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A theoretical study of respiratory stability, based on a simple CO2 and O2 model of the respiratory 
system has been investigated. A model of the human respiratory system is proposed which has a 
satisfactory performance under different physiological conditions. It is shown that the central 
component is not involved in respiratory instability phenomena such as periodic breathing whereas the 
peripheral component plays a major role. 
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INTRODUCTION 
 
Mathematical modeling of the respiratory system started 
with the work of Gray (Gray, 1949) which was published 
in 1945. He formulated pulmonary ventilation in relation 
to hydrogen ion concentration, carbon dioxide and oxy-
gen tensions of arterial blood in the steady-state and in 
doing so becomes the first person to provide a mathe-
matical description of the chemical control of ventilation. 
Periodic breathing, characterized by rhythmic waxing and 
waning of the ventilation of the lungs, occurs in respire-
tory disease. The phenomenon is accompanied by cycli-
cal changes in arterial carbon dioxide partial pressure, 
which  rises   with   increased   ventilation   and  falls  with   
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Symbols and units used for the model: M� ; CO2 metabolic 
production rate in tissues, mLCO2/S, S; equivalent gas storage; 
P; CO2 partial pressure, mmHg,  λλλλ,; controller curve slope, 
mL/mmHg, B; barometric pressure, mmHg, C; CO2 

concentration, mLCO2/Ml, Q� ; blood flow in cardiovascular loop, 

ml/S, V; volume, ml, v� ; air flow in lungs, ml/S, αααα; CO2 
dissociation curve loop mlco2/mmHg, r; time lag, s, ββββ; CO2 
dissociation curve intercept, mlCO2/ml, µµµµ; controller curve 
intercept, ml/S, T; time; A, arterial circulation; AL; arterial blood 
leaving lungs; AT, arterial blood entering. Tissues, I; inspired 
air, C; central controller lungs, L; lungs P; peripheral controller 
tissues, T; tissues, vL; venous blood entering lungs and vT; 
venous blood leaving; lungs. 

decreased ventilation. Periodic breathing has been 
extensively investigated along clinical, experimental and 
theoretical lines to obtain insight into the underlying 
mechanisms. The most likely hypothesis is those periodic 
breathing results from dynamic interactions between the 
controlled system (also called the plant) and the feed 
back control loop of the respiratory system. 

The theoretical studies are based on the idea that the 
stability characteristic of the respiratory system deter-
mines the occurrence of periodic breathing. Milhorn 
(Milhorn and Guyton, 1965) calculated the critical value of 
each parameter at which oscillations in ventilation barely 
occur. Khoo et al. (1982) and Carley (1988) determined 
an implicit analytical criterion of stability to study the 
global influence of parameters. 

In this chapter, periodic breathing uses a realistic 
physiological model of respiration to define an explicit 
analytical criterion for the stability of the respiratory 
system. A model of the CO2 plant and O2 plant with two 
state variables (lungs and tissues) based on the law of 
conservation of mass is developed. The model leads to a 
two-dimensional nonlinear differential system. Some de-
ductions are made and results have been compared with 
those of Vielle (1993). 
 
 
Analysis 
 
The respiratory system can be considered to be made up of two in-
terconnected subsystems: the plant, in which CO2 processes takes 
place, and the controller, which regulates CO2 concentrations in the 
body with two feed back control loops, central and peripheral.  



 
 
 
 
 
 

The plant consists of the blocks lungs, brain, cerebrospinal fluid 
and lumped body tissue. Also included are the central receptors of 
the medulla and peripheral receptors of the carotid body, a blood 
transport time delay being interposed on gas concentration 
changes between the lungs and carotid body receptors. Figure 1 
shows tissues, in which CO2 is produced; lungs, in which CO2 is 
eliminated; and the cardiovascular loop, in which CO2 is transported 
from lungs to tissues (arterial circulation) and from tissues to lungs 
(venous circulation). 

Tissues and lungs are assimilated to two homogeneous compart-
ments, each with a uniform CO2 concentration, whereas the cardio-
vascular loop is viewed as a component producing a time lag in the 
arterial CO2 concentration from lungs to tissues (arterial time lag) 
and in the venous CO2 concentration from tissues to lungs (venous 
time lag). The symbols and units used for the model are defined in 
this work above.  
 
 
Plant equations 
 
The law of conservation of mass to CO2 in tissue compartment 
(Figure 1), the rate of change in the amount of CO2 in the tissues is 
expressed as: 
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Where; ATCQ�  is the rate at which CO2 is brought into the tissues 

by the arterial blood, vTCQ�  the rate at which CO2 leaves the tis-

sues with the venous blood, M�  the rate at which CO2 is produced 
inside the tissue, v is the volume and (pb – 47) is barometric pres-
sure less water vapour pressure at body temperature. 

Now, the rate change in the amount of CO2 in the lungs is 
expressed as: 
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Where; v�  is the air flow in the lungs, CI are constant parameters. 
Now, the plant equation in O2 term can be written as: 
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Figure 1. Respiratory system. 

 
 
 
Equations (1) and (2) can be written in terms of related CO2 partial 
pressures by assuming a single straight line: 
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Where; α, β, constant parameters, are the slope and intercept of 
the CO2 dissociation curve. 
 
The air in the lungs and the arterial blood leaving the lungs yields: 
 

)t(p)t(p LAL =                                                           (6)
     
The CO2 partial pressure in the arterial blood entering the tissues is 
equal to the CO2 partial pressure in arterial blood leaving the lungs 
that is, equation (6) becomes: 
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Where; the constant parameter is rA in the arterial circulation time 
lag. Similarly, for the venous blood: 
 

)t(p)t(p TvT =                                                          (8)                        

      
Assuming equilibrium between the tissues and the venous blood 
leaving the tissues and: 
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For blood tissues: 
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For brain tissues: 
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From equations (3) to (8) into equation (1) and (2), we get: 
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These two equations describe the dynamics behavior of the plant 
with two state variables, the CO2 partial pressure in the tissues (pT) 
and in lungs (pL). 
 
 
Analysis of respiration with central regulation 
 
To maintain the CO2 and O2 concentrations in physiological range 
the respiratory controller regulates ventilation in lungs by using in-
formation concerning the CO2 and O2 partial pressure monitored by 
chemoreceptors located in the carotid body. With the central feed 
back control loop, the value of the air flow in lungs is determined at 
each instant from the value of the CO2 partial pressure in the 
tissues monitored by central chemoreceptors.  

Assuming a linear relationship between O2 and iCO2 partial 
pressure: 
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Where the constant parameters )( CC 0>λλ  and Cµ  are 

respectively, the slope and the intercept of the central controller 
curve. 
 
Equation (16) simplified system (p) in which air flow is now 
considered a time-dependent variable.  
 
Now, the differential system: 
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Figure 2. Influence of the respiratory parameters on the lungs 
component of the trajectory of the plant in a non-stationary 
state (initial state: Pr = 45.2 mmHg, Pl = 39.0 mmHg). A) 
arterial circulation time lag (rA), B) the venous circulation time 
lag (rv). 

 
 
 

dt
dv

.
p

pp

b

ICOACO

47
22

−
−

                                                       (17)    

      

)t(p)t(p
v

)t(p
v

Q
)t(p

v
Qp

dt
)t(dp

LT
L

C
L

L

C
T

L

CL λµααλ −+−+−=
��

1  

dt
dv

.
p

pp

dt

dp
.

p
v

v
p

b

ICOACOACO

bL

IC

4747
222

−
−

+
−

++ µ
            (18) 

  
Which describes the dynamics behaviour of the  respiratory  system  



 
 
 
 
with central regulation. 

The equilibrium points of the autonomous non linear ordinary 
differential system are the constant solution 

)p,p())t(p),t(p( LTLT ≡  of the non linear system. 
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From equations (19) and (20): 
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RESULTS AND DISCUSSION 
 
In this chapter, a simple model of the CO2 plant was 
derived from physiological considerations taking into 
account the fundamental parameters of respiration – the 
CO2 metabolic production rate in tissues, the CO2 partial 
pressure in the inspired air, the blood flow, the arterial 
and venous circulation time lags, the volume of tissues 
and lungs and slope of the CO2 dissociation curve (Figure 
2). The description of the plant is based on a classical 
two – compartment  representation  (the tissues  and  the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Verma   et   al.     333 
 
 
 
lungs) for the storage of CO2 and O2. This is justified by 
the results of the analytical and numerical studied of the 
dynamic behavior of the plant. Breathing was stabilized 
by inspiring O2 and Co2 enriched gas by enlarging stores 
of these gases of lungs and body at the same time. 

The central components of the feed back control loop 
of respiration are represented by the classical linear rela-
tionships between the ventilation and delayed CO2 partial 
pressure in the lungs and between the ventilation and the 
CO2 partial pressure in tissues. The control components 
analyze the respective influence on the occurrence of 
periodic breathing. 
 
 
Conclusion 
 
The significant role of the lungs volume in respiratory sy-
stem is demonstrated in this chapter. It would be of good 
interest to integrate ventilatory mechanics, as previously 
investigated by Chauvet (1978). The present results to a 
more realistic representation of respiration. Finally, this 
analysis should be incorporated into a larger study based 
on a physiological representation of respiration that takes 
the cyclic nature of ventilation into account. 
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