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Hydrologic forecasting plays an ever increasing role in water resource management, as engineers are 
required to make component forecasts of natural inflows to reservoirs for numerous purposes. 
Resulting forecast techniques vary with the system purpose, physical characteristics, and availability of 
data. As most hydrological parameters are subjected to the uncertainty, a proper forecasting method is 
of interest of experts to overcome the uncertainty. This paper presented an Artificial Neural Network 
(ANN) approach for forecasting of long term reservoir inflow using monthly inflow available data. A 
Levenberg-Marquardt Back Propagation (LMBP) algorithm has been used to develop the ANN models. 
In developing the ANN models, different networks with different numbers of neuron hidden layers were 
evaluated. A total of 21 years of historical data were used to train and test the networks. The optimum 
ANN network with 4 inputs, 5 neurons in hidden layer and one output was selected. To evaluate the 
accuracy of the proposed model, the Mean Squared Error (MSE) and the Correlation Coefficient (CC) 
were employed. The network was trained and converged at MSE = 0.0188 by using training data 
subjected to early stopping approach. The network could forecast the testing data set with the accuracy 
of MSE = 0.0283. Training and testing process showed the correlation coefficient of 0.7282 and 0.7228 
respectively. 
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INTRODUCTION 
 
Time series forecasting has received tremendous 
attention of researchers in the last few decades. This is 
because the future values of a physical variable, which 
are measured in time at discrete or continuous basis, are 
needed in important planning, design and management 
activities. The time series forecasting methods have 
found applications in very wide areas including but not 
limited  to finance  and  business,  computer  science,  all  
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branches of engineering, medicine, physics, chemistry 
and many interdisciplinary fields. Conventionally, the 
researchers have employed traditional methods of time 
series analysis, modeling, and forecasting, e.g. Box–
Jenkins methods of autoregressive (AR), auto-regressive 
moving average (ARMA), auto-regressive integrated 
moving average (ARIMA), autoregressive moving 
average with exogenous inputs (ARMAX), etc. The 
conventional time series modeling methods have served 
the scientific community for a long time; however, they 
provide only reasonable accuracy and suffer from the 
assumptions of stationary and linearity. The need of 
producing more and more accurate time series forecasts 
has   forced   the  researchers    to    develop    innovative 



 

 

 

 

 
 
 
 

 
 
Figure 1. Structure of an artificial neural network. 

 
 
 
methods to model time series. Artificial Neural Networks 
(ANNs) were introduced as efficient tools of modeling and 
forecasting about two decades ago. 

The artificial neural networks are techniques that can 
model, map, and demonstrate the non linear relationship 
of complex phenomena. The artificial neural networks are 
universal and highly flexible function approximators, first 
used in the fields of cognitive science and engineering 
(Kaastra and Boyd, 1996). The artificial neural networks 
are widely used and have become increasingly popular in 
a broad range of fields. The neural networks are less 
sensitive to the error term assumptions and can tolerate 
noise, chaotic components, and heavy tails better than 
most other methods (Masters, 1993). This paper presents 
a study aimed at forecasting a hydrologic time series, 
using neural network approaches.  
 
 
Stream flow forecasting using ANN 

 
The application of ANN in hydrology started in the early 1990s. A 
state-of-the-art review of ANN applications in hydrology can be 
found in the ASCE task committee report. Some applications of 
ANN in water resources include: precipitation–runoff modeling 
(Rajurkar et al., 2004; Elshorbagy and Simonovic, 2000; Tokar and 
Markus, 2000; Zealand et al., 1999; Fernando and Jayawardena, 
1998; Hsu et al., 1995) stream flow forecasting (Moradkhani et al., 
2004; Anctil et al., 2004; O¨zgu¨r, 2004), and river stage forecasting 
(Liong et al., 2000; Thirumalaiah and Deo, 1998; Karunanithi et al., 
1994). Attempts have also been made to develop runoff 
hydrographs using different input parameters. 

Muttiah et al. (1997) used information on the drainage basin, 
elevation, average slope, and average annual precipitation to 
predict 2-year peak discharge from a watershed. Carriere et al. 
(1996) used ANN  with  a  recurrent  back-propagation  algorithm  to 
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generate a runoff hydrograph, using a virtual runoff hydrograph 
system. They used rainfall intensity, duration, catchment slope, and  
catchment cover to estimate runoff hydrographs. Smith and Eli 
(1995) used a back propagation ANN to predict the peak discharge 
and the time of peak resulting from a single rainfall event. They 
used a synthetic watershed to generate runoff from stochastically 
generated rainfall patterns.  
 
 

ANN Structure 
 

The primary characteristics of ANNs are their ability to learn, 
distributed memory and parallel operation, eventually leading to 
fault tolerance. A typical three-layered network with an input layer 
(I), a hidden layer (H) and an output layer (O), as shown in Figure 1, 
is adopted in this study. Increasing the number of the hidden layers 
affects the complexity of the network and decreases the learning 
accuracy. Theoretical works have shown that a single hidden layer 
is sufficient for the ANNs to approximate to any complex nonlinear 
function (Cybenko, 1989; Hornik et al., 1989). Tang et al. (1991) 
recommended using one hidden layer to avoid increasing the 
complexity of the network. Indeed, many experimental results seem 
to confirm that one hidden layer may be enough for most 
forecasting problems (Coulibaly et al., 1999). Each layer consists of 
several neurons and the layers are interconnected by sets of 
correlation weights. The neurons receive inputs from the initial 
inputs or the interconnections and produce outputs by the 
transformation, using an adequate nonlinear transfer function. A 
common transfer function is the sigmoid function expressed by 
 

  . 
 

This transfer function is commonly used in back propagation 
networks (BPN). The training processing of neural network is 
essentially executed through a series of patterns. In the learning 
process, the interconnection weights are adjusted within input and 
output values. The BPN is the most representative learning model 
for the artificial neural network. The procedure of the BPN is that, 
the error at the output layer propagates backward to the input layer 
through the hidden layer in the network to obtain the final desired 
outputs. The gradient descent method is utilized to calculate the 
weight of the network and adjust the weight of interconnections to 
minimize the output error. For a network that includes n hidden 
layers, the error function at the output neuron can be defined as 
(Frederic, 2001); 
 

 (1) 
 

Where  represents the desired network output for the qth input 

pattern and  is the actual output of the network. 
Using the steepest descent gradient approach, the learning rule for 
a network weight in any one of the network layers is given by: 
 

                                                             (2) 
 

Where  is the learning rate and . 
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By applying Equation (2) on (1) for such a network, we can write 
 

                        (3)  
 
Where 
 

                                         (4)  
 
For the output layer, and 
 

                             (5) 
 

Where )(υg  represent the first derivative of the transfer function 

(activation function). 
 
 
Levenberg-Marquardt back propagation algorithm 

 
Coulibaly et al. (1999) reviewed the ANN-based modeling in the 
hydrology over the last years and reported that about 90% of the 
experiments, extensively make use of the multi-layer feed-forward 
neural networks (FNN) trained by the back propagation (BP) 
algorithm. Among the modified back propagation algorithms, an 
early stop training approach Levenberg-Marquardt back 
propagation (LMBP) algorithm has widely been used for the 
hydrological forecasting problems, as the most powerful and 
accurate algorithm (Affandia et al., 2007; Aqil et al., 2007; Cobaner 
et al., 2008; Vongkunghae and Chumthong, 2007). The Levenberg-
Marquardt back propagation (LMBP) algorithm represents a 
simplified version of Newton’s method applied to the problem of 
training multilayer perceptron neural networks (MLPNNs). In 
Newton’s optimization algorithm, the update equation for vector 

 applied on energy function E (w) is defined as (Frederick, 
2001): 
  

                                       (6)  
 
Where, H is Hessian matrix and J is the Jacobian matrix, which is 
defined as follows 
 

                                                                      (7)  
 

                                                                           (8)  
 
And  
 

  
 
One problem with the iterative update given in (6) is that, it requires 

the inversion of matrix  which may be ill conditions or 
even singular (non-invertible). This problem can be easily resolved 
by the following modification 

 
 
 
 

                                                                          (9)  
 

Where  is a small number and  is the identity matrix. 
Substituting Equation (9) into (6) results in the Levenberg-
Marquardt algorithm for updating the network weights 
 

                                              (10) 
 
Or 
 

                                               (11)  
 
Each term in the Jacobian matrix has the form 
 

                                                                                (12) 
 
The simplest approach to compute the derivatives in (12) is to use 
the approximation: 
 

                                                                                (13) 
 
 
Performance evaluation criteria 
 
The Correlation Coefficient (CC) and MSE are the most commonly 
used statistics for evaluating the performance of the ANN models 
(Hoła and Schabowicz, 2005; Lee, 2008; Lou and Nakai, 2001; 
Nasseri et al., 2008; Sedki et al., 2009; Stephen et al., 2007). Thus, 
to estimate the accuracy of the proposed methodology, the Mean 
Squared Error (MSE) and Correlation Coefficient (CC) were used 
as the agreement indexes:  
 

 (14) 
 

                   (15) 
 

Where  is the observed value,  is the predicted value,  is 

the mean value of observations, and  is the mean value of 
predictions. 
 
 
Model development  

 
The model was developed using a back propagation ANN and its 
ability to forecast the monthly reservoir was tested using 21 years of 
monthly historical flow of Sultan Mahmud hydropower reservoir, 
Malaysia. The historical data for the ANN  modeling  is  divided  into
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Table 1. Patterns of Input Parameters used for ANN Models. 
 

Network no. Structure of model No. of neurons in input layer Input parameters 

1 3-X-1 3 Y(t-1) , Y(t-2) , Y(t-12) 

2 3-X-1 3 Y(t-1) , Y(t-12) , [Y(t-11)+Y(t-12)+Y(t-13)]/3 

3 3-X-1 3 Y(t-1) , Y(t-2) , [Y(t-11)+Y(t-12)+Y(t-13)]/3 

    

4 4-X-1 4 
Y(t-1) , Y(t-2) , Y(t-12) , [Y(t-11)+Y(t-12)+Y(t-
13)]/3 

    

5 4-X-1 4 
Y(t-1) , Y(t-2) , Y(t-13) , [Y(t-11)+Y(t-12)+Y(t-
13)]/3 

    

6 2-X-1 2 Y(t-1) , Y(t-2) 

 
 
 

Number of neurons  
 
Figure 2. The values of MSE vs. the number of neurons for the six networks.  

 
 
 
two sets called the training set and the testing set. The training set 
is the major part of the data, that is used for training of the neural 
network for finding the governed pattern of data. The testing 
patterns are used for evaluating accuracy of the ANN trained 
model. Several patterns of input data have been employed to 
develop the optimum ANN model for the hydropower reservoir 
inflow. Six networks have been employed to determine the optimum 
ANN architecture. One hidden layer is designed for all the networks 
and each network was trained under several structures with 
different number of neurons in the hidden layer. Table 1 shows the 
input patterns that have been used for developing the ANN models. 
 
 

RESULTS AND DISCUSSION 
 

The most important part of ANN model is its ability to 
forecast future events. The MSE and CC criterions are 
employed for evaluation of the accuracy of both training 
and testing procedure. The best model is chosen 
according to the minimum  MSE  and  the  Maximum  CC. 

As the aim of the ANN modeling is forecasting the 
reservoir inflow, the investigation of the MSE and CC 
among the testing results is more important. The graph of 
MSE with respect to the number of the neurons in the 
hidden layer for all the networks related to the testing 
process is shown in Figure 2. The behavior of the CC for 
the six networks associated to the testing data set can be 
seen in Figure 3. As can be seen from the figure, each of 
the network architecture has been examined with several 
neurons in the hidden layer. 

Figure 2 demonstrates that network 5 with 5 neurons is 
associated with the minimum MSE. The investigation of 
the CC graph (Figure 3) certifies that the maximum CC is 
related to network 5 with the 5 neurons in the hidden 
layer. Therefore, network 5 (that is network with model 
structure of 4-5-1), which includes 4 inputs, 5 neurons in 
hidden layer and one in output layer, was adopted as  the  
final model. This selected ANN  model  was  subjected  to 
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Number of neurons  
 
Figure 3. The values of CC vs. the number of neurons for the six networks.  
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Figure 4. MSE reduction of training and validation. 

 
 
 
further improvement, and the early stopping approach 
has been employed for the training process to avoid over-
fitting problem. The MSE  reduction of the training and 

validation monitored is shown in Figure 4. The network 
was trained under early stopping approach and 
converged  at  MSE  =  0.0188.  The  network  forecasted
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Table 2. Performance of Training and Testing for the selected ANN Model. 
 

Model Training MSE Training CC Testing MSE Testing CC 

4-5-1 0.0188 0.7282 0.0283 0.7228 

 
 
 

 
 
Figure 5. Comparison between observed and forecasted reservoir inflow using ANN model (employing training 
data set). 

 
 
 

Observed (Test data) Estimated (ANN) 

 
 
Figure 6. Comparison between observed and forecasted reservoir inflow using ANN model (employing 

testing data set). 

 
 
 
Using testing data set with the accuracy of MSE = 
0.0283. The MSE and CC value of training and testing for 
selected model are presented in Table 2. Comparison 
between the observed and ANN estimated monthly inflow 

for the training and testing data set is shown in  Figures  
5 and  6 respectively. It can be seen from these figures 
that, the agreement between the observed and estimated 
data are relatively good except at a few high points. In any 
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modeling exercise, a perfect agreement is very difficult to 
obtain due to the constraints and limitations in the 
modeling processes.  
 
 
Conclusion 
 
Time series forecasting has an important role for water 
resources planning and management. Conventionally, 
the researchers have employed traditional methods such 
as AR, ARMA, ARIMA, etc. These models provide only 
reasonable accuracy and suffer from the assumptions of 
stationary and linearity. This paper developed an ANN 
model for forecasting of long-term reservoir inflow. A 
Levenberg-Marquardt back propagation (LMBP) 
algorithm which includes 4 inputs, 5 neurons in hidden 
layer and one in output layer was developed. Result 
showed a relatively good agreement between the 
predicted and observed data. The evaluation criteria, 
MSE and CC values confirmed accuracy of model 
performance and good ability of forecasting. The model 
was trained and converged at MSE = 0.0188 by using 
training data. The ANN model can forecast the testing 
data set with the accuracy of MSE = 0.0283. Training and 
testing process show the correlation coefficient of 0.7282 
and 0.7228, respectively. 
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