al. (2006), and
we shall prove that these results hold with DNA:

First, we shall extend the definition of the tensor
product for arrays of arbitrary dimensions (Nguyen
et al., 2006) by representing the tensor product in
RNS by way of single DNA strands.

Proposition

Let A and B be arrays of the same dimension l
and of size m1 × m2 × · · · × ml and n1 × n2 × · · ·
× nl , respectively. The elements of A and B are
represented using RNA by way of DNA strands as
presented in detail previously in this paper. The tensor
product can thus be described as an array of the

Nayebi 17

same dimension and of size m1n1 × m2n2 × · · · ×
mlnl in which each element of A is replaced with
the product of the element and B. This product can
be computed with the algorithm RNSMult which is
recognized by a serial of operations of the
RNSAdd algorithm detailed in Zheng et al. (2009).

P = A B where P [i1 , i2 , · · · , il] = A[k1 , k2 , · · · ,

kl]B[h1 , h2 , · · · , hl]. 1 ≤ j ≤ l, ij = kjnj + hj (kjnj
and hj will be added with RNSAdd).

If we let P = i = 1
i = n

Ai = (· · · (A1 A2)

A3) · · · An) where Ai is an array of dimension l
and of size mi1 × mi2 × · · · × mil, the following
theorem allows us to directly compute the
elements of P. All products and sums of elements
can be computed with RNSMult and RNSAdd,
respectively.
Theorem 1. If we let

then

Proof: We give a proof by induction. For n = 1 and n = 2,
the statement is true. Assume it is true with n, then we
shall prove it is true with n+1.

 where

for 1 ≤ k ≤ l. Hence, Pn+1 = Pn An+1.

Furthermore, by definition,

Where

Theorem 2. SXk = i=1
i=k

 SX, SYk = i=1
i=k

SY , and SQk = i=1
i=k

 SQ.
Proof. We give a proof by induction. For k = 1, the
statement is true. Assume it is true with k, then
we shall prove that it is true with k + 1. Thus, at
level k + 1 of the execution tree, for 0 ≤ l ≤ 7

k+1
 –

1

It follows that at level k + 2, for 0 ≤ l ≤ 7

k+1
 - 1

and 0 ≤ l

≤ 6,

where Xk+1,ij [i’

, j’

] and Yk+1,ij [i

 ‘
, j’

] are 2

k+2
× 2

k+2

18 Int. J. Comput. Eng. Res.

matrices obtained by partitioning the matrices
Xk+1,ij and Yk+1,ij into 4 sub-matrices (we use i’

and j’

to denote the sub-matrix‟s quarter). We
represent l, l’

in base 7 RNS, and i, j, i’

, j’

in base

2 RNS. Since Xk+1,ij [i’

, j’

] = Xk+2,ij [ii’

2 , jj’2], then

for 0 ≤ ll’

(7) ≤ 7

k+1
 - 1,

Moreover, for 0 ≤ ll (7) ≤ 7
k+1

 - 1,

We also have

SXk+2(ll’7 , ii’2 , jj’2) = SXk+1(l,i,j)SX(l’,i’,j’),

and

SYk+2(ll’7 , ii’2 , jj’2) = SYk+1(l,i,j)SY(l’,i’,j’).

Thus,

SXk+2 = SXk+1 SX = i=1
i=k+2

SX,

SYk+2 = SYk+1 SY = i=1
i=k+2

SY,

and

SQk+2 = SQk+1 SQ = i=1
i=k+2

SQ.
We can form the following sub-matrices:

As a result of our storage map of sub-matrices to
strands presented earlier in this paper, the
following sub-matrices can be „locally‟ determined
within each strand, and their product Tl can be
computed by our DNA implementation of the
Cannon algorithm:

And

All of the sub-matrices are added with the
RNSMatrixAdd algorithm presented earlier in this
paper. Lastly, it is important to note that we have
derived a method to directly compute the sub-
matrix elements of the resultant matrix via the
application of matrix additions (using the
RNSMatrixAdd algorithm) instead of backtracking
manually down the recursive execution tree to
compute:

CONCLUSION

Our general scalable implementation can be used
for all of the matrix multiplication algorithms that
use fast matrix multiplication algorithms at the

top level (between strands) on a DNA computer.
Moreover, since the computational complexity of
these algorithms decreases when the recursion
level r increases, we can now find optimal
algorithms for all particular cases. Of course, as
mentioned previously in this paper, the current
science of DNA computing does not guarantee a
perfect implementation of the Strassen algorithm as
described herein; for now, these results should be
regarded as primarily theoretical in nature.

REFERENCES

Adleman L (1994). Molecular Computation of Solutions to

Combinatorial Problems. Science, 266: 1021-1024.
Bunch R Hopcroft J (1974). Triangular Factorization and

Inversion by Fast Matrix Multiplication. Math. Compt.,

28: 231-236.
Cannon L (1969). A cellular computer to implement the

kalman filter algorithms. Ph.D. Thesis, pp. 1-228.

Cohn H, Kleinberg R, Szegedy B, Umans C (2005). Group-
Theoretic Algorithms for Matrix Multiplication.Proc. of the

Coppersmith D, Winograd S (1990). Matrix multiplication

46th Annual Symp. on Found. of Compt. Sci., 379-388.
Fujiwara A, Matsumoto K, Chen W (2004). Procedures for

logic and arithmetic operations with DNAmolecules. Int. J.

Found. Comput. Sci., 15: 461-474.

Nayebi 19

Kodumal S, Santi D (2004). DNA ligation by selection.

BioTechniques, 37: 34-40.
Luo Q, Drake J (1995). A scalable parallel strassen‟s matrix

multiplication algorithm for distributed memory computers.
Proc. of the ACM symp. Appl. Comp., pp. 221-226.

Nguyen D, Lavallée I, Bui M (2005). A General Scalable

Implementation of Fast Matrix Multiplication.Algorithms on
Distributed Memory Computers. Proc. Sixth Inter.
Conference Soft. Engin., pp. 116-122.

Nguyen D, Lavallée I, Bui M (2006). A New Direction to
Parallelize Winograd‟s Algorithm on Distributed Memory
Computers. Proc. of the Third Inter. Conference on High

Perf. Scientific Compt., pp. 445-457.
Oliver J (1997). Matrix Multiplication with DNA. J. Mol. Evol.,

45: 161-167.

Pan V (1984). How can we speed up matrix multiplication?.
SIAM Rev., 26: 393-416.

Paun G, Rozenberg G, Salomaa A (1998). DNA computing.

Springer-Verlag.
Robinson S (2005). Toward an Optimal Algorithm for Matrix

Multiplication. SIAM News, 38: 1-3.

Strassen V (1969). Gaussian elimination is not optimal.
Number. Math., 13: 354-356.

Zhang G, Wang S (2009). Matrix Multiplication Based on

DNA Computing. ICNC, 5: 167-170.
Zheng X, Xu J, Li W (2009). Parallel DNA arithmetic

operation based on n-moduli set. Appl. Math. Compt., 212:

177-184.

