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Cardiovascular physics is an interdisciplinary research area where the ideas and methods from 
mathematics, physics, and biology are synergistically applied for advanced medical diagnosis. The 
research on cardiac activity includes the development of efficient quantitative techniques and 
theoretical approaches, as well as the use of mathematical reasoning to gain insight into the 
cardiovascular system. However, mathematical representation of the entire cardiac activity is still on 
the focus of the research of cardiovascular physics. Here in this paper, a simple computational model 
of cardiac activity has been designed through a cardiovascular system equation derived from the 
elementary fluid dynamics. The cardiovascular equation is expandable, by applying respective 
assumptions, therefore as the models of heart, blood flow rate, and blood pressure, the model of heart 
is flexible to represent the right and left ventricle, as well as right and left atria individually. The validity 
of the model has been estimated by deriving numerical figures of heart rate, end-diastolic volume, end-
systolic volume, stroke volume, and ejection fraction. The analysis has also showed that the model can 
describe the abnormal conditions of the heart originated from heart blockage, leakage along with the 
normal operation. The validity of the models of blood flow rate and blood pressure has been verified by 
comparing the outcomes with some pre-established results in the physics of fluid dynamics.  
 
Key words: Cardiovascular physics, cardiac activity, computational model, cardiovascular system equation, 
model of heart, blood flow rate, blood pressure. 

 
 
INTRODUCTION 
 
Computational design of any complex biological system is 
strongly dominated by mathematical modeling and 
computer simulation, which plays an important role in 
advancing our understanding of almost all areas of 
biology. A model is an abstraction of key components and 
processes of a system, and by constructing, simulating, 
and analyzing these simplified versions of the world, we 
are able to understand the mechanisms that link different 
components of the system, examine the consequences of 
these relationships, and predict how disturbances or 
modifications in one component or mechanism show up 
elsewhere. A crucial part of the modeling process is the 
evaluation of whether a proposed mathematical model 
can describe a system perfectly or not. The real world 
problem is firstly represented using mathematical 
equations, and then after applying assumptions, if 
required, and performing mathematical operations on the 
entire system, the model is developed.  

Cardiovascular system is the blood distribution network 
in the body. The main components of the human 

cardiovascular system are the heart, blood, and blood 
vessels. Heart, which consists of four chambers, is the 
mother component of the system, and is responsible for 
distributing the blood throughout the body via the blood 
vessels. A complete cycle of the cardiovascular system 
consists of two major parts: systole and diastole. The time 
required for a systole is approximately 0.35 s, while it is 
around 0.54 s for the diastole (Cromwell et al., 2004). 

Many studies have been published in this field, and 
there are some important literatures on the functional 
imaging and modeling of the heart (Katila et al., 2001; 
Magnin et al., 2003). Some studies have been performed 
on the measurement of electrical activity, deformation, 
flows, fiber orientation (Masood et al., 2000; Rhode et al., 
2005; MacLeod et al., 2001; Kilner et al., 2000; Faris et 
al., 2003), and on the modeling of the electrical and 
mechanical activity of the heart (Noble, 2004; Xia and 
Huo, 2003; Hunter et al., 2003; McCulloch et al., 1998).  

This   study   provides  a   computational   model  of  the 
cardiovascular   system, in  general,  and  the   models   of 
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heart, blood flow rate, and blood pressure, in particular. In 
whole literature, some assumptions have been 
considered, which include that although the heart’s 
chambers are different in size, they are all considered 
being cylindrical shaped. They expand as the blood enters 
into it and contracts as the blood leaves it. The blood is 
considered to be the Newtonian fluid which is governed by 
the Navier-Stokes equation and by the continuity 
equation. Although the blood needs the help of the lungs 
for the supply of oxygen, its properties remain unchanged 
by the addition of that oxygen. Another assumption is 
required, and that is, the blood has both the radial and 
axial flow  in  only  one  direction - z-direction  in   a   three  
 

 
 
 
 
dimensional system.  So,  the  other  two  components  (x- 
and y-direction) are vanished.  

 
 
MATERIALS AND METHODS 

 
Developing the cardiovascular system equation 

 
The velocity components in the x, y, and z directions are typically 
named u, v, and w respectively. Let, ρ be the density of blood, P the 
blood pressure, and µ is the kinematic viscosity of blood. Then 
neglecting the orientation of gravity inside the body, the Navier-
Stokes equation in the Cartesian co-ordinates is given by the 
following equations (Acheson, 1990): 

 

 
 (1) 

 

 
  (2) 

 

 
  (3) 

 
 
With the assumption of no tangential velocity and no x and y 
components of velocity, a change of variables on the Cartesian 
equations will yield the following system of equations (Acheson, 
1990): 

 

 
   

(4) 
 

 
     

(5) 
 

 
                                                           (6) 

 
Where f (r, z, t)  be the radial flow component, w (r, z, t) be the axial 
flow component in z-direction. And the continuity equation reads: 

 

 

     (7) 

 
Now, define a new variable γ as γ = r/R (z, t) where R (z, t) is the 
radius of the blood vessels, obviously the coordinate (r, z, t) is now 
replaced by coordinate (γ, z, t). Again, the velocity profile in the 
axial direction, w (η, z, t) is assumed to have the expression in the 
polynomial form (Yang et al., 1999): 

 

 

                 (8) 
 
Where, q (z, t) is a another variable to be determined later. For 
simplification let, N=1. Then: 

 

             (9) 
 
And the velocity profile in the radial direction, w (η, z, t), is assumed 
to have the expression in the polynomial form (Yang et al., 1999): 

 

 

       
(10) 

 
Again for simplification, let N=1, which implies (11): 

 

 

    (11) 

 
Using the help of equations of axial and radial velocity profile, (9) 
and (11) respectively, radial coordinate and the continuity equation 
(7), the Navier – Stokes equations get the forms as thus to 
determine the variable q (z, t) and R (z, t): 



 
 
 
 

 
        (12) 

 

 

                 (13) 
 
Now, let to introduce the desired variable, the heart chamber 
volume as: 
 

 
 (14)  

 
Where L is the length of each of the heart chambers. And blood 

flow rate is given as the surface integral of w and  (Labadin 
and Ahmadi, 2006). Thus: 
 

 
 (15) 

 

From (14) and (15), 
  

and 
 

can be found. After 

inserting the values of 
  

and 
 

 in (12) and (13), 
another two differential equations are obtained as: 
 

 

        (16) 
 

 
               (17) 

 
After combining (16) and (17), a simple differential equation is 
obtained as follows: 

 

 
           (18) 

 
Or, taking V=SL, where S is the cross-section area of blood 
vessels, therefore equation (18) turns to (19): 

 

 
           (19) 

 
Equations (18) and (19) have been called as the cardiovascular 
system equations in terms of volume of heart chamber, and in 
terms of cross-section area of blood vessels respectively. The 
model of the heart, blood flow rate, and blood pressure can 
therefore be derived by applying some logical assumptions issuing 
by the cardiovascular physics of anatomy and physiology. 

The required boundary condition and the values of the other 
parameters to solve this equation can be obtained from the past 
works in this field. Such as: 

 
Initial value of Q=1 to 5.4 Lmin

-1
 (Liu et al., 1998) 

 
Kinematic viscosity of blood, µ=0.035 cm

2
s

-1
; density of blood, 

ρ=1.043 to 1.057 gcm
-3 

(Hinghofer-Szalkay  and  Greenleaf,  1987),  
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pressure gradient, 
 

 = 100 to 40 mmHg (Labadin and Ahmadi, 
2006). Boundary condition for V varies for atria and ventricles, such 
as: Right ventricle volume = 65 ml and Left ventricle volume = 72 ml 
(Mansi and Sermesant, 2004), Right atrium volume = 35 ml and 
Left atrium volume = 40 ml (Barbier, 2009). Heart length = 12 cm 
(Henry, 1918). If the vertical axis of the heart is considered, then it 
can be said that each halves contains heart muscle, one atrium and 
one ventricle. These three portions combine to be 12 cm. If it is 
assumed that each portion has the equal length, then one third of 
12 cm goes for the heart muscle and two third goes for the atrium 
and ventricle. So, each chamber has a length of 4 cm. Thus, L=4 
cm. 
 
 
Modeling of the heart 
 
The heart is the center of the cardiovascular system. Remaining 
within the chest cavity, the heart collects the blood from the 
different parts of the body, and also pumps the collected blood to 
the body in a synchronous process provided there is no existence 
of the heart abnormality. So, the heart can be considered as a point 
component of the cardiovascular system that is the distance effect 
on the volume within the heart is vanished. For the same reason, it 
can be considered that the blood flow rate and the pressure 
gradient remain constant within the heart’s chambers. Applying 
these assumptions on (18), the cardiovascular system equation 
reduces to (21), which is the mathematical model of heart: 
 

 
                     (20) 

 

 

                    (21) 
 
 
Modeling of the blood flow rate 
 
Blood flow is the continuous running of blood in the cardiovascular 
system, and the rate is defined as the amount of blood runs a unit 
time. To develop the model of blood flow rate, it is assumed that the 
cross-section area of blood vessel remains unchanged with time, 
and therefore, the rate of change of cross-section area with respect 
to distance does not exist. The pressure gradient through the length 
of blood vessel is also assumed to be constant. Applying these 
assumptions on (19), the cardiovascular system equation is 
converted to the model of blood flow rate as depicted in (22): 

 

 
                           (22) 

 
 
Modeling of the blood pressure 

 
Blood pressure is defined as the pressure experienced upon the 
walls of blood vessels during the circulation of blood, and this is one 
of the vital signs of physical fitness. Now, in developing the model 
of blood pressure, Poisuelli’s equation has been used, which 
determines the relation between blood flow rate and blood 
pressure, and is given by (23): 
 

  

                      (23) 
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Time (s) 

 
 

Figure 1. Variation of heart chamber with time. 
 
 
 
Where, L is the length and R is the radius of blood vessels. After 
inserting (23) into (22), the new equations are obtained as follows, 
and (25) represents the model of blood pressure: 
 

 
     (24) 

 

 

                  (25) 

 
 
RESULTS 
 
Analysis of the model of heart 
 
The solution of (21) for the volume of heart chambers 
provides the characteristics of expansion and contraction 
of heart. Figure 1 show for longer time while Figure 2, 
shorter time for large scale view. Both figures show that 
the volume of the heart chamber increases after some 
time, which indicates the expansion of the particular heart 
chamber. After reaching the peak point, it goes to the 
initial value from the negative direction, which indicates 
the contraction of the respective heart chamber. Positive 
direction indicates expansion and consequently, negative 
direction indicates the contraction of heart chamber. This 
phenomenon nevertheless is also true in practice and it 
happens periodically, indicating the heart’s rhythm. 

Any heart chamber expands and contracts once in a 
complete heart cycle. So, the time gap between two 
consecutive peaks of the  figures  which  is  0.84 s,  is  the  

 
 
 
 

 
Time (s) 

 
 

Figure 2. Variation of heart chamber with time. 
 
 
 
period of heart rhythm. This value is comparable to the 
actual value (Cromwell et al., 2004). 
 
 

Response of right ventricle 
 
Equation (21) can be represented as the right ventricle 
just by applying the initial volume as stated above as the 
boundary condition. The simulation result is as expected 
(Figure 3). The numerical values of some parameters 
obtained are given thus which is comparable as stated 
in(Mansi and Sermesant, 2004): 
 
End-diastolic volume (EDV) = 114.7939 ml     
End-systolic volume (ESV) = 59.7227 ml   
Stroke volume (SV) = 55.0712 ml   
Ejection fraction (EF) = 47.97%  
 
 
Response of the right atrium 
 
Equation (21) can be represented as the right atrium just 
by applying the initial volume as stated above as the 
boundary condition. The simulation result is as expected 
(Figure 4). The numerical values of some parameters 
obtained are given below which is comparable as stated 
in (Barbier, 2009): 
 

End-diastolic volume (EDV) = 25.3051 ml 
End-systolic volume (ESV) = 56.3052 ml 
Stroke volume (SV) = 31.0001 ml 
 
A trial  contraction  contributes 31.26%  of  the total stroke 



 
 
 
 

 
Time (s) 

 
 

Figure 3. Variation of right ventricle with time. 
 
 
 

 Time (s)  
 

Figure 4. Variation of right atrium with time. 
 
 
 
volume which also satisfies as stated in (Karki et al., 
2007). As the atrium contracts, the right ventricle expands 
and vice versa. This opposite relation is shown in Figures 
4 and 6 respectively. 
 
 

Response of left ventricle 
 

Equation (21) can be represented as the left ventricle just 
by applying the initial volume as stated above as the 
boundary condition. The simulation  was performed  which  
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Time (s)  

 
Figure 5. Variation of left ventricle with time. 

 
 
 
indicates a rhythmic heart response as expected (Figure 
5). The numerical values of some parameters obtained 
are given below which is comparable as stated in (Mansi 
and Sermesant, 2004): 
 

End-diastolic volume (EDV) = 121.4316 ml 
End-systolic volume (ESV) = 44.1834 ml 
Stroke volume (SV) = 77.2483 ml 
Ejection fraction (EF) = 63.61% 
 
 
Response of the left atrium 
 
Equation (21) can be represented as the left atrium just by 
applying the initial volume as stated above as the 
boundary condition. The simulation result is as expected 
(Figure 6). The numerical values of some parameters 
obtained are given below which is comparable as stated 
in (Mansi and Sermesant, 2004): 
 
End-diastolic volume (EDV) = 24.2370 ml 
End-systolic volume (ESV) = 62.4113 ml 
Stroke volume (SV) = 38.1744 ml 
 
Atrial contraction contributes 41.29% of the total stroke 
volume which also satisfies as stated in (Karki et al., 
2007). 

 
 
Heart abnormality analysis 

 
The cardiac abnormality refers to the deviation of cardiac 
function from its normal behaviors. When the heart faces 
any  abnormalities originated  from  blockage, leakage etc.  



326          Int. J. Med. Med. Sci. 
 
 
 

 
 

Time (s)  
 

Figure 6. Variation of left atrium with time. 
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Figure 7. Heart response as blood flow rate decreases a little. 
 
 
 
then it is reflected in the blood flow rate and the pressure 
gradient increment or decrement, which are the two 
controlling parameters in this model. The amount of 
increment or decrement depends on the severity of 
abnormalities. 
 

 
Decrement in blood flow rate 

 
If the blood flow rate decreases for any abnormality in the 

 
 
 
 

 Time (s) 
 

 
Figure 8. Heart response as blood flow rate decreases 
extremely. 

 
 
 
heart, then disorder takes place and heart rate 
decreases. The simulation result shows that as blood 
flow rate decreases heart rate also decreases (Figures 7 
and 8). 

 
 
Increment in blood flow rate 

 
If the blood flow rate increases for any abnormality in the 
heart, disorder takes place and heart rate increases. The 
simulation result shows this (Figures 9 and 10). 
 

 

Decrement in pressure gradient 
 

If the pressure gradient decreases for any abnormality in 
the heart, disorder takes place and heart rate decreases. 
The simulation result shows that as pressure gradient 
decreases, heart rate also decreases (Figure 11). 
 
 

Increment in pressure gradient 
 

If  the  pressure  gradient increases for any abnormality in 

the heart, disorder takes place and heart rate increases. 
The simulation result shows that as pressure gradient 
increases, heart rate also increases (Figure 12). 
 
 
Heart response with zero flow rate 
 
When blood  flow rate is zero, it  means  that  the heart  is 



 
 
 
 

 
Time (s) 

 
 

Figure 9. Heart response as blood flow rate increases 
a little. 

 
 
totally blocked, and  it  cannot  conduct  the  blood. Then,  
heart activity is absent. No blood enters the chamber, so 
no question to leave the chamber. This implies that the 
heart neither expands nor contracts. Now, it is time see 
how this mathematical model handles with the fact that 
the blood flow rate is equal to zero. The simulation result 
shows that there is no variation in the volume of heart 
chamber as the blood flow rate is zero (Figure 13). 
 
 
Heart response with zero pressure gradient 
 
Zero pressure gradients implies that there is no pressure 
difference between the two ends of the heart chamber, 
which is considered as  cylindrical  shaped in this study. If 
there is no pressure difference, then the blood does not 
pass through the heart chamber. So, somehow, the blood 
entering into the chamber does not leave it. Thus, the 
volume will increase proportionally. Now, it is to be seen 
what this model says. The simulation result of this model 
is plotted. Figure 14 illustrates that the volume of the 
heart chamber increases with time as the pressure 
gradient is kept at zero. 

 
 
Analysis of the model of blood flow rate 
 
According to the Poisuelli’s equation, the flow rate 
increases with the cross-section area. The model of 
blood flow rate presented here also shows that the blood 
flow rate inside the body varies accordingly with the 
cross-section area of the blood vessels (Figure 15). 

Pressure gradient is also directly related to blood flow 
rate, and accordingly, pressure is higher at the beginning 
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Figure 10. Heart response as blood flow rate 
increases extremely. 
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Figure 11. Heart response as pressure gradient 
decreases extremely. 

 
 
 
than at the end of vessel, establishing a pressure 
gradient. The greater the pressure gradient forcing blood 
through a vessel, the greater the rate of flow through the 
vessel (Sherwood, 2005). The proposed model also 
shows that for a given pressure gradient, the blood flow 
rate decreases with time, and vice versa (Figure 16). 
 
 
Analysis of the model of blood pressure 
 
The  solution  for   blood  pressure  in  the  corresponding 
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Figure 12. Heart response as blood flow rate 
increases extremely. 

 
 
 

 
Time (s)  

 
Figure 13. Heart chamber volume at zero blood 
flow rate. 

 
 
 
model  represents  blood   pressure  decreases  with   the 
cross-sectional area (Figure 17). This result is supported 
by the Poisuelli’s equation, the fundamental equation of 
fluid dynamics, which states that the pressure of fluid flow 
is inversely proportional to the cross-section area of the 
fluid conveyance provided that others related parameters 
remain constant. 

Again, from the Poiseulli’s equation, it can be 
concluded that the pressure on the wall of fluid 
conveyance is directly proportional to its length. This 
statement has also been derived from the model of blood 
pressure presented in this research, which indicates the 
increment of blood pressure with the increment of length 
of the blood vessels (Figure 18). Higher pressure at the 
beginning and lower pressure at the end and the 
difference  between this two, highly  varies  with  length of  
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Figure 14. Heart chamber volume at zero pressure 
gradients. 
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Figure 15. Blood flow rate for different cross-
sectional area (from 0.1 to 2 cm

2
). 

 
 
 
the blood vessels. 

Systolic (maximum) blood pressure in the normal adult 
is in the range of 95 to 140 mmHg, with 120 mmHg being 
average. These figures are subject to much variation with 
age, climate, eating habits, and other factors. Normal 
diastolic blood pressure (lowest pressure between beats) 
ranges from 60 to 90 mmHg; 80 mmHg being about 
average. This pressure is usually measured in the 
brachial artery in the arm (Cromwell et al., 2004). These 
models support the normal ranges (Figures 17 and 18). 
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Figure 16. Blood flow rate for different pressure 
gradients (from 40 to 100 mmHg). 

 
 
 

 
Time (s) 

 
 

Figure 17. Blood pressure for different cross-
sectional area of vessels. 

 
 
 
Conclusion 

 
The design of computational models of human organs is a 
new research field, which opens new possibilities for 
medical image analysis and therapy simulation 
(Sermesant et al., 2006). Therefore, a little effort was 
given in the purpose of developing a mathematical model 
of cardiovascular system that can describe the entire 
cardiac activities. 

A      limited     number    of     internal  parameters  were   
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Figure 18. Blood pressure for different length of vessels. 
 
 
 
considered   in  developing  the  model. So,  possible  
improvements of the study would include the integration of 
more anatomical structure (valve, exact size of the heart 
chambers), more realistic model and a more complex 
constitutive law. However, the objective of this research 
was not to build the more complex and faithful model ever.  

Although a large number of assumptions have been 
considered, the model can still be treated as valid, 
because this model is able to show the periodicity in the 
expansion and contraction of the heart chambers, can 
represent each of the heart chambers only by changing 
the initial conditions, and can also represent the different 
types of heart abnormalities such as blockage, leakage 
etc. for which the blood flow rate and the pressure 
gradient changes. It is shown that in case of any heart 
abnormalities, the normal heart rhythm is lost, and a 
disorder takes place. The models of blood flow rate and 
blood pressure are capable to satisfy the fundamental 
principles of fluid dynamics. All of these analyses prove 
nothing but the validity of the model.  

Furthermore, the mathematical model of heart can be 
used to determine the heart rate from the periodicity 
property (Figure 1). The ability to represent the heart 
abnormality of this model helps to determine the type of 
heart diseases. Moreover, the blood flow rate and the 
blood pressure of any particular person can be measured 
using the respective models. 
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