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Synchronous machine is an AC rotating machine whose speed under steady state condition is 
proportional to the frequency of the current in its armature. This paper presents an efficient neuro-fuzzy 
control of synchronous generator. It has been compared with fuzzy control and multilayer control. As 
evinced through the simulation results, neuro-fuzzy and type-2 are comparatively superior over the 
architectures. 
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INTRODUCTION 
 
Synchronous generator runs at a constant speed and 
draws its excitation from a power source external or 
independent of the load or transmission network it is 
supplying. Synchronous machine is an AC rotating 
machine whose speed under steady state condition is 
proportional to the frequency of the current in its armature 
(Rahman and Hiti, 2003; Batzel and Lee, 2003). The 
magnetic field created by the armature currents rotates at 
the same speed as that created by the field current on 
the rotor, which is rotating at the synchronous speed and 
a steady torque results. Since the reactive power 
generated by a synchronous machine can be adjusted by 
controlling the magnitude of the rotor field known as 
synchronous condensers, may be more economical in 
the large sizes than static capacitors (Guo et al., 2003; 
Uddin et al., 2004). 

Neuro-fuzzy modeling allows a fuzzy system to be 
refined by neural training, thus avoid lengthy trial-and-
error phases in defining both membership functions and 
inference rules. An approach to obtain simple neuro-
fuzzy models is proposed, which reduces the number of 
rules by means of a systematic procedure that consists in 
successively removing a rule and updating the remaining 
rules in such a way that the overall input-output behavior 
is kept approximately unchanged over the entire training 
set. A formulation of the proper update is described and a 
criterion for  choosing  the  rules  to  be  removed  is  also  
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provided. Initial experimental results show the 
effectiveness of the proposed method in reducing the 
complexity of a neuro-fuzzy system by using its input-
output data (Chiricozzi et al., 1996; Parasiliti et al., 1996; 
Lightbody and Irwin, 1997; Amin, 1997; Cabrera et al., 
1997).  

This paper presents an efficient neuro-fuzzy control of 
synchronous generator. It has been compared with fuzzy 
control and multilayer control of synchronous generator. 
As evinced through the simulation results, neuro-fuzzy 
and type-2 are comparatively superior over the 
architectures. 
 
 
METHODOLOGY 

 
The mathematical model of synchronous generator has been 
discussed in the following sub sections. This mathematical model 
helps in taking various control decisions keeping the stability in to 
consideration. Reference frame theory is quite important for the 
analysis of different electric machines analysis. The model of two 
pole salient pole synchronous superconducting machine with 
damper windings is shown in Figure 1 and 2 d-axis is aligned with 
the N-pole of the rotor and q- axis is 90 degree apart from d-axis. 

Mathematical model comprises of the following basic equations: 
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Figure 1. D-q model of synchronous generator. 
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Figure 2.  (a) d-q axis representation in case of synchronous 

generator. (b) d-q model of synchronous generator. 
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Here, v ds, Rs ids, Φds, ωds, vqs iqs, Φds, vf Rf, if, J, B, Ω, Lds, Mfd are 
direct axis stator voltage, stator resistance, direct axis stator speed, 
quadrature axis stator voltage, field voltage, direct axis stator flux, 
field voltage, field resistance, current density, magnetic flux density, 
direct axis inductance and mutual inductance, respectively. Figure 3 
shows schematic diagram with fuzzy control (Rahman et al., 1998; 
Dumitrescu et al., 1999; Jongman et al., 2009; Andersen and 
Dorrell, 2010). 
 
 
Problem formulation 
 
Fuzzy model reference learning controller (FMRLC) in synchronous 
generator terminal voltage and reactive power control is designed 
so that its learning controller has the ability to improve the 
performance of the closed-loop. The FMRLC controller is superior 
to conventional self tuning controllers which continue to tune the 
controller parameters because it will tune and to some extent 
remember the values that it had tuned in the past.  

Figure 4 shows the functional block diagram of the FMRLC. It is 
made up of four main parts; the plant, the fuzzy controller to be 
tuned, the reference model, and the learning mechanism (an 
adaptation mechanism). The FMRLC uses discrete time signals 
r(KT) and y(KT) with T as the sampling period. It also uses the 
learning mechanism to observe numerical data from a fuzzy control 
system (Ching-Hung and Ching-Cheng, 2000; Wai, 2001). 

The considered fuzzy rules are as below. A similar fuzzy rule 
based  on  the  developed  system  mathematical  model  has  been 
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Figure 3. Schematic diagram of synchronous generator control. 

 
 
 

 
 
Figure 4. Fuzzy-neuro controller for synchronous generator. 

 
 
 
implemented in FIS and ANFIS. 

IF torque error is SMALL AND error derivative is VERY SMALL 
THEN stator current compensation is SMALL.  

The fuzzy control system loop operates to make y(KT) track r(KT) 
by manipulating u(kT), while the adaptation control loop seeks to 
make the output of the plant y(kT) track the output of the reference 
model ym(kT) by manipulating the fuzzy controller parameters. The 
synchronous generator which represents the plant has an input u 
(kT) from the fuzzy controller and terminal voltage output y(kT). The 
input to the fuzzy controller is the error. It is given in Equations 6 
and 7. 
 
e(kT ) = r(kT)− y(kT)                                                                       (6)    
                                                                                                                                                                                                                                   

( ) ( )
( )

e kT e kT T
c kT

T

− −
=

                                                 (7) 
 
In Figure 5, the schematic of neuro-fuzzy has been shown which 
involves the graphical representation of the processing of 
knowledge in the neuro-fuzzy based model. This model is able to 
learn and optimize the control requirement. In Figure 6, the general 

architecture of ANFIS represents how the different layers are 
performing according to the weights assigned to them as in layers 
1, 2, 3, 4 and 5. Figures 6 and 7 show the architecture and 
schematic of synchronous generator and ANFIS in MATLAB 
(Rahman and Hoque, 1998; Ching-Hung and Ching-Cheng, 2000; 
Karakaya and Karakas, 2008; Sumina and Bulic, 2008).   

 
 
Simulation and testing 

 
The neuro-fuzzy control simulink diagram is shown in Figure 7. It 
considers the supply, the machine, limiter circuits, breaker etc. 

The simulink diagram as shown in Figure 8 depicts the fuzzy 
logic control of synchronous generator. It shows the machine, 
decoder, test signals etc. 

The knowledge-base modifier performs the function of modifying 
the fuzzy controller’s rule-base to affect the needed changes in the 
process inputs and it is depicted in Figure 9. 

Figure 9 exhibits performance improvement of rotor speed, 
mechanical torque, electrical power and electrical power 
simultaneously on CRO. Table 1 show all the possible rules which
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Figure 5. Detailed schematic diagram for adaptive controller for synchronous generator. 

 
 
 

 

 
 
Figure 6. Neuro-fuzzy architecture. 

 
 
 
can be made in fuzzy rule base for above fuzzy based synchronous 
generator control system and the knowledge based modifier which 
optimizes the performance. Rules have being formulated for error 
and change in error. 

 
 

RESULTS AND DISCUSSION 

 

Now the techniques of neuro fuzzy will be applied to test 
for better control strategy. Figure 10 depicts the ANFIS 
graph for error and epochs for the synchronous 
generator. Figure 11  shows  the  ANFIS  neural  network  

architecture. 
The fuzzy neuro architecture implemented in the 

system has been shown in Figure 11 and the simulink 
representation of neuro fuzzy control is shown in Figure 
12. 

Figure 12 shows the response curves for stator current, 
rotor speed and torque in fuzzy neuro based control 
strategy. The considered system is stabilized after t = 
0.13. It is evident that the current and speed get 
saturated after certain settling time. The overshoot is also 
reduced significantly and eventually zero offset  is  being 
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Figure 7. Neuro-fuzzy control of synchronous generator. 

 
 
 

 
 
Figure 8. Fuzzy logic control of synchronous generator. 
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Figure 9. Knowledge-base modifier for synchronous generator. 

 
 
 

Table 1. Fuzzy rule base for inputs and output. 
 

 

u(t) 

e(t) 

NB NM NS ZO PS PM PB 

 

 

 

∆e(t) 

 

NB NB NB NB NB NM NS ZO 

NM NB NB NB NM NS ZO PS 

NS NB NB NM NS ZO PS PM 

ZO NB NM NS ZO PS PM PB 

PS NM NS ZO PS PM PB PB 

PM NS ZO PS PM PB PB PB 

PB ZO PS PM PB PB PB PB 
 
 
 

achieved in neuro fuzzy control. However, there is some 
small and finite offset with fuzzy control. The accuracy is 
being ascertained by finding IAE and ITAE error criteria, 
as applied in both the cases. 
 
 
Conclusions 
 
From the above case studies we have calculated IAE that 
is, integral absolute error and ITAE that is, integral time 

absolute error parameters for each of the type of control 
architecture. The calculation for IAE and ITAE in Table 2 
gives a comparative analysis for considered control 
techniques. These performances indices of IAE and ITAE 
help in decision taking regarding selection of control 
architecture.  

Figure 13 presents the step response of synchronous 
generator it has peak amplitude of 0.331, overshoot 
percentage of 65.3%,rise time of system is 0.519 s and 
settling time is 12.9 s. System took 1.4sec to settle  down 
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Figure 10. Graph between error and epoch of neural network. 

 
 
 

 
 
Figure 11. ANFIS neural network architecture. 
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Figure 12. Response curves of stator current, rotor speed, and torque in fuzzy neuro control of synchronous generator. 
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Table 2.  IAE and ITAE calculations. 
 

S/n Parameter Type-1 Type-2 Neuro fuzzy Multi layer 

1 IAE 4.755 4.428 7.243 8.56 

2 IATE 0.3665 0.312 0.6035 0.77 
 
 
 

 
 
Figure 13. Time response of synchronous generator at step increase in torque. 

 
 
 
and to provide stable performance. 
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