International Journal of
Plant Physiology and Biochemistry

  • Abbreviation: Int. J. Plant Physiol. Biochem.
  • Language: English
  • ISSN: 2141-2162
  • DOI: 10.5897/IJPPB
  • Start Year: 2009
  • Published Articles: 110

Full Length Research Paper

Growth and photosynthesis response of the green alga, Picochlorum oklahomensis to iron limitation and salinity stress

J. Nana Annan
  • J. Nana Annan
  • Department of Biology Education, University of Education, P. O. Box 25, Winneba, Ghana
  • Google Scholar


  •  Received: 03 December 2013
  •  Accepted: 13 January 2014
  •  Published: 31 January 2014

References

Allakhverdiev S, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y Murata N (2002). Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol. 130:1443-1453.
Crossref
 
Anderson MA, Morel FMM (1982). The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr. 27:789-813.
Crossref
 
Ashraf M, Harris PJC (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166:3-16.
Crossref
 
Bannister TT (1979). Quantitative description of steady state, nutrient-saturated algal growth, including adaptation. Limnol. Oceanogr. 24:76-96.
Crossref
 
Bilger W, Björkman O (1990). Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 25:173-185.
Crossref
 
Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K.-P, Pistorius EK, Kruip J (2001). A giant chlorophyll-protein complex induced by iron deficiency in cyanobac- teria. Nature 412:745-748.
Crossref
 
Bulter A (1998). Acquisition and utilization of transition metal ions by marine organisms. Science 281:207-210.
Crossref
 
Burnap RL, Troyan T, Sherman LA (1993). The highly abundant chlorophyll-protein of iron deficient Synechococcus sp. PCC 7942 (CP43') is encoded by the isiA gene. Plant Physiol. 103:893-902.
Crossref
 
Cole JJ, Howarth RW, Nolan SS, Marino R (1986). Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biochem. 2:179-196.
 
Crosa JH (1997). Signal transduction and transcriptional and post-transcriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev. 61:319-339.
Pubmed
 
Demmig-Adams B, Adams WW III (1992). Photoprotection and other responses of plants to high light stress. Annu. Rev.Plant Physiol. Mol. Biol. 43:599-626.
Crossref
 
Doucette GJ, Harrison PJ (1991). Aspects of iron nutrition in the red tide dinoflagellate Gymnodinium sanguineum. I. Effect of iron depletion and nitrogen source on biochemical composition. Mar. Biol. (Berl.) 110:165-173.
Crossref
 
Eugster HP, Jones BF (1979). Behavior of major solutes during closed-basin brine evolution. American J. Sci. 279:609-631.
Crossref
 
Genty B, Britais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem. Biophys. Acta. 990:87-92.
Crossref
 
Gilbert GA, Gadush MV, Wilson C, Madore M (1998). Amino acid accumulation in sink and source tissues of Coleus blumei Benth. During salinity stress. J. Exp. Bot. 49:107-114.
Crossref
 
Gilmore AM (1997). Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99: 197-209.
Crossref
 
Gimmler H, Wiedemann C, Möller EM (1981). The metabolic response of the halotolerant green alga Dunaliella parva to hyperosmotic shocks. Ber. Dtsch. Bot. Gesell. 94:613-34.
 
Graham LE, Wilcox LW (2000). Algae. Prentice Hall. Upper Saddle River, NJ 650pp.
 
Guerinot ML, Yi Y (1994). Iron: nutritious, noxious and not readily available. Plant Physiol. 104:815-20.
Pubmed
 
Guikema JA, Sherman LA (1983). Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Physiol. Plant. 73:250-256.
Crossref
 
Henley WJ (1993). Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29:729-739.
Crossref
 
Henley WJ, Hironaka JL, Buchheim MA, Buchheim, JA, Fawley MW, Fawley KP (2004). Phylogenetic analysis of the "Nannochloris-like" algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia 43:641-652.
Crossref
 
Henley WJ, Major KM, Hironaka JL (2002). Response to salinity and heat stress in two halotolerant chlorophyte algae. J. Phycol. 38:757-766.
Crossref
 
Hironaka J (2000). Characterization of a unicellular coccoid green alga collected from the Salt Plains National Wildlife Refuge, Oklahoma. MS thesis, Oklahoma St. Univ.
 
Hu X, Tanaka A, Tanaka, R (2013). Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plants Methods 9(19):1-13.
 
Hudson RJM, Morel FMM (1990). Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 35:1002-1020.
Crossref
 
Jassby AA, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21:540-547.
Crossref
 
Kerkeb L, Donaire JP, venema K, Rodríguez-Rosales MP (2001). Tolerance to NaCl induces exchanges in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli. Physiol. Plant. 113:217-224.
Crossref
 
Kirst GO (1989). Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:21-53.
 
Komori T, Yamada S, Myers P, Imaseki H. (2003). Biphasic response to elevated levels of NaCl in Nicotiana occidentalis subspecies oblique Burbidge. Plant Sci. 165:159-165.
Crossref
 
Lawlor DW (2002). Carbon and Nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J. Exp. Bot. 53:773-787.
Crossref
 
Lu C, Qiu N, Lu Q (2003). Photoinhibition and the xanthophyll cycle are not enhanced in the salt-acclimated halophyte Artimisia anethifolia. Physiol. Plant 118:532-537.
Crossref
 
Mgbeze GC, Omodamwen JO (2011). Nutrient uptake in pepper (Capsicum annuum L.) grown under salt stress. J. Agric. Bio. Sci. 2(4):99-107.
 
Millero FJ, Yao W, Aicher J (1995). The speciation of Fe (II) and Fe (III) in natural waters. Mar. Chem. 50:21-39.
Crossref
 
Mohanty P, Allakhverdiev SI, Murata N (2007). Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosyn. Res. 94:217-224.
Crossref
 
Morales F, Moise N, Quilez R, Abadia A, Adadia J, Moya I (2001). Iron deficiency interrupts energy transfer from a disconnected part of the antenna to the rest of photosystem II. Photosyn. Res. 70:207-220.
Crossref
 
Motekaitis RJ, Martell AE (1987). Speciation of metals in the oceans. I. Inorganic complexes in seawater, and influence of added chelating agents. Mar. Chem. 21:101-16.
Crossref
 
Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M (2007). Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii Proteomics 7:3964-3979.
Crossref
 
Neilands JB (1974). Microbial iron metabolism. Academic Press, New York. 597 p.
View
 
Nenova V (2008). Growth and mineral concentrations of pea plants under different salinity levels and iron supply. Gen. Appl. Plant Physiol. 34(3):189-202.
 
Nissenbaum A [Ed] (1980). Hypersaline Brines and Evaporitic Environments. Proceedinds of the Bat Sheva Seminar on Saline Lakes and Batural Brines. Developments in Sedimentology. Vol. 28. Elservier, Amsterdam. 270 p.
 
Porra RJ, Thompson WA, Kriedemann PE (1989). Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975:384-394.
Crossref
 
Raven JA (1990). Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol. 116:1-18.
Crossref
 
Rueter JG, Ades DR (1987). The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae). J. Phycol. 23:452-457.
Crossref
 
Starr RC, Zeikus JA (1993). UTEX-The culture collection of algae at the University of Texas at Austin. J. Phycol. 29 (2 Suppl.):90-91.
 
Sunda WG, Huntsman SA (1995). Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50:189-206.
Crossref
 
Trick CG (1989). Hydroxamate-siderophore production and utilization by marine eubacteria. Curr. Microbiol. 18:375-378.
Crossref
 
van Kooten O, Snel JFH (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn. Res. 25:147-150.
Crossref
 
Wellburn AR (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophoto-meters of different resolutions. J. Plant Physiol. 144:307-313.
Crossref
 
Wilhelm SM, Trick CG (1994). Iron-limited growth of cyanobacteria: multiple siderophore production is a common response. Limnol. Oceanogr. 39:1979-84.
Crossref
 
Yousfi S, Houmani H, Zribi F, Abdelly C, Gharsalli M (2012). Physiological responses of wild and cultivated barley to the interactive effect of salinity and iron deficiency. ISRN Agronomy 12:1-8.
Crossref
 
Zamani S, Nezami MT, Khorshidi MB (2012). Effect of salinity stress on nutrient composition in the root of some canola (Brassica napus L.) cultivars. Wudpecker J. Agric. Res. 1(10):439-441.