

International Journal of Computer Engineering Research Vol. 2(2), pp. 34-44, March 2011
Available online at http://www.academicjournals.org/IJCER
ISSN 2141- 6494 ©2011 Academic Journals

Full Length Research Paper

Efficient power savings in wireless sensor networks
with network coding and overhearing avoidance

Hnin Yu Shwe* and Xiaohong Jiang

Electrical and Communication Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aza-Aoba,
Aramaki, Aoba-ku, Sendai, 980-8579 Japan.

Accepted 24 February, 2011

Wireless sensor networks and embedded systems are becoming commonplace in many fields of
research. However, sensor nodes are generally powered by batteries which provide a limited amount of
power, and it is often difficult to recharge or replace the batteries. Therefore, power aware and power
efficient protocols at each layer of the communications are very important for wireless sensor networks.
Various schemes tried to achieve significant power saving, among them; the network coding is one
promising technique. To the best of our knowledge, AdapCode is by now, the most promising network
coding architecture for power saving in wireless sensor networks. However, the AdapCode has two
clear limitations. First, the coding process of AdapCode works based only on partial neighbors of a
node which may waste some potential coding opportunities. Second, the AdapCode did not consider
overhearing and idle listening issues in packets forwarding, so, it may cause unnecessary battery
power expenditure from receiving irrelevant packets. To address the earlier mentioned limitations, we
first propose an improved AdapCode scheme (namely AdapCode+) by deploying a power efficient
protocol to discover all neighbors of a node, such that the potential coding opportunities can be
increased. To further avoid overhearing irrelevant packets, we then enhance AdapCode+ to
AdapCode++. The basic idea of AdapCode++ is to compose new digest information about the
subsequent packets to be sent out from current node, and then broadcast it together with the
conventional wake up message to all the neighbor nodes. In this way, the neighbor nodes can
intelligently determine receiving desired packets only. Our NS-2-based simulation indicates that the
simple AdapCode+ scheme can improve the AdapCode in terms of power saving, and the AdapCode++
can further make this improvement much more significant.

Key words: Sleep-wake scheduling, duty-cycling, overhearing, power saving, network coding, wireless sensor
network.

INTRODUCTION

Explosive growth in embedded computing and rapid
advances in low power wireless networking technologies
are fueling the development of wireless sensor networks
(WSNs). WSN may consist of even thousands of small
and fully autonomous nodes, which gather sensor
information, perform data processing, and communicate
with each other. The development of the WSNs was
originally motivated by the military service application

*Corresponding author. E-mail:
hninyu@mobile.ecei.tohoku.ac.jp.

areas like battlefield surveillance, however, they are now
also widely used in many application areas such as
environmental monitoring, habitat monitoring and mission
critical networks.

In WSNs, each sensor node has the capability of
sensing particular physical phenomena in its vicinity and
communicating with other nodes in the same network
using wireless transceivers. Broadcasting is a commonly
used mechanism for disseminating identical information
from one source to many receivers. However, as sensor
nodes are usually battery-powered, one of the major
limitations on performance and lifetime of such networks
is the limited capacity of these finite power sources.

Since the most power consumption action for WSN is the
data communication, in order to make optimal use of
power consumption, communication should be minimized
as much as possible.

Numerous researchers have recently suggested a
variety of mechanisms for achieving power-efficiency in
sensor networks, namely, in-network processing, data
aggregation, and network coding. One of the useful
approaches is in-network processing or data aggregation
(Demirkol et al., 2006; Li and Li, 2004). In such a setting,
certain nodes in the sensor network, called aggregators,
collect the raw information from the sensors, process it
locally, and reply to the aggregate queries of the central
server (Son et al., 2007). However, this approach cannot
be used when all the original packets are needed at the
received nodes. Recently, network coding became a new
approach that shows an awareness of the power
consumption by increasing the transmission capacity of a
network (Akyildiz et al., 2002; Fragouli et al., 2006).

In a traditional store-and-forward network, packets are
forwarded hop-by-hop along the intermediate nodes (for
example, routers) from a source to a destination. An
intermediate node forwards the packets as it receives
through a predefined path. On the other hand, network
coding technique allows an intermediate node to combine
data from different input links before sending the com-
bined data to its output links. Hence, for many problems
such as multicast and broadcast, using appropriate
encoding schemes at each intermediate node can
achieve the network capacity. Moreover, some research
works have already shown that network coding technique
can also be applied to wireless networks, thus, in recent
days, researchers have been investigating on how sensor
networks can get benefits from network coding.

To the best of our knowledge, the AdapCode (Haenggi,
2004) is by now the most promising network coding
architecture for power saving in WSNs. The main idea of
AdapCode is to adaptively adjust the coding combination
of packets in a node according to the number of its
neighbor nodes, so, AdapCode’s performance highly
depends on how many neighbors a node has. Generally,
if a node has more neighbors, it can encode more
packets together without losing reliability since it can
easily get enough combinations from its neighbors to
decode the original packets.

Although the available AdapCode scheme is good at
power saving from using network coding, it has two clear
problems that may significantly limit its efficiency. First, it
considers only partial neighbor nodes (namely full-active
neighbor nodes) while determining the coding
combinations, which may waste some potential coding
opportunities. Second, it suffers from the problem of
overhearing and idle listening. This is due to the
broadcast nature of the wireless channel where all nodes
in the vicinity of a sender node overhear its packet
transmissions even if they are not the intended recipients
of these transmissions. This kind of redundant reception

Shwe & Jiang 35

will result in an unnecessary power expenditure of the
recipients.

Based on these observations, in this paper, we first
enhance the AdapCode to AdapCode+ by deploying a
power efficient neighbor discovery protocol to find out all
the neighbors of a node, such that its potential coding
opportunities can be increased. To address the second
problem of AdapCode, we further improve the
AdapCode+ to AdapCode++, in which the redundant
overhearing of irrelevant packets is eliminated through
using new digest information together with the wakeup
message. We will show that through such improvements,
the power saving performance of AdapCode can be
significantly enhanced.

OVERVIEW OF AdapCode

AdapCode architecture

It is notable that among the network coding architectures
for WSN proposed by now, the AdapCode scheme is the
most promising one because, each node can adaptively
choose the coding combination of packets depending on
the number of its neighbor nodes. The AdapCode is a
reliable data dissemination protocol, using adaptive
network coding, and it can reduce traffic in the process of
code update.

Taking advantage of variations in connectivity, the
AdapCode presents an adaptive network coding protocol,
where nodes dynamically decide the new coding choice,

N , based on how many neighbors they have. The

coding methodology in AdapCode is to randomly

generate N coefficients and compute the linear

combination of N packets. Gaussian elimination is used

to decode the original packets.

Parameter selection

There are two parameters to be considered in network
coding (Polastre et al., 2004). The first one is how many

data segments, N , are proper to form a group. If N is

too small, it is unable to take the advantage of potential

network coding capability. On the other hand, if N is too

large, a node might not receive the required number of
packets to decode the original packet. The second
parameter is how many packets are needed to deliver for
obtaining the desired reliability. Different applications may
have different optimal value.

Table 1 shows the choice of N used in the AdapCode

according to the average neighbors of a node. For each

M received packets, each node will combine N packets

together into one coded packet and then will broadcast
the M

N
 coded packets only.

J. Comput. Eng. Res. 36

Table 1. The choice of N according to avg Neighbor.

avgNeighbor 0-4 5-7 8-10 11~

N 1 2 4 8

Limitations of the available network coding algorithm
in AdapCode

The current network coding architecture of AdapCode is
quite simple to maintain. However, it has the following
limitations: 1) In AdapCode, due to the broadcast nature
of communication, each node can opportunistically
overhear the packets which have already been received
before. Receiving those redundant packets will result in
unnecessary power dissipation and this is especially
significant for dense sensor networks, where each node
has several neighbors in its close vicinity; 2) we should
notice that if a node has more neighbors, it can get more
coding opportunities since it has the potential to get
enough messages from its neighbor nodes. However, the
current structure cannot fully explore this potential,
because the AdapCode did not count some nodes as the
neighbors of it. More specifically, if nodes have more
neighbors, they can encode more packets together since
they get more than enough combinations from their
neighbors to reconstruct the original message. Therefore,
the AdapCode will significantly limit the potential coding
opportunities.

To illustrate the limitation of current neighbor discovery
structure, we consider a simple example as shown in
Figure 1. Here, for the sake of simplicity, we define the
full-active and semi-active neighbor nodes used in our
schemes. We will say that node B is a full-active neighbor
of node A if node B is in the transmission range of node A
and node B has already sent some messages to node A
in previous time stamp. On the other hand, if node B is in
the transmission range of node A but it did not send any
message to node A earlier, we will regard node B as a
semi-active neighbor of node A.

In this example, although the actual number of
neighbors for sensor S is 6, the AdapCode will consider
the number of neighbors only just as 4 without
considering the semi-active neighbors because it
received messages from only those 4 full-active nodes in
previous time-stamp, but not from the other 2 semi-active
nodes. Finally, the sensor S will choose its new coding

choice, N , as 1 according to the specified table. It

means, in such case, the sensor S will not perform
network coding and it will broadcast the naive packet as it
is, and resulting in the loss of coding opportunity.
To address the above limitations of the available network
coding structure in AdapCode, we propose a new
neighbor discovery algorithm and overhearing avoidance
network coding algorithm in further discussions.

full-active

semi-active

s

Figure 1. Limitation illustration of the current neighbor discovery.

ADAPCODE+

Here, we first introduce the basic assumption in our code
distribution system, and then, we show the overall
architecture of our new scheme, the AdapCode+, for the
discovery of neighbor nodes followed by the detail
explanation of the proposed scheme.

Basic assumption

In our protocol, we assume that sensor nodes are
randomly distributed and they are not previously
configured with the knowledge of their locations. In
addition, there are n data messages, each with fixed
length that can fit into a packet. There is one single
source in the system. The source will keep on
transmitting the code update packets and will pause for a

period of
p

T milliseconds after finishing a page. This

pause of source is necessary to allow other nodes to start

to propagate previous pages. The choice of
p

T is a

tradeoff between traffic and propagation time. All the
other nodes will help spread messages they received.
Those nodes will use network coding to minimize the
number of transmissions while ensuring that every node
in the system will correctly receive the updated code
information.

Overall system architecture of AdapCode+

Figure 2 illustrates the code distribution process in our
AdapCode+ scheme. The main idea of AdapCode+ is to

Shwe & Jiang 37

Neighbor

Discovery

Receive

M Pkts

Choose new

coding choice

(N)

Encode N

packets

together

Broadcast

M
N packets

Code Distribution Process

Time =
dT

Network Coding

Figure 2. The code distribution process in AdapCode+.

Page# Coefficient Vector Data Segment

Figure 3. The packet format used in data broadcasting

1B 2B nB

E

data

'E Node B Node A

Node S

1 1 2 2 n nr e r e r eα = + + +
ur ur uur uur

1 1 2 2
......

n n
E r B r B r B= + + +

1 1 2 2' ' ' 'n nr e r e r eα = + + +
ur ur uur uur

1 1 2 2' ' ' 'n nE r B r B r B= + + +

Figure 4. Data encoding at the relay node.

use the same network coding algorithm for receiving and
broadcasting the packets used in AdapCode. However, to
make sure that all the neighbor (both semi-active and full-
active neighbor) nodes are detected, we deploy power
efficient neighbor discovery phase in the beginning of
code distribution process. When receiving the correct
number of encoded packets, each node will decode the
original packet. After that, the node will choose new
coding choice depending on its number of neighbors and
then broadcast the encoded packet. This process will
repeat until it finishes the code distribution process.

Network coding algorithm

When a node receives a packet, it first runs Gaussian
elimination to see if it has gathered enough information to
decode all messages in the packet’s page. When it
succeeds in decoding all messages within a page, it
determines its new coding choice, N, according to the
number of its neighbors. When transmitting the packet,

for each data segment, ()1,....,
i

B i n= and its coefficient

vector, ie , the relay node first produces the n random

numbers, 1 2, ,,
n

r r r , and then computes the new

data segment E and coefficient vector α
ur

 by the following

equations:

1 1 2 2
......

n n
r e r e r eα = + + +

ur ur uur uur
 (1)

1 1 2 2
......

n n
E r B r B r B= + + + (2)

Finally, the relay node transmits the encoded packet with
the format as shown in Figure 3. We can see an example
in Figure 4.

Thus, once the sink node has received at least N

packets and the coefficient vectors of which are linearly

independent, these N original packets can be recovered

by using Gaussian elimination as we can see in Figure 5.

Typically, Gaussian elimination requires two NxN

matrixes, one to store the original coefficients and the
other to store the inverse matrix. Thus, the total memory
usage of Gaussian elimination would be less than 1k,
which can fit in the memory of the modern sensor nodes.

In this paper, we consider linear network coding on
finite Galois Field GF (2m) where m = 1. We choose the

J. Comput. Eng. Res. 38

1 1 1 1

1 1 1 11 1

2 2 2

1 1

....

........

.

.

....

n n

n n n n
n n nn n

E B B Er r r r

E B B E

E B Br r r r

 = ⇔ =

2

.

.

nE

Figure 5. Original data recovery.

smallest possible Galois Field, GF (2) to decrease the
computational complexity of coding operations. Each
node generates a new packet which is a linear combina-
tion of the earlier received packets by coefficients in the
finite field GF (2). When working in GF (2), the number of
operations needed for encoding and decoding is the
same. The sink can successfully recreate the original
data packets after receiving N linear independent coded
packets by using Gaussian elimination.

Neighbor discovery algorithm

Initially, in the self-organizing WSNs, nodes do not have
the deterministic knowledge of the location of their
neighbor nodes. Thus, they must transmit wireless
queries in order to discover the neighboring nodes and
establish a communication network. Neighbor discovery
is the first application that runs on each sensor node to
form a sensor network and it is also essential to find the

updated network information for each time interval
d

T . As

mentioned above, we determine the coding scheme by
the number of neighbors that a sensor has. The value of

d
T should be determined according to the mobility of the

network. For example, if nodes in the network move quite

frequently, we should have a small value of
d

T to be

resilient against topology change. On the contrary, if the

topology remains quite static over time, we should set
d

T

to a larger value to obtain a more accurate number. The
sensor then decides the new coding scheme according to
the number of neighbor nodes (Table 1).

In AdapCode+, neighbor nodes are discovered, thanks
to the use of the network beacons. The utilization of the
beacons for distributing the neighbor information has

several benefits. First, beacon exchanges are
synchronized with a MAC protocol. This provides very
low idle listening and power overhead due to additional
control signal exchanges. Second, beacons are quite
short, which provides power-efficient implementation. In
addition, there is no need for a new frame type for
beacon messages. These benefits make the beacon very
important for wireless networks especially for self-
organizing networks.

In the initial neighbor discovery process, each sensor
node broadcasts a specific number of beacon messages
to advertise its presence. Due to the broadcast nature of
radio communication, each sufficiently closed neighbor
(both full-active and semi-active neighbors) node
receives this beacon message and may infer that it is a
neighbor of the sender. During this period, each node will
constantly sample received signal strength (rss), and at

the end of this period, all neighboring sensors will
calculate the mean of the measured signal strength (q)

and store it for later use. The use of this value, q ,

prevents a certain number of packet lost and thus affect
the reliability of the network.

Each node maintains a local neighborhood table
(NHTable), as shown in Figure 6. During the process of
neighbor discovery, the identity of the discovered node
whose signal strength is higher than q is added to the
local neighborhood tables of the nodes which have
received the beacon messages. The algorithm requires
data memory for storing next-hop neighborhood

information. As the number of neighbors is, at most, k ,

the total number of neighbor entries is upper bounded by

k . Thus, the required program memory space for the
algorithm is typically less than 1kB and hence it is
suitable for the memory of the sensor nodes.

The neighbor discovery algorithm discussed can be

Shwe & Jiang 39

1
N 2

N 3
N k

N NHTable

 q

Figure 6. Neighbor discovery by using network beacon.

Overhear -

ing

Avoidance

Scheme

Receive

M Pkts

Choose new

coding choice

(N)

Encode N

packets

together

Broadcast

M
N packets

Code Distribution Process

Time=
dT

Network Coding

Neighbor

Discovery

Figure 7. The code distribution process in AdapCode++.

summarized as follows:

Neighbor discovery algorithm

for each node ∈ network do

receive beacons from all nodes ∈ its communication area

if reception was successful from node i then

measure ()rss i based on the beacon reception

if ()rss i q≥ then

add node i to its local NHTable

end if

end if

update the mean of measured signal strength (q)

end for

AdapCode++

Although there is significant power savings achieved by

the AdapCode+ from using neighbor discovery protocol, it
still suffers the problem of overhearing from receiving
redundant messages. In addition, due to its always
onradio structure, it will also suffer the problem of idle
listening (listening to an idle channel in order to receive
possible traffic). To address the above problems, we
further enhance the AdapCode+ to AdapCode++.

Overall system architecture of AdapCode++

The overall system architecture of AdapCode++ is shown
in Figure 7. To further reduce the useless power
dissipation for overhearing and idle listening, in
AdapCode++, we propose an overhearing avoidance
scheme that eliminates idle listening and the reception of
useless redundant information by using the digest
information of the subsequent data packets. This field is
envisaged to make it possible for a node to identify and
avoid receiving irrelevant broadcast frames before the
entire reception. This is very useful for many wireless
networks which use flooding to propagate information
throughout the network, and thus, a node may receive
multiple copies of the same frame contents from all its

J. Comput. Eng. Res. 40

Transmitter

Sleep

Transmitter

Receiver Receiver

Data Digest Info.

Wake

Without Digest Info With Digest Info

Figure 8. Avoiding overhearing of redundant message by means of ‘Digest Info’.

neighbors.

Sleep-wake scheduling

In the wakeup interval of duty-cycling MAC protocols, if a
node finds the channel to receive some messages, it
continues listening to the messages, otherwise, it goes
back to sleep immediately. In such protocols,
unnecessary power drain happens as the node accepts
to receive the messages without considering whether
they are relevant messages to it or not. Therefore, we
propose here a new ‘digest info’ packet to identify if the
subsequent message is already received before by the
node or not. In AdapCode++, a node will switch its radio
on only when it receives a wakeup message from the
source node.

After receiving a wakeup message, it first checks the
‘digest info’ field which is embedded in the wakeup
message to determine whether it should receive the
subsequent message or not. If it is the correct message
for itself, it keeps its radio on until it receives the
subsequent data message as shown in Figure 8.
Otherwise, it immediately goes back to sleep mode again.
And also, right after the reception of the subsequent

c o e fM a t r i x M x M m a t r i x

in v M a t r i x M x M m a t r i x

h a s h T a b l e n m a t r i x

←

←

←

relevant data message, the node will go back to sleep
mode.

The ‘digest info’ packet

The ‘digest info’ is a small frame embedded in the
wakeup message and sent right before each data
broadcast message. The ‘digest info’ packet has a field

that contains either a unique identifier, or a hash of the
data contained in the subsequent broadcast frame. The
node uses the information in the ‘digest info’ field to learn
about the subsequent data contents. If a node learns
from the ‘digest info’ field that the following data packet
has already been received, it can switch its radio off,
because the subsequent data is redundant. In this way,
the node overhears only ‘digest info’ packet instead of
overhearing redundant whole data packet, which
contributes to save much power since the ‘digest info’
packets are far shorter than the data packets.

When a node receives a wakeup message, it first
checks its table whether there is an entry with the same
hash value. If the entry exists, the node switches its radio
off to avoid receiving the same data again. If there is no
such entry in the table, the node keeps its radio on and
continues listening to the channel in order to receive the
subsequent data packet. Once it has received the data
packet, the node inserts the hash value of the current
received data packet to update its table in order to avoid
receiving redundant transmissions. This table logs
packets that have been recently seen so the MAC layer
may switch the radio off when it expects a redundant
reception. Figure 9 illustrates the flowchart of packet
reception with the avoidance of overhearing. When a
node needs to transmit a wakeup message to awaken
the neighboring sleep nodes, it constructs and embeds
the corresponding ‘digest info’ of the subsequent packet
into the wakeup message and transmits it ahead to
broadcasting the data packets. This process can be seen
in Figure 10a.

According to this procedure, the MAC layer always
receives the ‘digest info’ packet before a data packet for
each broadcast communication. The digest information of
the data frame significantly minimizes overhearing and
thus increases the power saving of frame preamble MAC
protocols. As only the first data content is useful, the
node saves significant power amount by ignoring the
subsequent broadcasts carrying the same data contents.
Our new network coding algorithm can be clearly
summarized as follows:

Shwe & Jiang 41

exist in

HashTable?

No

Yes

Receive wakeup msg.

Receive data message

Update HashTable

Switch the radio off

Figure 9. The flowchart of packet reception with overhearing
avoidance.

Receive enough packets

 to decode?

Yes

No

Broadcast data message

Broadcast wakeup message

Create ‘digest info’ & embed

in wakeup message

Switch the radio

off

Decode original pkt.

Perform NC

Compute hashValue of

encoded packet

Figure 10a. The flowchart of packet transmission.

J. Comput. Eng. Res. 42

while code distribution is going on do

for each time interval dT

cov ();num N eigh bor n eigh borD is ery←

if a wakeup message is received then

Check the hashV alue in ‘digest info’ packet

if same value in its hashV alue then

Switch its radio off

else

Receive the subsequent data message

Update its hashV alue

(,);rank G aussian coefM atrix invM atrix←

if ra n k M= then

Solve all messages in the page by in vM a tr ix

Determine N according to n u m N eig h b o r

for 1i = to Mi
N

≤ do

Produce N coefM atrix

Compute linear combination of N messages

Compute h a sh V a lu e of encoded message and create ‘digest info’ packet

Embed ‘digest info’ in wakeup message and broadcast it

Broadcast data packets

end for

end if

Switch its radio off

end if

end if

end while

Figure 10b. Network coding algorithm.

Table 2. Simulation parameters.

Number of nodes 100

Area (
2m)

100x100

Mobility model random waypoint

Pause time (s) 30

Max speed (m s) 0-20

Channel capacity 1Mb s

Data rate 4 packets/ s

Transmission range 25 m

Network coding algorithm

This is shown in Figure 10b.

PERFORMANCE EVALUATION

Here, we investigate how much power efficiency can be

further improved by adopting the proposed neighbor
discovery algorithm and overhearing avoidance coding
algorithm in AdapCode, as compared with the original
AdapCode.

Simulation setting

We perform our experimental exploration using NS-2, a
standard simulation tool in sensor network. We have
implemented a simple code distribution application in
which a single source node distributes the code update
information and other nodes in the network forward the
packets they received to spread out the updated code
information throughout the network. The parameter
setting for the simulation is shown in Table 2. For the
sake of simplicity, we assume MAC protocol assigns a
unique channel for every node to prevent possible
collisions.

Multi-channel communication protocols (Cordeiro and
Challapali, 2007; Son et al., 2007; Pollini, 1994), has
been extensively used in WSN to increase system

Figure 11. Lifetime extension with respect to the data size.

Figure 12. Lifetime extension with respect to the number of
neighbors.

throughput. Once different channels are assigned to
interfering or contending links, more simultaneous
transmissions can take place and thus the use of multi-
channel MAC protocols mitigate the possible collisions.
Moreover, this assumption is wide-ranging in many
sensor network simulations for the simplicity.

Simulation result

We use NS-2 to quantify the lifetime extension achieved
with the use of our proposed mechanisms by simulation.
One can come up with various lifetime definitions for
sensor networks in the literature. Here, in our discussion,
we define network lifetime as the time until the first
sensor node death occurs (FND). We compare the
lifetime achieved by three protocols: the AdapCode,
available network coding architecture; the AdapCode+,

Shwe & Jiang 43

Figure 13. Power consumption.

our first improvement over AdapCode with the neighbor
discovery method; and the AdapCode++, our further
improvement over AdapCode+ by using the ‘digest info’
packet with the Deluge as baseline protocol. We carry out
simulations to get more insights into the power saving
ratio since we have not taken all the parameters into
account in the mathematical analysis. For each simula-
tion run, we calculate the lifetime extension as defined
above. After each 10 simulation runs, we calculate the
average lifetime extension. Figure 11 shows the lifetime
extension we achieved for various data packet sizes.
According to the simulation results, we can conclude that
the lifetime extension is small for small data sizes,
because the amount of time during which we switch the
radio off to avoid redundant data reception becomes
negligible compared to the time the radio is on. However,
when the data payload size increases to 512 bytes, the
lifetime extension also increases by 40 to 50%.

In Figure 12, we have measured the life time extension
ratios for various numbers of neighbor nodes. In here, the
number of neighbors determines the density of the
network. As we expected, the lifetime extension
increases when the density of the network increases.
Although the gain is not much for the sparse networks,
we get the significant power savings for the dense
networks. We can easily see from Figure 12 that the
lifetime extension significantly increases during the large

number of neighbors (that is, 4numNeighbor ≥).

Figure 13 plots the power consumption of each node
for each different traffic rate. Note that, even though the
power consumption is not much different for low traffic
rate, our protocols can sustain for high traffic rate. The
AdapCode+ can also reduce the power consumption but
the AdapCode++ outperforms the performance of
AdapCode+ since the AdapCode++ includes less idle
listening time and overhearing avoidance scheme. For
example, at the traffic rate of 6 bytes/s, the AdapCode+
consumes the power of 0.06 while the AdapCode++

J. Comput. Eng. Res. 44

consumes about 0.025. We can also see from Figure 13
that, starting from the traffic rate of 10 bytes/node/s, the
power consumption of AdapCode+ drops with a factor of
0.12 while the AdapCode++ drops with a factor of 0.04.

CONCLUSION

Power efficiency is a key issue for WSNs, since sensor
nodes are powered by non renewable batteries. Our work
is different from the available AdapCode which is by now,
the promising network coding architecture in terms of
power saving in WSNs. First, we proposed AdapCode+ in
which we use the neighbor discovery protocol for getting
more benefits in network coding process, and the
AdapCode+ achieves a certain power saving than the
AdapCode. In addition, we further enhanced AdapCode+
to AdapCode++ by proposing a new idea for power
saving to reduce idle listening and avoid overhearing
redundant copies of broadcast messages. With the use of
digest information of the subsequent data message, our
proposed coding architecture, the AdapCode++,
promises same reliability with the AdapCode while
consuming significantly less amount of power. We also
have evaluated our proposed schemes analytically and
by means of simulation in NS-2. As a main contribution of

our paper, we show that, significant power savings can
be achieved by efficiently reducing the unnecessary
redundant packet receptions compared to the simple
network-coding based protocols.

REFERENCES

Akyildiz F, Su W, Sankarasubramaniam Y (2002). Wireless Sensor

Networks: a survey. Comput. Networks, 38: 393-422.
Cordeiro C, Challapali K (2007). C-MAC: A Cognitive MAC Protocol for

Multi-Channel Wireless Networks. IEEE International Symposium on
New Frontiers in Dynamic Spectrum Access Networks. 147-157.

Demirkol J, Ersoy C, Alagoz F (2006). MAC Protocols for Wireless
Sensor Networks: a Survey,” IEEE Trans. On Comm. 44: 115-121.

Fragouli C, Wismwer J, Boudec JYL (2006). A Network Coding
Approach to Energy Efficient Broadcasting: from Theory to Practice.
ACM MobiSys.

Haenggi M (2004). Opportunities and Challenges in Wireless Sensor
Networks. Handbook of Sensor Networks: Compact Wireless and
Wired Sensing Systems. CRC Press. Florida. 1.1-1.14.

Polastre J, Hill J, Culler D (2004). Versatile Low Power Media Access
for Wireless Sensor Networks. SenSys., 11: 95-107.

Pollini GP (1994). The tree-search resource auction multiple access
(TRAMA) protocol for wireless personal communications.
Proceedings of IEEE Vehicular Technology Conference (VTC). pp.
1170-1174.

Son C, Lee NH, Kim B, Bahk S (2007). MAC Protocol Using
Asynchronous Multi-Channels in Ad Hoc Networks. IEEE Wireless
Commun. Networking Conference, pp. 401-405.

