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Lake Malawi continues experiencing serious depletion of most valuable fish species. Presently, 
commercial and artisanal fishery are forced to target less valuable fish species. Evidently, economic 
importance of Engraulicypris sardella in Malawi cannot be negated as it currently contributes over 70% 
of the total annual landings. However, such highest contribution could be a sign of harvesting pressure. 
Therefore, as the species continues being increasingly exploited, the development of scientific 
understanding through application of stochastic models is particularly relevant for present and future 
policy making and formulation of strategies to sustain the resource in the lake. Thus, the study was 
designed to forecast the annual catch trend of E. sardella from Lake Malawi. The study used time series 
data from 1976 to 2015 period obtained from Monkey Bay Fisheries Research Station of the Malawi 
Fisheries Department. The study adopted Box-Jenkins procedures to identify appropriate 
Autoregressive Integrated Moving Average (ARIMA) model, estimate parameters in ARIMA model and 
conducting diagnostic check. The study findings showed that ARIMA (2,1,1) model had least 
Normalized Bayesian Information Criterion (NBIC) value making it a appropriate model for the study. 
ARIMA (2,1,1) model  showed  that E. sardella  annual catches are positively fluctuating. Again, the 
model  predicted that E. sardella annual catches from Lake Malawi will increase from the annual total 
landings  of 71,778.47 metric tons to 104,261.20 metric tons in the next 10 years (ceteris paribus).   

 
Key words: Box-Jenkins, Engraulicypris sardella, Lake Malawi, autoregressive integrated moving average 
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INTRODUCTION  
 
Engraulicypris sardella locally known as Usipa  is  one  of  the endemic fish species in Lake Malawi. The species  
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belongs to the Cyprinid family. Literature suggests that 
the biology of E. sardella is very contentious.  In early 
1960s, Iles (1960) noted that the life cycle of E. sardella 
can normally be completed within 1 year. However, 
Morioka and Kaunda, (2004) argued that the species has 
an extended breeding periods. Morioka and Kaunda, 
(2004) further claimed that the fact that the species has 
an extended breeding periods is a strong evidence of the 
existence of plural stocks meaning that different stocks of 
E. sardella may adapt to the different optimum 
temperature for reproduction. However, because fisheries 
scientists, ecologists and managers have not yet found a 
substantial evidence on this contentious biology and life 
span of E. sardella, it has been difficult to set 
management recommendations and strategies to sustain 
E. sardella stocks in Lake Malawi. Similar observation 
was made by Allison et al (1996). Unfortunately, the 
economic importance of Engraulicypris sardella in Malawi 
cannot be negated as it currently contributes over 70% of 
the total annual landings (Department of Fisheries, 2017). 
Furthermore, it has been noted that fish catches in the 
past two years have shown a positive catch  fluctuation 
with estimated annual catch of 30,000 metric tonnes to 
80,000 metric tonnes as of 2010  and a significant  catch 
contribution has been from E. sardella and 
Haplochromine species (GoM, 2015).  On the other hand, 
it has also been noted that Lake Malawi continues 
experiencing serious depletion of most valuable fish 
species. Presently, both commercial and artisanal fishery 
have been forced to target less valuable fish species 
such as E. sardella and Haplochromine species (Hara 
and Njaya, 2016). It is very apparent that the shifting will 
consequently increase harvesting pressure on the 
resource. Therefore, as the species continues being 
increasingly exploited, the development of scientific 
understanding through application of stochastic models is 
relevant for present and future policy making and 
formulation of strategies to sustain the resource in the 
lake (Cohen and Stone, 1978). Thus, the study was 
designed to forecast the annual catch trend of Lake 
Malawi E. sardella using stochastic models. 
 
 
MATERIALS AND METHODS 

 
Data collection  

 
Figure 1 shows E. sardella data collection points. Literature shows 
that Malawi Department of Fisheries started collecting E. sardella 
catch data in early 1970s from beach recorders using a random 
sampling technique introduced by FAO (Bazigos, 1972). However, 
it was noted that  data collected from the beach recorders during 
1970s to 1975 were not tested for its statistical realiability (Bazigos, 
1972). Because of such suspicions, the study used the time series  
data of E. sardella total landings from 1976 to 2015 period. The 
data was obtained from Monkey Bay Fisheries Research Station of 
the Malawi Fisheries Department. The unit of measurement referred 
to the weight of fish at the time of removal from water was 
expressed in metric tons. For the purpose of data collection, Lake 
Malawi is coded into several sections also known as strata (refer  to  
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Figure 1). E. sardella data is collected by employing random 
selection of a series of landing sites within each established 
sampling frame taking into consideration the mobility patterns 
among the fishermen within the fishing community. 

The actual survey at each sampling site includes all crafts/fishing 
gears or in the case of larger fishing communities sub-sampling of 
the crafts/fishing gears. It is very important to note that Mangochi 
district only uses gear based sampling called Malawi Traditional 
Fishery (MTF) and the rest of the districts use craft based sampling 
known as Catch Assessment Survey (CAS). The survey is 
conducted by the actual weighing of the catch of the selected 
landings and interviewing the fishermen especially on the effort 
exerted to produce the landed catch.   

 
 
Stationarity test 

 
To check whether E. sardella time series data needed to be 
differenced to make it stationary or not, Dickey-Fuller t-statistics test 
was carried out. The mathematical model of -Dickey- Fuller test is 
given below (Dickey and Fuller, 1976): 

 

                                                                                    (1) 

 
The Dickey-Fuller t-test was based on the fact that accepting null 
hypothesis implies that the data needs to be differenced to make it 
stationary. 

 

Derivative of stochastic models  

 
Autoregressive (AR) model 

 
As suggested by Box and Jenkins, the (AR) which is a component 
of ARIMA model was mathematically expressed as (Box and 
Jenkins, 1970): 

 

                                                                   (2) 
 

 are autoregressive parameters, c is given as constant 

and the random variable and  is the white noise error.  

 
 

Moving average (MA) model 

 
The MA model was defined as (Box et al. 2015):  
 

                                                                  (3) 

 
 are the moving average parameters of the model,  is 

the expectation of  (often assumed to be equal to 0), and ,  

  are again white noise error terms. 

 
 
The Autoregressive Moving Average (ARMA) Model 

 
Autoregressive (AR) and Moving Average (MA) models were 
combined to form ARMA (p, q) model mathematically expressed as 
(Cochrane, 1997): 
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Figure 1. Lake Malawi E. sardella data collection points (Kanyerere et al., 2001). 

 
 
 

     (4) 

 
 
The Autoregressive Integrated Moving Average (ARIMA) Model 

 
In ARIMA models, a non stationary data is made stationary by 
applying log-difference transformation  (Minović, 2008) or finite 
differencing which transforms non stationary time series data into 
stationary (Stoffer and Dhumway, 2010). The general mathematical  
expression of ARIMA (p, d, q) model   is  (Lombardo and Flaherty, 
2000): 

 

                   (5) 

here p, d and q are integers greater than or equal to zero and refer 
to the order of the autoregressive, integrated and moving average 
parts of the model respectively. The integer d controls the level of 
differencing.  
 
 
Model Identification 
 

This procedure employs Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) plots (Stoffer and Dhumway, 
2010). These plots helped to determine the order of AR and MA 
terms (Makwinja et al. 2017). The autocovariance of a time series 

 is defined for  as: 

 

 (6) 

 

where  is the sample mean.  The autocorrelation function is then 

defined as:  
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Table 1. Augmented Dickey-Fuller test for unit root. 
  

Variable Test statistics 1% Critical value 5% critical value 10% critical value 
 

Z(t) 1.901 -2.639 -1.950 -1.915 
 

      

MacKinnon approximate p-value for Z(t) = 0.0000 

D.catch (tons) Coef Std. Err t p>|t| [95% CI] 

L1 0.1244081 0.0654558 1.9 0.065
ns 

-0.0083426, 0.2571587 

LD -0.1047851 0.1449183 -0.86 0.340
ns 

-0.9986931, -0.4108771 

 
 
 

                                                                             (7) 

 
Another measure, Partial Autocorrelation Function (PACF) is 

presented in form of plot of .  

 
 
Parameters estimation 

 
The Maximum Likelihood test (ML), least square estimation method 
and Yule-Walker statistical procedures were used to estimate the 
parameters and the corresponding standard errors. 

 
 
Diagnostic checking 
 
Box and Jenkins (1970) developed a practical approach to build 
ARIMA model, which best fit a given time series and also satisfy the 
parsimony principle. Generally, this step  involved the analysis of 
the residuals as well as model comparisons (Chang et al., 2012). 
The Ljung-Box Q was used in the diagnostic test. Mathematically, 
the Ljung-Box Q was expressed as (Box et al. 2015) 

 

 (8) 

 
where  is the estimated autocorrelation of the series at lag k   and 

m is the number of lags being tested.  
The hypothesis of Ljung-Box test was: 
 
H0: Residual is white noise 
H1: Residual is not white noise 
 
If the sample value Q exceeds the critical value of X2

 distribution 

with m degree of freedom, then at least one value of  is 

statistically different from zero at the specified level of significance. 
Again, Bayesian Information Criterion (BIC) was employed to 

evaluate the adequacy of AR, MA and ARIMA processes. Bayesian 
Information Criterion (BIC) developed by Gideon Schwarz 
(Schwarz, 1978) was used to select the model among a finite set of 
models. BIC model was computed as  

 

                                 (9) 
 
where, n is the number of effective observations used to fit the 

model, p is the number of parameters in the model and is the 

sum of sample squared residuals. Given the estimated models, the 
model with lower value of BIC is preferred (Clement, 2014). 
 
 
Model fitting and Prediction 
 

Upon identification of optimum model and estimating all 
parameters, the forecast of E. sardella catch landing from 2015 to 
2025 was made. All inferential and descriptive statistics were 
performed using STATA 14 (StataCorp, 2015) 

 
 

RESULTS AND DISCUSSION 
 

Stationarity test 
 

The stationarity test was done by applying Dickey-Fuller 
statistical test. The test was done to determine whether 
time series data had a unit root or not (Hamilton, 1994). 
The results are presented in Table 1. 

The basic null hypothesis of Dickey-Fuller statistical 
test was that E. sardella time series data had a unit root. 
According to Dickey and Fuller (1976), if unit root is found 
in a series, it implies that more than one trend is present 
in the series.  As seen from Table 1, the Z-score yielded 
by the Dickey-Fuller statistical test showed that E. 
sardella time series data had a unit root. The Z(t) test 
statistics fell within the range of acceptance interval 

 which explained that the data had to 

be differenced to make it stationary.  Furthermore, Figure 
2 shows that the mean of the series appears  to be non-
stationary with an average return  not equal to zero.  

To transform the data from non stationary to stationary, 
first order differencing of the data was conducted using 
natural logarithms (Box et al. 1978). The results are 
presented in Figure 3.  Enders (2004) noted that the first-
differencing of the time series data mitigates the effects 
of the trend and controls seasonarity. Figure 2, shows 
that the mean of the series were stationary with an 
average return of approximately zero. The autoregressive 
model of order p(AR (q)) was stationary and moving 
average model of order q(MA (q)) was perfect.  
 
 

Model Identification 
 
As seen from  Figure  2,  the  autocorrelation  and  partial 
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Figure 2. Autocorrelograms and partial autocorrelograms of undifferenced E. sardella time series data. 

 
 
 

 
 

 
Figure 3. Autocorrelograms and partial Autocorrelograms of first order differenced data. 

 
 
 
autocorrelation coefficients (ACF and PACF) were ploted 
and the type and order of the adequate model required to 
fit the series was determined. Table 2 shows the 
autocorrelation and partial autocorrelation coefficients 
(ACF and PACF) of various orders of differenced series 
of data. 

The coefficients presented in Table 2 were used to  
identify various ARIMA models together with their 
corresponding fit statistics. Table 3 shows the results of 
various competing ARIMA models.  It was very 
interesting to note that  ARIMA (2,1,1) model in Table 3 
was the best model among all other competing models. 
Table 4 shows the estimated values of the ARIMA (2,1,1) 
model. The  Ljung-Box  Statistic  test  of  ARIMA (2,1,1) 
model was not signficantly (p>0.05)  different from zero. 
The P. value  was significantly higher (0.985) comparing 
to the critical value (0.05). This implied that  the null 
hypothesis of white noise, had to be rejected. Rejecting 

the null hypothesis of white noise implied that the ARIMA 
(2,1,1) model was capable of  adquately capturing the 
correlation in the time series. According to Czerwinski et 
al (2007), the residuals were independently distributed in 
the population from which sample size was taken. It was 
further noted that the coefficients of parameters of 
ARIMA (2,1,1) model were all significant (p<0.05) and 
had least Normalised BIC value. Czerwinski et al (2007) 
suggested that the best ARIMA model  with accurate 
forecasts must have lowest Normalised BIC and model 
parameters must be significant (p<0.05). This presents a 
substantial justification why the ARIMA  (2,1,1)  model  
was  mostly prefered in the study.  
 
 
Model  Diagnostic Check 
 
The  ARIMA  (2,1,1)  model   was   further   subjected   to  
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Table 2. ACF and PACF for time series data of Lake Malawi E. sardella annual catch fluctuation. 
 

 
 
 
 

Table 3. Various competing ARIMA models 
 

ARIMA (p, d, q) NBIC Ljung-Box Q (P-value) 

ARIMA (1,1,1) 18.39 0.962
ns 

ARIMA (2,1,1) 18.34
 

0.985
ns 

ARIMA (3,1,1) 18.43 0.985*
 

ARIMA (1,2,1) 19.89    0.019**
 

ARIMA (2,1,2) 18.47    0.017**
 

 

nsNon-significant, *significant at P<0.01. 

 
 
 

Table 4. Lake Malawi E. sardella estimated ARIMA (2,1,1) model paramters. 
 

Variable Estimate Std Error t.value p.value 

Constant 5.73 2.39 2.39 0.020
* 

     

AR     

Lag 1 -0.81 0.38 -2.10 0.045 

Lag 2 0.47 0.21 2.14 0.039 

Difference 1    

MA 0.396 0.44 2.15 0.034* 
 
ns

Non-significant, *significant at P<0.01. 
 
 
 

autocorrelations and partial autocorrelations of residuals 
of various orders. Figure 4 shows the various 
autocorrelations of up to 24 lags.  From the plots of the 
residual ACF and PACF, it was very apparent that, the 
ARIMA (2,1,1) model was confirmed to be adequate in 
the sense that the points below and above were all 
uneven suggesting that the model was fit. Also, the 
individual residual autocorrelations were very small and 
generally within 95% level of confidence  suggesting  that 

the selected model was fit.  
 
 
Forecasting 
 
The ARIMA (2,1,1) model forecasted E. sardella total 
landings from 1976 to 2025. For the preciseness and 
accurateness sake, observations only from 2013 to 2025 
have been presented in Table 5. 
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Figure 4. ACF and PACF residual. 

 
 
 

Table 5. E. sardella total catch forecasted values (metric tons). 
 

Date (Year) Predicted values 95% Confidence interval 

2013 76627.75 (0.31, -0.31) 

2014 52305.19 (1.28, -1.09) 

2015 71778.47 (0.84, -0.79) 

2016 76351.72 (0.18, -0.08) 

2017 70586.10 (1.62, -1.55) 

2018 80946.38 (0.16, -0.83) 

2019 82983.03 (1.86, -0.96) 

2020 84256.27 (0.22, -0.23) 

2021 90384.81 (0.77, -0.84) 

2022 92995.75 (0.32, -0.39) 

2023 96321.19 (0.58, -0.67) 

2024 100914.39 (0.44, -0.59) 

2025 104261.20 (0.25, -0.38) 

 
 
 
Figure 5 shows the forecasted value from 1976 to 2025.  
Figure 5 further shows that E. sardella total landing is 
fluctuating with positive trend as it decreases and 
increases at some point. The model (2,1,1) in Figure 5  
further predicted that there is high probability that 
E.sardella catches  from Lake Malawi  will  increase  up 
to 104261.20 metric tons by 2025. The positive annual 
catch trend depicted by the model could be a sign of 
harvesting pressure exerted upon the species by the 
fishers. Figure 6 shows that there has been stability in 
total annual landings from 1993 to 2004. The lowest E. 
sardella total annual landing was recorded in the year 
1993 and the highest in the year 2015. Generally, E. 
sardella total annual landings fluctuation has been 
showing  positive  trend  from  2004  to  2015  with  some 

troughs in 2011 and 2012 and then another drop two 
years later.  It has been noted that low efficiency to 
harvest the field was reported from 1993 and  lasted  
for11 years. As observed by Hara and Njaya (2016), the 
positive trend of E.sardella total landings among other 
reasons could be attributed to the fact that many fishers 
are currently targeting usipa much more than utaka 
because of the far much better catches of the former  
compared to the latter for similar effort. 

In fisheries and conservation biology, the catch per unit 
effort is an indirect measure of how abundant a targeted 
species is (Puertas and Bodmer, 2004). In other words, 
the fishing efficiency which is known as catch per unit 
effort (CPUE) is an index of abundance which to some  
extent provide relevant information on how much fish is in  
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Figure 5. Predicted E.sardela catch trend from 1976 to 2025. 

 
 
 

 

  
 

Figure 6. E. sardella catch (tons) and CPUE relationship. 

 
 
 
the water. As seen from Figure 6, the CPUE of E. 
sardella has been fluctuating throughout. Such fluctuation 
indicates that E.sardella population diversity is unstable.  
As seen from Figure 5, CPUE fluctuated positively from 
1993 to 1994 and  from 1994 to 1995, the CPUE trend 
decreased rapidly and since then, there has been a slight 
fluctuation up to 2012 despite increasing in E. sardella 
catches from 2007 to  2012. From 2012 to 2013, the 
CPUE trend increased and recorded highest in 2013 and 
also corresponded to the  highest E.sardella total 
landings. The general increasing trend of CPUE  in 2013 
indicated that E. sardella fishery was in good health and 
the fishery was yet  to  reach  its   maximum   sustainable  

yield (MSY).   
From 2013 to 2014, the CPUE decreased sharply while 

E.sardella catch trend remained high. According to 
Puertas and Bodmer, (2004), deceasing in CPUE 
indicated overexploitation while increasing CPUE 
indicated underexploitation. However, if the  CPUE were 
to register stable, then it could indicate sustainable 
harvesting. Since CPUE is unstable, it means that 
E.sardella fishery requires proper management plans 
because human population will obviously surpus 
(Malthus, 1798) the capacity at which E. sardella can 
reproduce and when that happens, such positive trend 
may likely collapse  in  the  near  future  especially  in  the  



42          Int. J. Fish. Aquac. 
 
 
 
years of low recruitment. 
 
 
Conclusion   
 
The study findings showed that ARIMA (2,1,1) model had 
least Normalized Bayesian Information Criterion (NBIC) 
value making it a appropriate model for the study. ARIMA 
(2,1,1) model  showed  that E. sardella  annual catches 
are positively fluctuating. Again, the model  predicted that 
E. sardella annual catches from Lake Malawi will 
increase from the annual average level of 71,778.47 
metric tons to an average of 104,261.20 metric tons in 
the next 10 years (ceteris paribus).  However, regardless 
of the model projecting future positive fluctuation of E. 
sardella total landings, the catch per unit effort (CPUE) 
has been fluctuating throughout. Such fluctuation 
indicates that E.sardella population diversity is unstable 
and requires proper management plans because human 
population will obviously surpass the capacity at which E. 
sardella can reproduce and when that happens, such 
positive trend will likely collapse in the near future 
especially in the years of low recruitment. 
 
 

RECOMMENDATIONS 
 
Despite the fact that the ARIMA (2,1,1) model predicted 
that E. sardella total landings will increase for the next 10 
years, the CPUE shows to be unstable, which means that 
E. sardella fishery requires proper management plans to 
ensure its sustainability. 
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