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The electron mobility of ZnS and ZnSe semiconductor compounds were calculated by using the 
iteration method. We considered polar optical phonon scattering, deformation potential acoustic, 
piezoelectric and ionized impurity scattering mechanisms. Band nonparabolicity, admixture of p 
functions, arbitrary degeneracy of the electron distribution, and the screening effects of free carriers on 
the scattering probabilities are incorporated. We investigated temperature and doping dependencies of 
mobility for the given compounds. The electron mobility of the two materials was found to be similar, 
though the ZnS characteristics were on the whole superior. It is also found that the electron mobility 
decreases monotonically as the temperature increases from 100 to 600 K for two crystal structures. The 
low temperature value of electron mobility increases significantly with increasing doping concentration. 
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INTRODUCTION 
 
The transport properties of ZnS and ZnSe have been a 
subject of extensive investigation in recent years (Chen 
et al., 1998). There has been a great interest in the study 
of charge carrier transport of ZnS and ZnSe due to the 
wide band gap, which has become one of the most 
applied insulators in thin-film electro luminescence 
devices (Look et al., 1998). Most previous studies have 
assumed the electron distribution function of cool 
temperature with high-energy tail ends at less than 4 eV. 
Makino et al. (2001) have used a single parabolic band in 
the first conduction band. This is at very high field 
unrealistic. The full band details of the first two 
conduction bands as well as full-order treatment of the 
electron phonon interaction have been included by 
Brennan (1998). Electron transport at low electric field 
was calculated for the first time by solving the Boltzmann 
transport equation, exactly under generalized Fermi-Dirac 
statistics for the most scattering events. Electron mobility 
and resistivity were calculated as a function of electron 
concentration at both 300 and 77 K (Di and Brennan, 
1991). Mansour et al. (2000) used a model that included 
only the first conduction in a nonparabolic three valleys 
model. Chattopadhyay and Queisser (1981) have 
developed a model including a nonparabolic three valleys 
of the first conduction band and a single valley in the 
second  conduction  band.   Using    the   pseudopotential 

method, the density of states in the last case was 
included. Most of the pervious theoretical work on 
transport properties of ZnS and ZnSe, in high electric 
field, and at room temperature has been mainly based on 
Monte Carlo method. The temperature and doping 
dependencies of electron mobility in ZnS and ZnSe are of 
particular relevance to the large effort at present to 
producing AC and DC electro luminscent devices. AC 
electro luminscent devices were made by encapsulating 
large band gap semiconductors such as ZnS: Mn or 
ZnSe: Mn by two insulates layers, typically Y2O3, on 
either side of the semiconductor layers. An AC bias 
applied across the device alternately accelerates the 
electrons from one semiconductor insulator interface to 
the other. An electro luminscent phenomenon occurs 
when the free carriers are accelerated to sufficiently high 
energy, such that impact excitation of the Mn center 
becomes possible. 

In ZnS and ZnSe semiconductor compounds the 
dominant scattering mechanisms is primarily the polar 
optic phonon scattering mechanism. The others are 
ionized impurity scattering, acoustic phonon deformation 
potential scattering and acoustic phonon piezoelectric 
scattering mechanisms (Moglestue, 1993). As a result of 
being elastic process of acoustic phonon deformation 
potential  scattering, acoustic piezoelectric scattering and  



 
 
 
 
ionized impurity scattering, their mobilities can be 
calculated with the relaxation time approach. But if the 
electron energy can be compared with the phonon 
energy, this is important and such a scattering is inelastic 
scattering. The compensated changing in the energy is 
taken place after inelastic scattering. Since in inelastic 
scattering process the phonon energy is the bigger than 
the electron energy. Thus, relaxation time approach is not 
valid for inelastic scattering process (Jacoboni and Lugli, 
1989). Because of this the calculation of polar optic 
phonon scattering is used the other numerical method 
instead of relaxation time approach. In this work it was 
used an iterative method for the calculation. 
 
 
MODEL DETAILS 
 
The present calculations of electron mobility are based on solving 
Boltzmann transport equation with iterative method (Liu et al., 
2000). Rode's iterative technique provides a compact method of 
solution of the Boltzmann equation in the low field regime (Ridley, 
1997). To derive Rode's method, we start with the Boltzmann 
transport equation for the case of steady-state conditions and no 
spatial gradients. 
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Where (∂ f/∂ t)coll represents the change of distribution function due 
to the electron scattering. In the steady-state and under application 
of a uniform electric field the Boltzmann equation can be written as 
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Consider electrons in an isotropic, non-parabolic conduction band 
whose equilibrium Fermi distribution function is f0(k) in the absence 
of electric field. Note the equilibrium distribution f0(k) is isotropic in k 
space but is perturbed when an electric field is applied. If the 
electric field is small, we can treat the change from the equilibrium 
distribution function as a perturbation which is first order in the 
electric field. The distribution in the presence of a sufficiently small 
field can be written quite generally as 
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Where θ is the angle between k and F and f1(k) is an isotropic 
function of k, which is proportional to the magnitude of the electric 
field. f(k) satisfies the Boltzmann Equation 2 and it follows that 
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In general there will be both elastic and inelastic scattering 
processes. For example impurity scattering is elastic and acoustic 
and piezoelectric scattering are elastic to a good approximation at 
room temperature. However, polar and non-polar optical phonon 
scattering are inelastic. Labeling the elastic and inelastic scattering 
rates with subscripts el and inel respectively and recognizing that, 
for any process i, seli(k’, k) = seli(k, k’) equation 4 can  be  written  as 
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Note the first term in the denominator is simply the momentum 
relaxation rate for elastic scattering. Equation 5 may be solved 
iteratively by the relation 
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Where f1n(k) is the perturbation to the distribution function after the 
n-th iteration. It is interesting to note that if the initial distribution is 
chosen to be the equilibrium distribution, for which f1(k) is equal to 
zero, we get the relaxation time approximation result after the first 
iteration. We have found that convergence can normally be 
achieved after only a few iterations for small electric fields. Once 
f1(k) has been evaluated to the required accuracy, it is possible to 
calculate quantities such as the drift mobility µ, which is given in 
terms of spherical coordinates by 
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Here, we have calculated low field drift mobility in ZnS and ZnSe 
crystal structures using the iterative technique. The effects of 
piezoelectric, acoustic deformation, polar optical phonons and 
ionized impurity scattering have been included in the model. It is 
also assumed that the electrons remain in the �-valley of the 
Brillouin zone. Further we supposed that the materials have the 
isotropic nonparabolic band structure. We took into account 
electron screening and mixing of s and p wave functions. 
 
 
LOW-FIELD TRANSPORT RESULTS IN ZnS AND ZnSe 
 
In the work, electron mobility for ZnS and ZnSe 
compounds are calculated using iterative method. We 
investigated temperature and doping dependencies of 
electron mobility in range of 150 to 500 K. The electron 
concentration of ZnS and ZnSe compounds was taken as 
1022, 1023 and 1024 m-3. Further in this work we calculated 
the mobility for various concentrations. Important 
parameters used throughout the calculations are listed in 
Table 1. 

Figure 1 shows the calculated electron drift mobilities 
versus temperature and donor concentration for ZnS and 
ZnSe compounds. The electron drift mobilities at room 
temperature that we find are 1250 and 1050 cm2V-1s-1 for 
ZnSe and ZnS structures, respectively, for an electric field 
equal to 104 Vm-1 and with a donor concentration of 1023 
m-3. The material parameters used to calculate the 
electron drift mobilities are tabulated in Table 1. 

The results plotted in figure 1a indicate that the electron 
drift mobility of ZnS is lower than that for the ZnSe 
structure.  This  is   largely   due   to  the   higher ℘ valley  
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Table 1. Important parameters used in our calculations for ZnS and ZnSe materials which 
are taken from references (Chattopadhyay and Queisser, 1981). 
 

 ZnS ZnSe 
Density ρ (kgm-3) 4075 5420 
Longitudinal sound velocity vs. (ms-1) 5668 4580 
Low-frequency dielectric constant εs 9.6 9.2 
High-frequency dielectric constant ε∞ 5.7 15 
Acoustic deformation potential (eV) 4.9 4.5 
Polar optical phonon energy (eV) 0.0426 0.0314 
�-valley  effective mass (m*) 0.28 0.17 
�-valley  non-parabolicity (eV-1) 0.69 0.67 
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Figure 1. (a) Electron drift mobility of ZnS and ZnSe structures versus temperature. Donor concentration is approximately 1023 m-3, 
(b) Electron drift mobility of ZnS and ZnSe structures versus donor concentration at room temperature. 

 
 
 
effective mass in the ZnS structure. 

Figure 1b shows the calculated variation of the electron 
mobility as a function of the donor concentration for both 
ZnS and ZnSe crystal structures at room temperature. 

The mobility does not vary monotonically between 
donor concentrations of 1022 m-3 and 1024 m-3 due to the 
dependence of electron scattering on donor 
concentration, but shows a maximum at 1022 m-3 for both 
compounds. 

In order to understand the scattering mechanisms 
which limit the mobility of ZnS and ZnSe under various 
conditions, we have performed calculations of the 
electron drift mobility when particular scattering 
processes are ignored. The solid circle curve in Figure 2 
shows the calculated mobility for ZnS material including 
all scattering mechanisms whereas the open circle and 
star curves show the calculated mobility without ionized 
impurity and polar optical scattering, respectively. It can 
be seen that below 250 K the ionized impurity scattering 
is  dominant  while  at  the  higher  temperatures  electron 

scattering is predominantly by optical modes. Thus the 
marked reduction in mobility at low temperatures in 
Figure 2 can be ascribed to impurity scattering and that at 
high temperatures to polar optical phonon scattering. 

The temperature variation of the electron drift mobility 
in ZnS and ZnSe compounds for different donor 
concentrations is shown in Figure 3. It is evident from this 
figure that the curves approach each other at very high 
temperatures, where the mobility is limited by longitudinal 
optical phonon scattering, whereas the mobility varies 
inversely with donor concentration at low temperatures as 
we would expect from the foregoing discussion. 
 
 
Conclusions 
 
In conclusion, we have studied the electron transport 
characteristic associated with ZnS and ZnSe compounds. 
Temperature dependent and free electron concentration 
dependent of the electron mobility in both structures have 
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Figure 2. Comparison of electron drift mobility ZnS material with donor concentration of 1023 
m-3 and when individual scattering processes are ignored. 
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Figure 3. Calculated low-field electron drift mobility of ZnS and ZnSe compounds as functions of temperature for different donor 
concentrations. 

 
 
 
been compared. It has been found that the low-field 
electron mobility is significantly higher for the ZnSe 
structure than ZnS structure due to the lower � electron 
effective mass in this crystal structure. Several scattering 
mechanisms have been included in the calculation. 
Ionized impurities have been treated beyond the born 
approximation using a phase shift analysis. Screening of 
ionized impurities has been treated more realistically 
using  a   multi-ion  screening  formalism,  which  is  more 

relevant in the case of highly compensated III-V 
semiconductors. 
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