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This academic article aims to present the lognormal distribution clearly, accompanied by an example 
applied to sexual behavior, facilitating understanding among social researchers. This distribution, 
characterized by positive skewness, thin shoulders, and heavy tails, serves as a robust probability 
model for various social and behavioral variables. It is developed from its two-parameter format, a 
location parameter (μ) and a squared scale parameter (σ²). The paper begins with a historical note on 
the relationship of the lognormal distribution to the normal distribution. The density, cumulative, and 
characteristic functions of the distribution are shown. Although it has an analytical expression for the 
nth order moment, it is not determined by its moments, lacking a moment generating function. 
Following the presentation of these functions, measures of central tendency, variability, and shape are 
discussed. The estimators of μ and σ² using the methods of moments and maximum likelihood are then 
introduced. Some of their mathematical properties and the calculation of dispersion intervals for 68.3, 
95.4 and 99.7% of the data are presented. All this material is applied to two examples of probability 
calculation, descriptive measures, and parameter estimation related to sexual behavior. Finally, 
suggestions are provided for the practical application of the lognormal distribution. 
 
Key words: Probability distribution, continuous variable, parameter estimation, arithmetic descriptive measures, 
geometric descriptive measures. 

 
 
INTRODUCTION 
 
The purpose of this academic paper is to disseminate 
statistical knowledge about a probability distribution and 
to facilitate its practical application. Specifically, it focuses 
on the lognormal distribution, which is one of the most 
studied non-normal continuous distributions in statistics 
and probability theory, and can be highly useful in the 
field of social sciences. However, it is relatively unknown 
among researchers in these disciplines, except in the 
realms of economic and business sciences (Minyu et  al., 

2020). It is important to note that the explanatory 
exposition of this distribution is often very theoretical (Al-
Masri, 2022) and can be confusing, particularly because 
it is presented under different parameterizations that may 
be intermixed in the same publication (Swat  et al., 2016; 
Wikipedia Contributors, 2023). Therefore, the objective of 
this article is to present this probability distribution in a 
clear, understandable, and exemplified manner, with an 
example applied to the field of sexual behavior. The  data  
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for the example were generated or simulated. It should 
be clarified that this is not an empirical research report. 

The lognormal distribution has its roots in a study 
conducted by the English biologist and mathematician 
Francis Galton in the year 1879 on the distribution of the 
geometric mean. This work was further explored by the 
Scottish physician Donald McAlister in the year 1879, 
leading to the alternative name Galton’s distribution (Rao 
et al., 2022). The Dutch astronomer Jacobus Cornelius 
Kapteyn in the year 1903 was among the first to apply 
this distribution to the examination of biological variables. 
The lognormal distribution is characterized by support in 
the positive real numbers, positive skewness, thin 
shoulders, heavy tail (leptokurtosis), a large variance, 
and a median corresponding to its geometric mean. 

This distribution is applicable to various measurements 
in living tissues, such as the weight and length of skin, as 
well as the length of inert appendages like hair, claws, 
nails, and teeth. Additionally, it finds relevance in 
modeling the spread of epidemics, including its recent 
use in representing the spread of COVID-19 (Kapteyn 
and van Uven, 1916; Lahcene, 2021; Rao et al., 2022). 
Cobb and Douglas (1928) introduced a function as a 
probability model for production in a country, aligning with 
the lognormal distribution. This economic application has 
seen widespread use, although it is presently undergoing 
revision (Gechert et al., 2019; Smirnov and Wang, 2021). 
In the realm of sexual behavior, the lognormal distribution 
is employed in studying various aspects. Examples 
include analyzing the number of sexual partners 
(Gualandi and Toscani, 2019; Major et al., 2021), 
examining networks of sexual contacts (Ito et al., 2022), 
and studying the frequency of forced sexual acts 
(Akampurira, 2022). 
 
 
CHARACTERIZATION OF THE DISTRIBUTION 
 
It begins with the exposition of the different functions, 
parameters, and the probability pattern of this continuous 
distribution. The lognormal distribution is characterized by 
two parameters in logarithmic scale: a location parameter 

μ = μln(X) with a parameter space of (−∞, +∞), and a 
squared scale parameter σ2 = σ2

ln(X) with a parameter 
space of (0, +∞). It is denoted as Lognormal (μ, σ2). The 
e-based exponential of the location parameter μ provides 
the geometric mean and median of the distribution. 
These two measures are considered more appropriate 
indicators of central tendency than the arithmetic mean 
for a distribution with positive skewness and 
leptokurtosis. 

Holding the squared scale parameter σ2 constant, the 
peak of the distribution (modal value or maximum 
density) decreases as μ increases (Figure 1). The e-
based exponential of the squared scale parameter σ2 
provides the geometric variance, and the unsquared 
value yields the  geometric  standard  deviation  σ,  which  
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are considered superior measures of variability compared 
to the arithmetic variance and standard deviation for this 
distribution. 

Holding the location parameter μ constant, the shoulder 
area thins, and the tail area thickens as σ2 becomes 
larger (Figure 2). Additionally, a three-parameter 
presentation introduces a threshold parameter a, 
representing the minimum value. This ensures that the 
origin of the distribution is not at 0 but at a value other 
than 0, and it can be negative: x ≥ a ∈ X ~ Lognormal (a, 

μ, σ2), where a ∈ R. 
The lognormal distribution can be obtained from the 

normal distribution (Galton, 1879; McAlister, 1879). If a 
random variable Y follows a normal distribution with a 
location parameter μ and a squared scale parameter σ², 
the exponential function with base e and exponent Y 
follows a lognormal distribution with a location parameter 
μ and a squared scale parameter σ²: Y ~ N (μ, σ²) ⟹ X = 
eY ~ Lognormal (μ, σ²). Conversely, if a random variable 
X follows a lognormal distribution with a location 
parameter μ and a squared scale parameter σ², its 
natural logarithm follows a normal distribution with a 
location parameter μ and a squared scale parameter σ²: 
X ~ Lognormal (μ, σ²) ⟹ Y = ln(X) ~ N (μ, σ²). It should 
be noted that the natural basis is the one usually 
employed, but any other positive basis is equally useful. 
 

 
 

Location parameter:  

 

Squared scale parameter:  

 

Support:  
 

Probability density function: 
 

 
 

where φ(z) = density function of the standard normal 
distribution N (0, 1). 
 

 
 

Cumulative distribution function: 
 

 
 

where erf = Gaussian error function, 
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Figure 1. Density functions of three variables with lognormal distribution with location parameters μ = 
0.25, 0.5, and 1, and squared scale parameter σ2 = 1.  
Source: Author’s elaboration. 

 
 
 

 

 
 

 

  
 

Figure 2. Density functions of three variables with lognormal distribution with location parameter μ = 0.5 
and squared scale parameters σ2 = 0.25, 1, and 4.  
Source: Author’s elaboration. 

 
 
 

where Φ = cumulative distribution function of the 
standard normal distribution N (0, 1). 
 

 
 
The quantile function: 
 

 
 
where Φ−1(p) = probit function, p-order quantile function 
or inverse of the cumulative distribution function of the 
standard normal distribution N(0, 1). 

Although the lognormal distribution has all its non-
central moments defined, this distribution is not 
determined by its moments, so a moment generating 
function, MX(t), cannot be defined around a non-trivial 
value   of  t  in  the  set  of  real  numbers.  However,  the 

characteristic function, CX(t), can be defined for real 
values of t (origin) that yield complex values with a 
positive imaginary component as their image. 
 

 
 

 
 
 
MEASURES OF CENTRAL TENDENCY 
 
Arithmetic mean or mathematical expectation: 
 

 
 
The arithmetic mean μ(X) may also be expressed  as  the  



 
 
 
 
product of the geometric mean μg(X) and the square root 
of the geometric variance √[σg

2(X)]. 
 

Median (Mdn): 
 

 
 

Geometric mean (G): 
 

 
 
From the geometric mean, the value of the location 
parameter μ can be deduced, which is the arithmetic 
mean or mathematical expectation of the variable 
transformed logarithmically (with natural base). 
 

 
 

Mode (Mo): 
 

 
 

The mode Mo(X) can be expressed as the ratio of the 
geometric mean μg(X) to the geometric variance σg

2(X). 
Harmonic mean: 

 

 
 

The harmonic mean μh(X) can be expressed as the 
quotient of the geometric mean μg(X) and the square root 
of the geometric variance √[σg

2(X)]. 
The nth-moment: 

 

 
 
 

MEASURES OF VARIABILITY 
 

Arithmetic variance (Var), standard deviation (SD), and 
coefficient of variation (CV): 
 

 

 

 

 
 

Mean absolute deviation (MAD): 
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where erf = Gaussian error function. 
 
Geometric variance (GV): 
 

 
 
From the geometric variance, we can derive the value of 
the squared scale parameter σ2 which is the variance of 
the variable transformed logarithmically (with natural 
base). 
 

 
 

Geometric standard deviation (GSD): 
 

 
 
It should be noted that geometric standard deviation σln(X) 
and the root of the geometric variance √[σ2

ln(X)] do not 
constitute an equality. 
 

 
 
From the geometric standard deviation, we can derive the 
value of the scale parameter σ, which is the standard 
deviation of the variable transformed logarithmically (with 
natural base). 
 

 
 

Coefficient of geometric variation (CGV) of Kirkwood 
(1979): 
 

 
 

Shannon's Entropy (Η):  
 

 
 
When using a base 2 logarithm, the information is 
measured in bits or binary units. 
 
 

MEASURES OF SHAPE 
 

Measures of skewness √β1(X) and excess kurtosis 
β2(X)−3 based on standardized central moments with the 
original Karl Pearson notation: 
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ESTIMATORS OF μ AND σ2 FROM THE LOGNORMAL 
DISTRIBUTION 
 
Consider a variable X with lognormal distribution of 
unknown parameters μ and σ2. A sample of size n is 
randomly drawn. The estimators by the method of 
moments are based on the arithmetic mean and variance 
of the n untransformed sample data (Stuart and Ord, 
2010). 
 

 

 

 
 

Maximum likelihood estimators use the mean and 
variance of the data transformed logarithmically with 
natural basis. 
 

 
 

 
 

The maximum likelihood estimator of μ is unbiased, but 
not that of σ2. A bias correction for the latter consists of 
dividing by n - 1 instead of n. 
 

 
 

Asymptotic properties that maximum likelihood estimators 
possess include consistency, normality, and efficiency. 
These properties allow obtaining the asymptotic standard 
error (ASE) from Fisher’s information for n data (or the 
inverse of Cramer-Rao lower bound) when the estimator 
is unbiased, as is the case with the μ estimator. It also 
allows for defining a Wald-type confidence interval 
(Lauritzen et al., 2019). 
 

 
 

 
 

 

 
 
 
 

z1−α/2 = Φ−1(1−α/2) = quantile of order 1 − α/2 from 
standard normal distribution. 
 

 
 

 
 
 
PROPERTIES OF THE LOG-NORMAL DISTRIBUTION 
 
The arithmetic mean is the ratio of the square of the 
geometric mean to the harmonic mean. By rearranging 
this equation, we find that the harmonic mean is the ratio 
of the square of the geometric mean to the arithmetic 
mean. Similarly, the geometric mean is the square root of 
the product of the arithmetic mean and the harmonic 
mean. 
 

 
 
If the random variable X ~ Lognormal (μ, σ2) and the 
constant a > 0, then a × X ~ Lognormal (μ + ln(a), σ2). If 
the random variable X ~ Lognormal (μ, σ2), then 1/X ~ 

Lognormal (−μ, σ2). If the random variable X ~ Lognormal 
(μ, σ2) and the constant a ≠ 0, then Xa ~ Lognormal (a × 
μ, a2 × σ2). If X1 ~ Lognormal (μ1, σ1

2) and X2 ~ 
Lognormal (μ2, σ2

2) and both random variables are 
independent, then the product X1 × X2 ~ Lognormal (μ1 + 
μ2, σ1

2 + σ2
2) and the quotient X1 / X2 ~ Lognormal (μ1 − 

μ2, σ1
2 + σ2

2). If X1 ~ Lognormal (μ1, σ1
2), X2 ~ Lognormal 

(μ2, σ2
2), ..., Xn ~ Lognormal (μn, σn

2) and the n variables 
are mutually independent, then the product X1 × X2 × … × 
Xn ~ Lognormal (μ1 + μ2 + … + μn, σ1

2 + σ2
2 + … + σn

2). 
Let X1, X2, …, Xn be n random, independent, and 

identically distributed variables with a finite mean and 
variance. Then, their geometric mean follows a lognormal 
distribution, where the location parameter μ is the 
arithmetic mean or mathematical expectation of the log-
transformed variables with the natural base, and its 
squared scale parameter σ² is the quotient between the 
variance of the log-transformed variables with the natural 
base and the number of variables. This property 
constitutes the so-called multiplicative central limit 
theorem (Galton, 1879). Another expression of the 
theorem is Gibrat's law (1931), which holds true when a 
natural growth process results from the accumulation of 
small multiplicative changes that, when transformed to a 
logarithmic scale, become additive increments. This 
concept finds applications in economics (Balthrop, 2021; 
Ahundjanov and Toda, 2020), demography (Ciccone, 
2021), and environment (Ahundjanov and Akhundjanov, 
2019). Consequently, the product of n independent 
random variables with finite means and variances  follows  



 
 
 
 
a lognormal distribution when their sum follows a normal 
distribution (Haines et al., 2020; Zijian, 2020). 
 

 
 

 
 

 
 

 
 

 
 
In a lognormal distribution, 68.3% of the data lies in the 
interval between the quotient of the geometric mean and 
the geometric standard deviation (lower limit) and the 
product of the geometric mean and the geometric 
standard deviation (upper limit). The 95.4% of the data 
falls within the range bounded by the quotient of the 
geometric mean and the square of the geometric 
standard deviation (lower bound) and the product of the 
geometric mean and the square of the geometric 
standard deviation (upper bound). The 99.7% of the data 
is in the interval between the quotient of the geometric 
mean and the cube of the geometric standard deviation 
(lower limit) and the product of the geometric mean and 
the cube of the geometric standard deviation (upper 
limit). 

As seen previously, the geometric mean can be 
calculated as the exponential function with base e and an 
exponent equal to the arithmetic mean of the 
logarithmically transformed values with a natural base. 
The geometric standard deviation is obtained by applying 
the exponential function with base e to an exponent equal 
to the standard deviation of the logarithmically 
transformed values with a natural base. It is important to 
note that the geometric variance is computed using the 
exponential function with base e and an exponent equal 
to the variance of the logarithmically transformed values 
with a natural base. This results in a value different from 
the square of the geometric standard deviation. 

Mean and standard deviation of log-transformed data at 
the population level (μ and σ): 
 

 

 
 
Geometric mean and standard deviation of X data at 
population level (μg and σg): 
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Dispersion intervals: 
 

 
 

 
 

 
 

 
 

 
 

 
 
Considering the dispersion intervals of the data for a 
variable X in a lognormal distribution, confidence intervals 
can be defined for the geometric mean of this distribution. 
Let a random sample of n data points from a continuous 
variable X with a lognormal distribution characterized by 
unknown parameters μ and σ2. 

Unknown population geometric mean: 
 

 

 
 
Sample geometric mean: 
 

 
 
Standard error of the sample geometric mean: 
 

 
 

Confidence interval at 1 − α for the geometric mean: 
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where 1−α⁄2tn−1 = quantile of order 1 − α/2 of Student's t-

distribution with n − 1 degrees of freedom. 
To generate a random sample from a continuous 

variable with a lognormal distribution with parameters α 
and σ2, you can obtain a random sample from a variable 
with a standard normal distribution and apply an 
exponential transformation. 

 

 
 

 
 
To calculate the probability values of a variable with a 
lognormal distribution with parameters μ and σ2, the 
process involves first transforming the values using the 
natural logarithm, then standardizing the log-transformed 
values, and finally using the cumulative distribution 
function FX(x) of the standard normal distribution N (0, 1). 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
The following expression is referred to as the 
geometrically standardized score (Finlay and Darquenne, 
2020): 
 

 

 
 
 
 
USEFULNESS OF THE LOGNORMAL DISTRIBUTION 
IN RESEARCH AND THEORETICAL FORMULATION 
 
The lognormal distribution is highly useful in research and 
theoretical formulations across various fields, including 
the social and health sciences, as well as in other 
scientific disciplines. The following points highlight its 
applications and importance in these fields. 
 
 

Social sciences 
 
Income and wealth distribution 
 
Income distribution: In economics, the distribution of 
income among individuals or households often follows a 
lognormal distribution. This is because income can be 
thought of as the product of many independent factors 
(education, experience, etc.), which multiplicatively 
combine to produce the overall income, a scenario well-
modeled by the lognormal distribution (Özkan et al., 
2020). 
 
Wealth distribution: Similarly, the distribution of wealth 
is often modeled as lognormal, reflecting the 
multiplicative effects of savings, investment returns, 
inheritance, and other factors (Akhundjanov and Toda, 
2020; Eguia and Xefteris, 2022). 
 
 

Behavioral and social phenomena 
 
Sexual behavior: The lognormal distribution has been 
used for modelling number of sexual partners (Major et 
al., 2021), age at first sex among youth (Materu et al., 
2023), and age at first forced sexual act among women 
(Kawuki et al., 2021) among other topics of sexual 
behavior. 
 
Internet use and online behavior: The frequency of 
internet usage, the distribution of followers on social 
media platforms (Aggrawal et al., 2021), and other online 
behaviors often exhibit lognormal characteristics due to 
multiplicative growth effects (Alasmar et al., 2021; Pal et 
al., 2021). 
 
City sizes: The sizes of cities in a country or region often 
follow a lognormal distribution, as they result from 
multiplicative growth processes, as birth rates and 
migration patterns (González-Val, 2021; Verbavatz and 
Barthelemy, 2020). 
 
 

Health sciences 
 

Biomedical data 
 
Physiological measurements: Variables like blood 
pressure (Chalkias and Xenos, 2022), prolactin  secretion  



 
 
 
 
(Gayathri et al., 2022), and sizes of tumors (Chan et al., 
2021; Wang et al., 2021) often follow a lognormal 
distribution. These are influenced by a multiplicative 
combination of genetic, environmental, and lifestyle 
factors (Fossion et al., 2020). 
 
Survival and failure times: The lognormal distribution is 
useful in modeling survival times and life expectancy, 
especially in situations where the rate of aging or failure 
is proportional to the current age or size (Maccone, 2020; 
Olosunde and Ejiofor, 2021; Waymyers and Chakraborty, 
2024). 
 
Reaction times: In the field of psychology, the lognormal 
distribution has been applied to modeling responses and 
response times in tests (Ranger et al., 2020; Sinharay 
and van Rijn, 2020). 
 
 
Epidemiology 
 
Disease spread: The spread of diseases can sometimes 
be better modeled by a lognormal distribution, particularly 
when considering the time until infection or recovery, due 
to the multiplicative nature of biological and 
environmental interactions. Recently, it has been applied 
to the COVID-19 (SARS-CoV-2) epidemic, with the 
studies for forecasting the spread of Covid-19 (Lawrence 
et al., 2023), incubation period of COVID-19 (McAloon et 
al., 2020), and predicting COVID-19 deaths (Valvo, 
2020). 
 
 
Theoretical formulation 
 
Multiplicative processes: Many social and health 
phenomena result from multiplicative processes. The 
lognormal distribution is theoretically appropriate when 
the underlying processes can be modeled as products of 
random variables (Chen and Korsunsky, 2021). 
 
Modeling variability and risk: In both social and health 
sciences, understanding variability and risk is crucial. The 
lognormal distribution allows researchers to model 
skewed data with a heavy tail, which is common in these 
fields. This is important for risk assessment and decision-
making (Guo and Li, 2021). 
 
 

Advantages of the lognormal distribution 
 
Flexibility and realism: The lognormal distribution is 
flexible and can realistically model a wide range of 
phenomena characterized by positive skewness and a 
long tail (Goldenholz and Westover, 2023). 
 
Parameter interpretation: Parameters of the lognormal 
distribution (mean  and variance in the logarithmic  scale)  
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can be interpreted in terms of multiplicative factors, 
making them intuitive for modeling and hypothesis testing 
in social and health contexts (Andersson, 2021; 
Elassaiss‐Schaap and Duisters, 2020). 
 
Data transformation: Many statistical methods assume 
normality of data. Transforming lognormal data (by taking 
the natural logarithm) can simplify analysis and make it 
amenable to standard techniques (Choi et al., 2022). 
 
 
Practical applications 
 
Policy and planning: In public health, understanding the 
distribution of health outcomes can inform interventions 
and resource allocation. In economics, knowledge of 
income distribution aids in policy formulation for taxation 
and welfare (Aslam, 2024; Balci and Kumral, 2024; 
Beykaei et al., 2020; Phelps, 2023). 
 
Risk management: In both health and social sciences, 
the lognormal distribution helps in risk management by 
modeling extreme events and long-tail risks, such as 
catastrophic health expenses or economic downturns 
(Guo and Li, 2021; Jokhadze and Schmidt, 2020). 
 
Thus, the lognormal distribution is a powerful tool in 
social and health sciences due to its ability to model 
complex, multiplicative processes and its applicability to a 
wide range of empirical data. Its use enhances the 
accuracy and interpretability of research findings, 
informing theory development and practical applications 
in these fields. 
 
 
CALCULATION EXAMPLES WITH THE LOGNORMAL 
DISTRIBUTION 
 
Both examples were generated specifically for this article. 
In the second example, first a random sample of 30 data 
was drawn from a continuous uniform distribution with the 
Excel random number generator. From this, a standard 
normal distribution was obtained using the probit function, 
and through an exponential transformation, a random 
sample was created. To make the examples more 
meaningful, they are given content related to sexual 
behavior and presented as if they were empirical data. 
 
 

Example 1: With the known probability distribution 
and its specified parameters 
 
In a population of young Mexican women with at least 
seven years of marriage, we inquired about the average 
number of sexual relations per month in the last year, 
encompassing both marital and concurrent partners. It 
was observed that the variable distribution follows a 
lognormal   distribution  with parameters μ = 0.7 and  σ2 =  
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1.28. What are the probabilities that a woman has an 
average number of sexual relations per month of three or 
more, one or fewer, and between one and two and a 
half? Calculate the arithmetic, geometric, and harmonic 
means, along with the median and mode, as measures of 
central tendency for this distribution. Compute the 
variance, standard deviation, and coefficient of variation, 
both arithmetic and geometric, as well as the Shannon’s 
entropy as measures of variation. Compute measures of 
skewness and excess kurtosis based on standardized 
central moments. Determine the dispersion intervals for 
approximately 68.3, 95.4, and 99.7% of the data. Finally, 
plot the cumulative density and distribution function. 
 

X = average number of sexual relations per month in the 
last year in young Mexican women with at least seven 
years of marriage, including concurrent partners. 
 

X ~ Lognormal (μ = 0.7, σ2 = 1.28) 
 
What is the probability that a woman has an average of 
three or more sexual relations per month? 
 

μ = 0.7, σ2 = 1.28, σ = √1.28 = 1.13 
 

 
 

What is the probability that a woman has an average 
number of sexual relations per month of one or less? 
 

 
 
What is the probability that a woman has an average of 
one to two and a half sexual relations per month? 
 

 
 
Calculation of the arithmetic mean, μ(X), geometric 
mean, μg(X), harmonic mean, μh(X), median, Mdn(X), and 
mode, Mo(X) as measures of central tendency: 
 

 
 

 
 

 
 

 

 
 
 
 

 
 

 
 

 
 

 
 

 
 
Calculation of arithmetic variance (σ²), standard deviation 
(σ), and coefficient of variation (CV), as well as geometric 
variance (σg²), standard deviation (σg), and coefficient of 
variation (GCV), along with Shannon’s entropy (H) as 
measures of variation: 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
Calculation of measures of skewness and excess 
kurtosis based on standardized central moments as 
measures of the shape of the distribution. 
 

 
 

 
 
Testing of the previously defined dispersion intervals for 
approximately 68.3, 95.4 and 99.7% of the data: 
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Figure 3. Plot of the probability density function fX(x) and cumulative distribution function FX(x) of X ~ Lognormal (μ = 0.7, 
σ2 = 1.28).  
Source: Author’s elaboration. 

 
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 
Figure 3 depicts the density and cumulative distribution 
function of the variable representing the average number 
of sexual relations per month, which follows a lognormal 
distribution with a location parameter μ = 0.7 and squared 
scale σ² = 1.28. 
 
 
Example 2: With the hypothesized probability 
distribution and its estimated parameters 
 
Be a random sample of 30 participants from the 
population of young Mexican women with at least seven 
years of marriage. We measured the average  number  of 

sexual relations per month over the  past  year,  including 
both marital and concurrent partners, through a 
questionnaire (Table 1). This positive continuous 
quantitative variable follows a lognormal distribution. 
Make the point estimate of its parameters μ and σ² (on a 
logarithmic scale), estimate the 95% confidence interval 
for its location parameter μ, and determine the median 
number of sexual intercourses along with its geometric 
variance and standard deviation. Estimate the geometric 
mean with a 95% confidence interval. Calculate the 
probability of having an average of at least 8 sexual 
relations per month and the density of having an average 
of 8 sexual relations per month. Determine the average 
corresponding to a cumulative probability of 90%. Finally, 
plot the density and cumulative distribution function using 
the 30 sample data and the parameter estimates 
obtained through the maximum likelihood method. 

The xi data in Table 1 were generated through 
simulation from a standard normal distribution using the 
Excel 2021 random number generator. The initial 
sequence of normal data was adjusted to have a mean 
and variance exactly equal to 0 and 1, respectively. To 
achieve this, the sample mean was subtracted, and the 
difference was divided by the uncorrected standard 
deviation to correct for bias. Subsequently, these normal 
data, denoted as zi with a mean of 0 and variance of 1, 

underwent transformation: xi = . This 

transformation resulted in the creation of a random 
sample with a lognormal distribution with parameters μ = 
0.7 and σ² = 1.28. 

Estimation of parameters by the method of moments 
and calculation of the geometric mean and variance and 
standard deviation: 
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Table 1. Average number of sexual relations per month for the 30 participants, their logarithmic transformation, squared differential log-
transformed scores, probability density function, cumulative distribution function, and theoretical quantiles. 
 

i (i) x(i) [x(i)−E(X)]2 y(i)=ln(x(i)) [y(i)−E(yi)]2 fX(x(i)) FX(x(i)) p(i) QX(p(i)) 

29 1 0.1109 12.3538 -2.1989 8.4036 0.1193 0.0052 0.0220 0.2061 

17 2 0.4979 9.7834 -0.6974 1.9527 0.3303 0.1084 0.0549 0.3300 

4 3 0.5444 9.4945 -0.6081 1.7111 0.3320 0.1238 0.0879 0.4354 

22 4 0.5555 9.4264 -0.5879 1.6588 0.3321 0.1275 0.1209 0.5356 

16 5 0.5646 9.3703 -0.5716 1.6169 0.3321 0.1305 0.1538 0.6350 

19 6 0.6131 9.0756 -0.4892 1.4141 0.3310 0.1466 0.1868 0.7360 

12 7 0.7720 8.1436 -0.2588 0.9192 0.3190 0.1984 0.2198 0.8399 

8 8 0.9779 7.0107 -0.0223 0.5217 0.2941 0.2616 0.2527 0.9481 

7 9 1.2169 5.8025 0.1963 0.2537 0.2624 0.3281 0.2857 1.0615 

10 10 1.2593 5.5998 0.2306 0.2204 0.2569 0.3391 0.3187 1.1814 

24 11 1.3489 5.1841 0.2993 0.1606 0.2455 0.3616 0.3516 1.3088 

28 12 1.3822 5.0334 0.3237 0.1416 0.2414 0.3697 0.3846 1.4450 

20 13 1.4422 4.7677 0.3662 0.1114 0.2341 0.3840 0.4176 1.5913 

6 14 1.5129 4.4642 0.4140 0.0818 0.2258 0.4002 0.4505 1.7496 

11 15 1.5713 4.2207 0.4519 0.0616 0.2191 0.4132 0.4835 1.9218 

27 16 1.5875 4.1544 0.4621 0.0566 0.2173 0.4167 0.5165 2.1102 

5 17 2.2109 2.0017 0.7934 0.0087 0.1589 0.5329 0.5495 2.3178 

15 18 2.3390 1.6557 0.8497 0.0224 0.1494 0.5526 0.5824 2.5483 

14 19 2.4982 1.2714 0.9156 0.0465 0.1386 0.5755 0.6154 2.8065 

18 20 3.0408 0.3421 1.1121 0.1698 0.1085 0.6422 0.6484 3.0985 

1 21 3.8358 0.0441 1.3444 0.4152 0.0782 0.7155 0.6813 3.4326 

13 22 5.0605 2.0585 1.6215 0.8491 0.0500 0.7923 0.7143 3.8202 

25 23 6.1116 6.1795 1.8102 1.2325 0.0357 0.8368 0.7473 4.2774 

26 24 6.4789 8.1404 1.8685 1.3655 0.0319 0.8492 0.7802 4.8282 

21 25 6.4860 8.1815 1.8697 1.3681 0.0319 0.8494 0.8132 5.5101 

2 26 6.7360 9.6741 1.9075 1.4580 0.0296 0.8571 0.8462 6.3858 

9 27 7.8135 17.5371 2.0558 1.8383 0.0220 0.8846 0.8791 7.5715 

3 28 8.2864 21.7222 2.1146 2.0011 0.0195 0.8944 0.9121 9.3144 

30 29 10.7466 50.7069 2.3746 2.8042 0.0110 0.9306 0.9451 12.2890 

23 30 21.1700 307.8021 3.0526 5.5347 0.0019 0.9812 0.9780 19.6712 

Σ  108.7715 551.2026 21 38.4     
 

i = random order, x(i) = number of sexual relations or scores in X with data sorted in ascending order (i = 1, 2, ..., 30), [x(i) − E(X)]2 = square of the 
differential scores (with respect to the arithmetic mean) of X with data sorted in ascending order, y(i) = ln(x(i)) = natural-based log transformation of the 
scores of X with the data sorted in ascending order, [y(i) − E(yi)]2 = [ln(x(i) − E(ln(X))]2 = square of the differential scores (with respect to the arithmetic 
mean) of the logarithms of the scores of X, fX(x(i)) = probability density function and FX(x(i)) = cumulative distribution function calculated using the 

sample data x(i) under the lognormal distribution with parameters μ = 0.7 and σ² = 1.28, p(i) = [(i) − 1/3] / (30 + 1/3) = theoretical quantile order, QX(p(i)) = 
theoretical quantiles under the lognormal distribution with parameters μ = 0.7 and σ² = 1.28, and Σ = sum per column.  
Source: Author’s elaboration. 

 
 
 

 
 

 
 

 
 

 

 
 

 
 
It can be observed that the estimates by the method of 
moments deviate slightly from the population parameters, 
affecting the calculation of the geometric mean, variance, 
and   standard   deviation.   Therefore,  these    geometric  



 
 
 
 
statistics deviate from their population values. 
 

 
 

 
 

 
 

 
 
Maximum likelihood estimation and calculation of 
geometric mean, variance and standard deviation: 
 

 
 

 
 

 
 

 
 

 
 

 
 
The maximum likelihood estimation was completely 
accurate without applying the bias correction. Confidence 
interval at 95% for the location parameter μ: 
 

 
 

 
 

 
 

Confidence interval at 95% for the geometric mean: 
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Calculation of the probability of having an average of at 
least eight sexual relations per week using parameters 
obtained through the maximum likelihood method: 
 

 
 

 
 
From the simulated example, 11 out of 100 women have 
an average of eight sexual relations per month (two per 
week). 

Calculation of the density of having an average of eight 
sexual relations per month: 
 

 
 

 
 

What average number of sexual relations has a 
cumulative probability of 90%? 
 

 
 

 
 
In Figure 4, the probability density function fX(x) and 
cumulative distribution function FX(x) are plotted with the 
30 sample data. The calculations used in these plots are 
shown in the last two columns of Table 1. 

It is important to assess the fit of the empirical data to a 
lognormal distribution. To achieve this, a dual strategy 
can be employed. Firstly, the inferential approach using 
Anderson and Darling's goodness-of-fit test is adopted 
(Table 2), as recommended by Neamvonk and 
Phuenaree (2022). Additionally, a graphical approach 
involves plotting the theoretical quantiles against the 
empirical quantiles, known as a quantile-quantile plot  
(Figure 5). 

Statistical hypotheses for Anderson-Darling goodness-
of-fit test” 
 

H0: X ~ Lognormal(μ, σ2) and H1: X ≁ Lognormal (μ, σ2). 
 

Testing statistic to assess the fit to a lognormal 
distribution with unknown parameters estimated from the  
sample: 
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Figure 4. Plot of the probability density function fX(x) and cumulative distribution function FX(x) with the 30 sample data.  
Source: Author’s elaboration. 

 
 
 

 
 

Figure 5. Quantile-quantile (q-q) plot with theoretical distribution: Lognormal (μ = 0.7, σ2 = 1.28).  
Source: Author’s elaboration. 

 
 
 

 
 

 
 

The test statistic follows the Anderson-Darling 
distribution: ADc ~ Α2. 

Decision based on the critical value or quantile of  order  

1 − α of the Anderson-Darling distribution Α2 for an α = 
0.05 (Zaiontz, 2023). 
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Table 2. Anderson-Darling test. 
 

i xi yi = ln(xi) (2i−1)/30 zi=zyi Φ(zi) zn+1−i 1−Φ(zn+1−i) ln[Φ(zi)] + [1−Φ(zn+1−i)] Si 

1 0.111 -2.199 0.033 -2.562 0.005 2.079 0.019 -9.234 -0.308 

2 0.498 -0.697 0.1 -1.235 0.108 1.480 0.069 -4.890 -0.489 

3 0.544 -0.608 0.167 -1.156 0.124 1.250 0.106 -4.337 -0.723 

4 0.555 -0.588 0.233 -1.138 0.127 1.198 0.115 -4.219 -0.985 

5 0.565 -0.572 0.3 -1.124 0.131 1.067 0.143 -3.982 -1.194 

6 0.613 -0.489 0.367 -1.051 0.147 1.034 0.151 -3.813 -1.398 

7 0.772 -0.259 0.433 -0.847 0.198 1.033 0.151 -3.509 -1.521 

8 0.978 -0.022 0.5 -0.638 0.262 0.981 0.163 -3.154 -1.577 

9 1.217 0.196 0.567 -0.445 0.328 0.814 0.208 -2.686 -1.522 

10 1.259 0.231 0.633 -0.415 0.339 0.570 0.284 -2.339 -1.481 

11 1.349 0.299 0.7 -0.354 0.362 0.364 0.358 -2.045 -1.431 

12 1.382 0.324 0.767 -0.333 0.370 0.191 0.424 -1.852 -1.420 

13 1.442 0.366 0.833 -0.295 0.384 0.132 0.447 -1.762 -1.468 

14 1.513 0.414 0.9 -0.253 0.400 0.083 0.467 -1.677 -1.509 

15 1.571 0.452 0.967 -0.219 0.413 -0.210 0.583 -1.423 -1.375 

16 1.587 0.462 1.033 -0.210 0.417 -0.219 0.587 -1.408 -1.455 

17 2.211 0.793 1.1 0.083 0.533 -0.253 0.600 -1.141 -1.255 

18 2.339 0.850 1.167 0.132 0.553 -0.295 0.616 -1.078 -1.257 

19 2.498 0.916 1.233 0.191 0.576 -0.333 0.630 -1.014 -1.251 

20 3.041 1.112 1.3 0.364 0.642 -0.354 0.638 -0.892 -1.159 

21 3.836 1.344 1.367 0.570 0.716 -0.415 0.661 -0.749 -1.024 

22 5.060 1.621 1.433 0.814 0.792 -0.445 0.672 -0.630 -0.904 

23 6.112 1.810 1.5 0.981 0.837 -0.638 0.738 -0.481 -0.722 

24 6.479 1.869 1.567 1.033 0.849 -0.847 0.802 -0.385 -0.603 

25 6.486 1.870 1.633 1.034 0.849 -1.051 0.853 -0.322 -0.526 

26 6.736 1.907 1.7 1.067 0.857 -1.124 0.869 -0.294 -0.500 

27 7.813 2.056 1.767 1.198 0.885 -1.138 0.873 -0.259 -0.458 

28 8.286 2.115 1.833 1.250 0.894 -1.156 0.876 -0.244 -0.447 

29 10.747 2.375 1.9 1.480 0.931 -1.235 0.892 -0.187 -0.355 

30 21.170 3.053 1.967 2.079 0.981 -2.562 0.995 -0.024 -0.048 

Σ         -30.362 
 

i = order when data are ordered increasing, xi = score in X (average number of sexual intercourse per month) ordered in ascending order, yi = ln(xi) = 

log-transformed (natural-based) xi score, (2i − 1) / 30 = first factor in the product Si, zi = zyi = (yi − my) / sy = yi score standardized using the mean and 
unbiased standard deviation of the Y sample data (my = 0. 7, sn(y) = 1. 1314), Φ(zi) = cumulative probability up to zyi in the standard normal distribution 

N(0, 1), zn+1−i = standardized yi score ordered downward, 1 − Φ(zn+1−i) = complement of the cumulative probability up to zn+1−i in the standard normal 

distribution N(0, 1), ln[Φ(zi)] + ln[1 − Φ(zn+1−i)] = sum of the natural logarithm of Φ(zi) and the natural logarithm of 1 − Φ(zn+1−i) or second factor in the 
product Si, Si = (2i − 1) / 30) × (ln[Φ(zi)] + ln[1− Φ(zn+1−i)]).  
Source: Author’s elaboration. 
 
 
 

Decision based on the critical level or probability value 
with a significance level (α) of 5% (Zaiontz, 2023). 
 

 
 

 
 

 

 
 

 
 
The theoretical quantiles QX (pi) for the quantile-quantile 
(q-q) plot are listed in the last column of Table 1 and are 
arranged on the abscissa axis. These theoretical 
quantiles are used to predict the empirical quantiles x(i), 
found in the second column of Table 1 and are placed on 
the ordinate axis of the q-q plot. The quantile order is 
computed using the median of the order statistics i from a 
sample   of  size  n   drawn   from   a   standard    uniform  
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distribution U [0, 1], following the guidelines of Hyndman 
and Fan (1996). The calculation for the first data point x(1) 
= 0.11 can be seen as follows: 
 

 
 

 
 

 
 
The points align closely around the line of central 
tendency in the q-q plot, as supported by a multiple 
correlation or shared variance of 0.97 between the 
theoretical and empirical quantiles (Figure 5). This 
provides evidence of a strong fit of the sample data to the 
theoretical model. 
 
 
Conclusions 
 
From the illustrated presentation of the lognormal 
distribution with parameters μ and σ2 (in logarithmic 
scale), it is evident that the calculation of probabilities and 
descriptive measures is straightforward. The probability 
calculations are simplified due to the relationship of this 
asymmetric and leptokurtic distribution with the normal 
distribution. Additionally, when computing descriptive 
measures, geometric measures are distinguished from 
arithmetic measures concerning the mean, variance, 
standard deviation, and coefficient of variation. 

It is important to note that the arithmetic standard 
deviation is the square root of the arithmetic variance, but 
this relationship does not hold for the geometric standard 
deviation and variance. The most reliable estimators are 
those derived from the maximum likelihood method, 
providing direct parameters on a logarithmic scale. 

The multiplicative effect of independent multiple factors 
on a variable follows a lognormal distribution, analogous 
to the linear effect of independent multiple factors on a 
variable that leads to a normal distribution. Owing to the 
connection between these two distributions, the 
multiplicative effect can be transformed into an additive 
one through lognormal transformation (Haines et al., 
2020). 

Naturally, it is essential to assess the fit of empirical 
data to the probability model using both graphical tools 
(histogram, frequency polygon, and quantile-quantile plot) 
and inferential methods (Anderson-Darling test). Finally, it 
is emphasized that this distribution can serve as a 
suitable probability model for certain variables related to 
sexual behavior, resource distribution, risk management, 
reaction times, physiological measurements, and 
epidemiology, such as predicting COVID-19 deaths. 
Therefore, it can be used to plan public health policy. 
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