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Salinity is a major detrimental abiotic factor for plant growth. The main purpose of this study was to 
analyze the effects of different NaCl concentrations on growth and some physiological parameters 
related to gas exchanges and water relations in amaranth (Amaranthus cruentus) plants. Three weeks 
old amaranth plants from the cultivar ‘Locale’ were exposed in nutrient solution to 0, 30 or 90 mM NaCl 
(electrical conductivities of 1.915; 4.815 and 11.70 dS.m

-1
 respectively) in phytotron conditions. Shoot 

elongation as well as fresh and dry masses of shoot and root were determined after two weeks of stress 
exposure. Net photosynthesis (A), intercellular CO2 concentration (Ci), instantaneous transpiration (E), 
stomatal conductance (gs), osmotic potential (Ψs) as well as the efficiency of the instantaneous 
carboxylation (A/Ci), intrinsic (A/gs) and instantaneous (A/E) water use efficiency were estimated. 
Results reveal that salt stress induced a significant reduction in growth of aerial part as well as net 
photosynthesis, instantaneous transpiration, stomatal conductance and leaf and root osmotic 
potentials. In contrast, no significant reductions were recorded for root growth, shoot water content, 
intercellular CO2 concentration and instantaneous carboxylation efficiency. However, a significant 
increase was observed for intrinsic (A/gs) and instantaneous (A/E) water use efficiency. The plant 
growth reduction observed hinges upon a drop in photosynthetic activity due mainly to stomatal 
closure. These data suggest that photosynthetic activity may be used as a reliable criterion for 
physiological estimation of salt-tolerance in A. cruentus cultivars. 
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INTRODUCTION 
 
Salinity is one of the most important environmental 
constraints that limits plant productivity, particularly in arid 
and semi-arid climates (Ashraf and Harris, 2004; Hussain 
et al., 2009). Indeed, more than 800 million hectares of 
arable lands are affected by soil salinity worldwide 
including about 45 million hectares of irrigated lands 
(Munns and Tester, 2008). The problem increases due to 
inadequate agricultural practices (Shannon and Grieve, 
1999; Villa-Castorena et al., 2003; Munns, 2005) and sea 
level rise (Munns, 2005). Excess of saline ions in soils 
generates an elevated osmotic pressure and an 
accumulation of toxic ions in plant tissues, notably Na

+
, 

and consequently induces a decrease in growth and crop 
yield due to a disruption of several physiological 
processes (Munns, 2002).  

Photosynthesis is an important metabolic pathway that 
is considered to be salt-sensitive (Munns et al., 2006; 
Chaves et al., 2009). Salinity reduces photosynthesis by 
inducing stomatal closure preventing CO2 diffusion 
(Brugnoli and Lauteri, 1991). Salinity may also affect non- 
stomatal properties such as chlorophyll synthesis, 
photosystem structure, electron transport (Lee et al., 
2004), efficiency of the ribulose-1,5-bisphosphate 
carboxylase/oxygenase for carbon fixation (Delfine et al., 
1998; Jaleel et al., 2007; Megdiche et al., 2008), and 
photophosphorylation (Stoeva and Kaymakanova, 2008). 
Salt stress also impacts the water supply of the plant. 
Plant-water relations have rather important implications 
on the physiological and metabolic processes 
conditioning plant growth (Passioura, 2010). Salinity 
indeed frequently induces plant dehydration in relation to 
a decrease in the osmotic potential of external soil 
solution which prevents water absorption by the root 
system (Álvarez et al., 2012).   

Amaranth (Amaranthus spp.) species are tropical crops 
used as pseudo-cereals or leafy vegetables with a high 
nutritional value and large adaptability to various 
environments mainly marginal lands and semi-arid 
regions where salinity issue is sharp (Cunningham et al., 
1992; Allemann et al., 1996; Bhattacharjee, 2008). In 
Benin, amaranth species are extensively cultivated on the 
arable lands from costal zones where availability of good-
quality water and salinity pose serious threats (Wouyou 
et al., 2016; 2017). Previous studies showed that NaCl 
concentrations ranging from 30 to 200 mM reduce aerial 
and root parts growth in different genotypes of amaranth 
including cultivars of Amaranthus cruentus (Makus, 2003; 
Omami and Hammes, 2005; Ornami and Hammes, 2006; 
Qin et al., 2013; Amukali et al., 2015; Lavini et  al.,  2016;  

 
 
 
 
Wouyou et al., 2017). However, the physiological and 
biochemical mechanisms involved in such a growth 
reduction remain largely unknown. The main goal of the 
present study is therefore to analyze the effect of salinity 
on growth, stomatal conductance, net photosynthesis, 
transpiration, osmotic potential, efficiency of 
instantaneous carboxylation and water use efficiency in 
the A. cruentus in order to obtain additional information 
on the main factors limiting plant growth in this species. 

 
 
MATERIALS AND METHODS   

 
Plant material and salinity stress treatment 

 
Seeds of the cultivar 'Locale' were germinated in jars filled with 
substrate (Substrate NFU 44-551) for a week. The composition of 
the substrate is shown in Table 1. The obtained young seedlings 
were individually transferred in pots containing the same substrate 
for one further week in a growth chamber characterized by a 
25/21°C (day/night) temperature, a 16/8 h (day/night) photoperiod, 
a light intensity between 150-220 µmole.m-2s-1 using white 
fluorescent tubes (F36W/840-T8). Daytime humidity was set to c.a. 
65%. Plants were then transferred to tanks containing a modified 
Hoagland solution (Went, 1957) with pH 6. Stress application was 
carried out after one week on three weeks old plants. Treatments 
consisted of three NaCl concentrations: 0, 30 and 90 mM 
corresponding to an electrical conductivity of 1.915, 4.815 and 
11.70 dS.m-1, respectively. All treatments were repeated three 
times in a complete randomized design and each repetition 
consisted in a pooled sample of six plants. Eighteen plants were 
thus considered per treatment (Figure 1). Salinity stress was 
maintained over a period of two weeks. 

 
 
Measurement of growth parameters and water contents 

 
Shoot height, root length as well as fresh and dry biomasses of the 
shoot and roots were determined after two weeks of stress 
application. Shoot height was measured at the time of stress 
imposition (Hi) and after two weeks of treatment (Hf). The relative 
growth in height was calculated according to the formula: RHG = 
(Hf - Hi)/Hi. Root elongation was estimated according to the same 
procedure. Shoot and root fresh biomasses were determined after 
two weeks. Samples were then transferred to an oven at 80°C for 
72 h for dry biomass determination. Water content was determined 
as [fresh mass - dry mass)/ fresh mass] x 100. 

 
 
Measurement of physiological parameters 

 
All physiological parameters were determined after two weeks 
treatment. Stomatal conductance (gs) was estimated at the mid 
photoperiod on the youngest fully unfolded leaf on three plants per 
treatment using a porometer (AP4-UM-3, Delta-T Devices, 
Cambridge, United  Kingdom).  Net  photosynthesis  (A,  net  rate of
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Table 1. Composition of the Substrate NFU 44-551 used for plant growth. 
 

Component Fertilizer 
Dry matters/ 
raw product 

Organic matters/ Dry 
product 

pH 
(H2O) 

Conductivity 
Water retention 

capacity 

Values 
1 kg/m

3
 

NPK 14-8-14 
50% 85% 6.5 40 mS/m 750 ml/L 

 
 
 

 
 

Figure 1. Experimental design with plants at the beginning of stress imposition. 
 
 
 

carbon assimilation) was measured under a constant photosynthetic 
flux of photons (500 µmol.m-2s-1), instantaneous transpiration (E) 
and internal CO2 content (in sub-stomatal chamber) (Ci) were 
measured on the youngest fully expanded leaf of three plants per 
treatment using a water vapor analyzer (LCA 2 8.7, ADC, Great 
Amwell, England) and an air supply unit (ASU 10.87, ADC) set up 
in series in an open system. The efficiency of the instantaneous 
carboxylation was calculated as A/Ci according to Zhang et al. 
(2001) whereas the intrinsic (A/gs) and instantaneous (A/E) water 
use efficiency were calculated according to de Oliveira et al. (2015). 
To measure the osmotic potential (Ψs), roots and leaves of three 
plants per treatment were rapidly rinsed in deionised water, frozen 
in liquid nitrogen just after harvest. They were then cut in small 
pieces and placed in a perforated Eppendorf tube which was 
encased in a second intact tube. After 3 cycles of freeze/thawing, 
the samples were centrifuged at 15,000 g during 15 min at 4°C. The 
extracted sap was used to measure the osmolarity (c) using an 
osmometer with steam pressure Wescor 5500 as described earlier 
by Lutts et al. (1999). The Ψs was then calculated with the following 
formula: 
 
                                          according to Van't 
Hoff equation. 

Statistical analysis   
 
For all variables, the data are expressed in the form of mean ± 
standard error after averaging results over three replications per 
treatment. Stress effect on a given parameter was performed on the 
basis of a one-way variance analysis (ANOVA). Means were 
compared by the Tukey-Kramer test. All analysis was performed 
with the JMP software (SAS Institute, 2015).  

 
 
RESULTS AND DISCUSSION   
 

Effects of saline stress on plant growth  
 

Salt stress effects resulted in a decrease of all estimated 
growth parameters (Table 2). The reduction of growth 
under salinity in comparison to the control was 20, 17, 22, 
39, 32 and 9% with 30 mM NaCl, respectively for the 
relative shoot height growth (RHG), shoot fresh and dry 
masses (SFM and SDM), relative root elongation 
(RRLG),  root  fresh  and dry masses (RFM and RDM). At 
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Table 2. Effect of different NaCl concentrations on growth 
parameters of Amaranthus cruentus cv. ‘Locale’ after two 
weeks stress application. Each value is the mean of three 
replicates ± S.E.  
 

Parameter 
NaCl concentrations (mM) 

0 30 90 

RHG 2.36±0.11
a
 1.89±0.17

a
 1.09±0.20

b
 

SFM 34.63±4.24
a
 28.78±6.11

ab
 11.53±1.52

b
 

SDM 3.81±0.53
a
 2.98±0.65

ab
 1.46±0.10

b
 

RRLR 2.97±0.51
a
 1.83±0.31

a
 1.61±0.28

a
 

RFM 12.97±1.89
a
 10.07±2.78

a
 7.82±0.72

a
 

RDM 0.693±0.077
a
 0.633±0.075

a
 0.497±0,044

a
 

 

Means followed by the same letter within a line are not 
significantly different at P < 0.05. 

 
 
 

90 mM NaCl, reductions matched respectively with 54, 
67, 62, 46, 40 and 28% compared to the response of the 
control for the same parameters. However, the reduction 
was significant (p<0.05) only for parameters related to 
aerial part growth at 90 mM NaCl. Thus, NaCl effect 
resulted mainly in aerial part growth inhibition. Our results 
indicate that the aerial part was more sensitive to NaCl 
concentrations than the root system. The growth 
reduction of aerial part is a common response of 
glycophyte plant species submitted to salt stress (Abbas 
et al., 2010; Akram et al., 2012; Acostoa-Motos et al., 
2017). Similarly, in diverse amaranth genotypes, it has 
been reported that the saline constraint reduces aerial 
part and root growth of plants (Makus, 2003; Omami and 
Hammes, 2006; Qin et al., 2013; Amukali et al., 2015; 
Lavini et al., 2016; Wouyou et al., 2017). However, the 
physiological and biochemical mechanisms responsible 
for growth reduction are not well clarified to date (Munns 
and Tester, 2008; Noreen et al., 2010a, b; Ashraf et al., 
2011). The biomass reductions in A. cruentus under 
saline conditions are indicative of severe growth 
limitations. In amaranth, salinity stress negative effects 
did not affect on the production of biomass but it also 
negatively affects various morphological parameters as 
indicated by Wouyou et al. (2017). Bayuelo-Jimenezes et 
al. (2002) highlighted that salt-tolerant species in the 
genus Phaseolus could maintain a relatively high root 
growth whenever they are cultivated on salt rich media 
until 180 mM NaCl. Our results can be explained by a 
greater ability for osmotic adjustment under stress by the 
roots as reported in sultana vines under salt stress, 
particularly at high NaCl concentration (Fisarakis et al., 
2001). 
 
 

Effects of saline stress on physiological parameters   
 

Salt stress induced a significant reduction (P < 0.05) of 
net   photosynthesis   (A)  (Figure  2A).  Indeed  A  values  

 
 
 
 
decreased from 2.39 µmolCO2 m

-2
s

-1 
(control) to 1.76 at 

30 mM NaCl, and then to 1.16 µmolCO2 m
-2

s
-1

 under 90 
mM NaCl. These values correspond to a reduction of the 
photosynthetic activity of 26.36 and 51.47% comparatively 
to control, respectively. The reduction of photosynthetic 
capacity under salt stress has been reported in numerous 
species and is considered to be, at least partly, 
responsible for salt-induced growth reduction (Liu et al., 
2011; da Silva, 2011; Saleem et al., 2011; Shahid et al., 
2011; Shaheen et al., 2013; R'him et al., 2013). However, 
according to Omami and Hammes (2006) and Munns and 
Tester (2008), the effect of salinity on the photosynthetic 
activity depends upon the salt concentration and the plant 
species. In Bruguiera parviflora, Parida et al. (2002) 
reported that low levels of salinity even stimulated 
photosynthesis while high levels clearly reduced it. In our 
study, a reduction of the photosynthetic activity was 
observed under all used NaCl concentrations. Omami 
and Hammes (2006) similarly showed that all NaCl 
concentrations up to 100 mM NaCl decreased 
photosynthesis in different amaranth species. We may 
therefore hypothesize that photosynthesis inhibition is a 
major component of growth inhibition in A. cruentus. The 
net photosynthesis reduction along with saline stress 
application would not only be related to the growth 
reduction (Cramer and Bowman, 1991; Foyer and Noctor, 
2005; Passioura and Munns, 2000), but also to an 
increase in carbohydrate accumulation acting in a 
negative feed-back (Munns et al., 2000). However, 
Munns and Tester (2008) considered that it is always 
difficult to conclude whether a reduction in photosynthetic 
activity is the cause or the consequence of growth 
inhibition. Salt stress decreased the intercellular CO2 

concentration (Ci) (Figure 2B) which ranges from 
(control) 314 to 345 in 30 mM NaCl and 332.67 µmol.mol

-

1
 in 90 mM NaCl. The recorded decrease remained 

however limited from a relative point of view (9.07 and 
3.67%, respectively in comparison with the control) and 
was not significant. In eggplant, Shaheen et al. (2013) 
found that saline stress did not affect the intercellular CO2 

concentration. In a study carried on two perennial 
Gramineae species, Liu et al. (2011) found out that in the 
sensitive species Eremochloa ophiuroides, salt stress 
provoked an increase of the intercellular CO2 

concentration, notably at high NaCl concentrations, 
whereas in the tolerant species Paspalum vaginatum, 
evolution of intercellular CO2 concentration was variable 
depending on stress duration and intensity. In our study, 
NaCl had no impact on the instantaneous carboxylation 
efficiency (A/Ci) (Figure 2C) ranging from 0.0069 (control) 
to 0.0057 under 30 mM NaCl and 0.0035 mol.m

-2
.s

-1
 

under 90 mM NaCl. The observed losses correspond 
respectively to 17.39 and 49.28% reported to the control 
treatment and might be explained by an inhibition of the 
carboxylase activity of RubisCO (da Silva et al., 2011). 

An  inhibition   of   shoot   growth   may   also    lead   to
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Figure 2. Effect of salinity stress on net photosynthesis rate (A), intercellular CO2 concentration (B) and 
instantaneous carboxylation efficiency (C), stomatal conductance (D) and instantaneous transpiration (E) of 
young amaranth plants cv. 'Locale' after two weeks culture on media containing three NaCl concentrations (0, 
30 and 90 mM). The vertical bars correspond to the standard errors (n = 3). Averages with different letters are 
significantly different (p <0.05, or 0.01). 

 
 
 

photosynthate accumulation in stressed tissues that 
would, in turn, generate a feedback signal towards the 
reduction of photosynthetic activity. The physiological and 
enzymatic mechanisms implied in these regulations have 
been questioned in details by Cramer and Bowman 
(1991), Passioura and Munns (2000), Apel and Hirt 
(2004), Fricke et al. (2004), Foyer and Noctor (2005), 
Logan (2005) and Møller et al. (2008). Sobrado (2005) 
reported that inefficiency of stomatal regulation in 
stressed plants may directly impair both leaf 
photosynthetic capacities and biochemical processes. 
Several works also reported a decrease in chlorophyll 
content (Koyro 2006; Geissler et al.  2009).  The  drop  of 

the chlorophyll”s content could be assigned either to the 
reduction of its biosynthesis or to a stimulation of 
chlorophyllase activity (Ashraf and Bhatti 2000). In our 
study, saline stress induced a significant reduction 
(p<0.01) of the stomatal conductance (Figure 2D) that 
was 63.33 (in control), 40.50 (with 30 mM NaCl in the 
growth media) and 21.17 mmol H2O m

-2
s

-1
 (under 90 mM 

NaCl). Investigating different genotypes of amaranth, 
Ornami and Hammes (2006) also reported a significant 
reduction of stomatal conductance. Results presented 
here matched well with those mentioned earlier in pepper 
(Lycoskoufis et al., 2005; Niu et al., 2010; R'him et al., 
2013)  and   tomato    (Baker    and    Rosenqvist,   2004).

 

 

 

 

 

 

 

 

 

 

 

a 

b b 
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Table 3. Effect of different NaCl concentrations on shoot water content of Amaranthus 
cruentus cv. ‘Locale’ after two weeks stress application.  
 

Parameter  
NaCl concentrations (mM) 

0 30 90 

Shoot water content (%) 88.93±0.87
a
 89.58±0.56

a
 87.10±0.98

a
 

 

Each value is the mean of three replicates ± S.E. Means followed by the same letter are not 
significantly different at P < 0.05. 

 
 
 

Table 4. Effect of saline stress on instantaneous (A/E, µmolCO2.mmol-1H2O) and 
intrinsic (A/gs, µmolCO2/mmol-1H2O) water use efficiency in amaranth young 
plants of the cultivar 'Locale' after two weeks culture on media containing three 
NaCl concentrations (0, 30 and 90 mM).  
 

NaCl concentration (mM) A/E A/gs 

0 2.077±0.097
a
 0.038±0.0026

a
 

30 3.252±0.211
ab

 0.068±0.0049
b
 

90 4.336±0.556
b
 0.115±0.017

c
 

 

Each value is the mean of three replicates ± S.E. Means followed by the same 
letter within a column are not significantly different at P < 0.05. 

 
 
 

Stomatal closure is required for maintenance of water 
content and could thus be regarded as an adaptive 
strategy of plants to uphold water whenever facing the 
osmotic stress under salinity (Shaheen et al., 2013; 
Davies et al., 2005). This stomata closure might be 
responsible for the low photosynthetic intensity recorded 
under salinity conditions. The fact that shoot water 
content did not change significantly under salt stress 
(Table 3) supports the hypothesis that stomatal closure 
efficiently contributes to regulate shoot water content in 
salt-treated Amaranthus.  

The effect of salt stress resulted in a significant 
reduction (p<0.05) of instantaneous transpiration (E) 
(Figure 2E) ranging from 1.16 (without salt stress: 
control) to 0.61 (by 30 mM NaCl stress) and 0.53 mmol 
H2O m

-2
s

-1
 (under 90 mM NaCl stress), consisting in a 

reduction of 47.41 and 54.31%, respectively in 
comparison with the control. In four amaranth genotypes, 
Ornami and Hammes (2006) observed a decrease in 
instantaneous transpiration (transpiration rate) of salt-
treated plants. A similar tendency has been reported in 
the genus Brassica (Ashraf, 2001). The reduction of 
instantaneous transpiration observed in our study is 
obviously the consequence of a decrease in stomatal 
conductance. Other studies showed that the salt-induced 
stomatal closure might contribute to avoid the build-up of 
the toxic ion flux through the transpiration stream 
(Kerstiens et al., 2002; Vysotskaya et al., 2010). Thus, 
Koyro (2006) suggested that stomatal conductance 
reductions represent an adaptive mechanism to face salt 
excess, reducing the amounts of toxic ions in leaves and 
thus contributing to avoid premature senescence of 
photosynthetic tissues. 

The effect of salt stress resulted in a significant 
increase in plant intrinsic (A/gs) (p<0.001) and 
instantaneous (A/E) (p<0.05) (Table 4) water use 
efficiency (WUE). The intrinsic WUE ranged from 0.038 
(without salt stress: control) to 0.068 (by 30 mM NaCl 
stress) and 0.115 µmolCO2/mmolH2O (under 90 mM 
NaCl stress), consisting in an increase of 78.95 and 
202.63%, respectively in comparison with the control; 
whereas instantaneous WUE ranged from 2.077 (without 
salt stress: control) to 3.252 (by 30 mM NaCl stress) and 
4.336 µmolCO2/mmolH2O (under 90 mM NaCl stress), 
consisting in an increase of 56.25 and 108.65%, 
respectively in comparison with the control. Similar 
results were obtained in Eugenia myrtifolia and 
Callistemon citrinus plants submitted to salt stress which 
were able to increase their intrinsic WUE throughout most 
of the growing season indicating that the plants maintain 
higher net photosynthesis rate (A) levels despite reduced 
stomatal opening (Álvarez and Sánchez-Blanco, 2014; 
Acosta-Motos et al., 2017). 

Salinity induced significant reductions in the leaf and 
root osmotic potentials (Ψs) (Table 5). In leaves, osmotic 
potential ranged from -1.23 MPa (under 0 mM NaCl) to -
1.75 MPa (with 30 mM NaCl) and -3.42 MPa (under 90 
mM NaCl stress). In roots, osmotic potential dropped 
from -0.87 MPa (without salt stress) to -1.35 MPa (with 
30 mM NaCl) and -2.14 MPa (under 90 mM NaCl). It is 
well known that the presence of salt excess in 
rhizosphere leads to reductions in osmotic potential and 
consequently, contributes to the decrease in plant water 
potential (Sánchez-Blanco et al., 2004; Munns, 2005; 
Franco et al,. 2011). Our results are in agreement with 
those reported  earlier in  sunflower (Akram et  al., 2012),
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Table 5. Effect of saline stress on osmotic potential (Ψs) of leaves and roots measured at 
amaranth young plants of the cultivar 'Locale' after two weeks culture on media containing three 
NaCl concentrations (0, 30 and 90 mM).  
 

NaCl concentration (mM) Leaves Root 

0 -1.23±0.11
a
 -0.87±0.14

a
 

30 -1.75±0.10
b
 -1.35±0.04

ab
 

90 -3.42±0.31
b
 -2.14±0.28

b
 

 

Each value is the mean of three replicates ± S.E. Means followed by the same letter within a 
column are not significantly different at P < 0.05. 

 
 
 

pea (Noreen et al., 2010a) and radish (Noreen et al., 
2012). Munns and Tester (2008) and Noreen et al. 
(2010a, b) explained this reduction of leaf osmotic 
potential by a loss of water, an increase in the uptake of 
dissolved ions or an oversynthesis of compatible organic 
compounds. In our study, the reduction of osmotic 
potential could not be explained by a decrease in water 
content  since no significant reduction of shoot water 
content occurred under the NaCl concentrations used 
(Table 2). Thus, it is more likely that the reduction of 
osmotic potential under salinity stress may be due to an 
increase in ion absorption and/or the oversynthesis of 
soluble organic compounds. Na

+
 and/or Cl

- 
ions are 

known to increase considerably in saline stress 
conditions in numerous plant species including lentil 
(Ashraf and Waheed, 1993), corn (Cramer et al., 1994), 
rice (Lutts et al., 1996), cotton (Chen and Zhao, 1996; 
Leidi and Saiz, 1997), durum wheat (Almansouri et al., 
1999); sugarcane (Akhtar et al., 2003; Wahid, 2004; 
Gandonou et al., 2011) and A. cruentus (Wouyou, 2017). 
Considering their putative toxicities, most of these ions 
are thought to be sequestered within vacuoles and 
additional organic compounds such as proline or sugars, 
or non-toxic ions such as K

+
 ensure osmotic adjustment 

in the cytosol. 
 
 
Conclusion   
 

The reduction of plant growth under salt stress is due to a 
loss in photosynthetic activity mostly related to stomatal 
closure. The maintenance of high water use efficiency 
appeared as an important strategy to face salt stress in 
A. cruentus. The results exposed here provide specific 
physiological cues for improvement of salt-tolerance in 
amaranth. 
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