International Journal of
Physical Sciences

  • Abbreviation: Int. J. Phys. Sci.
  • Language: English
  • ISSN: 1992-1950
  • DOI: 10.5897/IJPS
  • Start Year: 2006
  • Published Articles: 2510

Full Length Research Paper

Cu(II) and Fe(III) complexes of sulphadoxine mixed with pyramethamine: Synthesis, characterization, antimicrobial and toxicology study

K. O. Ogunniran1*, O. O. Ajani1, C. O. Ehi-Eromosele1, J. A. Obaleye2, J. A. Adekoya1and C. O. Ajanaku1
  1Department of Chemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria. 2Department of Chemistry, Faculty of Science, University of Ilorin, Ilorin, Kwara State, Nigeria.
Email: [email protected]

  •  Accepted: 09 February 2012
  •  Published: 23 March 2012



Two new mixed ligands metal complexes of sulphadoxine and pyramethamine were prepared by using CuCl2.6H2O and FeCl3.6H2O. The complexes were characterized by elemental analysis, melting point determination, molar conductivity, metal content analysis (AAS), IR, magnetic susceptibility measurements and UV-Visible spectroscopy. Based on the analytical and spectroscopic data, the complexes were proposed to have the formulae [M1L1L2(Cl)2] and [M2L1L2(Cl)3] (where M1 = Cu(II), M2 = Fe(III)), L1 = sulphadoxine, L2 = pyramethamine). The spectroscopic data proposed L1 to be a monodentate ligand and coordinated through N atom of the NH2 group in both complexes. Also, L2 was proposed to be tridentate ligand and coordinated through N atom of the NHgroups and through N atom of imine group. However, [M1L1L2(Cl)2] and [M2L1L2(Cl)3] were proposed to possess distorted octahedral geometry. Conductivity measurement values supported the non-electrolytic nature of the complexes. The complexes have been tested in vitro against a number of pathogenic bacteria [g(+) Escherichia coli, g(+) Proteus species, g(+)Pseudomonas aeruginosa and g(+) Salmonella typhi] by using disc diffusion method. Obtained results indicated that the metal complexes exhibited better antibacterial activities as compared to the ligands. Toxicology tests against some tissues of albino rat (Rattus novergicuss) revealed toxicity of the complexes in the kidney as compared to the parent drugs. [M1L1L2(Cl)2] was found to be toxic to the sera, livers and  kidneys of the rats used, while [M2L1L2(Cl)3] was found to be non-toxic to the sera, livers and kidneys of the rats as their alkaline phosphatase (ALP) values showed non-significant difference to the control values.


Key words: Metal complexes, complexation, antibiotics, antimicrobial properties, alkaline phosphatase.