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The purpose of this paper is to offer a complete global analysis of the behavior of solutions of either the 
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INTRODUCTION 
 
The classical mathematical models of growth and compe-
tition of microbial populations on a single limiting substr-
ate in continuous culture, also called the chemostat, occu-
py a central place in ecological modeling (Hsu, 1978). The 
parameters of the model can be measured by growing 
the organisms separately in either batch or continuous 
culture. A rigorous, global description of the dynamics 
exhibited by the model equations were carried out in 
(Monod, 1950), and letter, in more generality in (Tilman, 
1982). These mathematical results became more widely 
known to ecologists through the work of Tillman, particu-
larly the monograph (Tilman 1982). More recent mathe-
matical results and extensions of the classical model can 
be found in (Hsu, 1978). 

In the classical model of the chemostat, discussed-in 
(Cunningham and Nisbet, 1980), it is assumed that the 
nutrient uptake rate is proportional to the reproductive 
rate. The constant of proportionality, which converts units 
of nutrient to units of organism, is called the y ie ld  cons-
tant. As a consequence of the assumed constant value of 
the yield, the classical model is sometimes referred to as 
the "constant yield" model. 

In phyloplankton ecology, it has long been known that the 
yield is not constant and that it can vary depending on the 
growth rate (Droop, 1973). This led to the formulation of 
the variable - yield model, also called the variable – inter-
nal stores model (Grover, 1991), and the Caperon - 
Droop model (Hsu et al., 1977). This model effectively 
decouples specific growth rate from external nutrient 
concentration by introducing an intracellular store of nutri-

ent. The specific growth rate is hypothesized to depend 
on a quantity, called the cell quota, which may be viewed 
as the average amount of stored nutrient in each cell of 
the particular organism in the chemostat. 

The purpose of this paper is to give a mathematical 
analysis of the variable - yield model. Essentially, we 
confirm that the variable - yield models make the same 
predictions concerning the growth of a single population, 
and concerning to outcome of competition between two 
microbial populations. 

In this paper, the variable - yield model of single – 
population growth is derived and analyzed, also, the com-
petition model is formulated and its equilibrium solutions 
identified. The conservation principle is introduced, local 
stability properties of the equilibrium solutions are also 
determined. 
 
 
The model 
 
The variable - yield model of growth of a single 
population in the chemostat is derived and analyzed. 
Let S(t) denote the free nutrient in the chemostat at time 
t, and two populations, with densities 1x  and 

2x competing for a single nutrient, with concentration S, 
in the chemostat. Competition occurs in the sense that 
each population consumes nutrient, thereby making it 
unavailable for its competitor. The average amount of 
stored per individual of population 1x   is  denoted  by  1y   



 
 
 
 
and for population 2x  is denoted by 2y . The chemostat is 
fed medium, with nutrient concentration S°, at volumetric 
flow rate D. There is a compensating outflow, also at rate 
D, of the well - stirred contents of the chemostat. 
Assuming for convenience that the chemostat has unit 
volume, we have the following equations 
 

( ) ( ) ( ) ,1 2y yo
1 1 2 2S D S S x e S x e Sθ θρ ρ− −′ = − − −  

 

( )( ) ,1 1 1 1x x y Dµ′ = −  

 

( ) ( )1y
1 1 1 1 1y e S y yθ ρ µ−′ = − ,        (2.1) 

 
( )( )Dyxx −=′ 2222 µ , 

 

( )( )2y
2 2 2 2 2y e S y yθ ρ µ−′ = −  

 
The functions ( ) ( ) ( ) ( )SSyy 212211 ,,, ρρµµ  are, respec-
tively, the per capita growth rate and the per capita 
uptake rate of population ix . The term 2,1, =− ie iyθ  
represents the effect of the inhibitor, this form having 
been used by Lenski and Hattingh (1986). We assume 
that iµ is defined and continuously differentiable 

for ii py ≥ , where 0≥ip  and satisfies 
 

( )i y 0µ ≥ , 

( ) 0>′ yiµ , (2.2) 

( ) 0=ii pµ , 
 
Observe that (2.2) imply that iii pyy =≥′ if,0 , and 

therefore the interval of iy value, [ ]∞,ip  is positively 
invariant under the dynamics of (2.1). Biologically 
relevant initial values for (2.1) are: 
 

( ) ( ) ( ) 00,0,00 ≥≥> Spyx iii . 
 
We will repeatedly use the fact, a consequence of (2.2) 
that for a fixed value of ( ) ( ), iy

i i i iS e S y yθ ρ µ− −  is 

strictly decreasing in iy , for ii py ≥ . Also note that 

( )i i iy yµ  increases without bound, as iy  increases. 

In general (2.1) have at most three steady state 
solutions. One of these, which we label Eo, corresponds 
to the absence of both competitors. It is given by: 
 

( ) ( ), , , , , , , ,o o o
o 1 1 2 2 1 2E x y x y S 0 y 0 y S= =  
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at it always exists, 0

iy  is the unique solution of  
 

( ) ( )iy
i i i ie S y y 0θ ρ µ− − =  

 
The two other possible steady states labeled 1E  and 2E  
correspond to the presence of one population and the 
absence of the other. 
For example 
 

( )ˆˆ ˆ ˆ, , , ,1 1 1 2E x y 0 y S=  

 
Where 

( ) Dy =11 ˆµ , (2.3) 
 

( ) ( )ˆ ˆ ˆ1y
1 1e S D yθ ρ− = , 

 

1
1 ˆ

ˆ
ˆ

y
SS

x
o −= , 

 

( ) ( )ˆ ˆ ˆ ˆ2y
2 2 2 2e S y yθ ρ µ− = . 

 
Examination of (2.3) reveals that 1E  exists; ii py ≥ , and 

1x  positive, iff 
 
(i)  ( )ˆ1 1y Dµ =   has a solution   11 ŷy = , and (2.4) 

 
(ii)  ( )ˆ ˆ ˆ1y

1 1e S D yθ ρ− >  

 
(2.4) says that the population 1x  can achieve a steady 
state population provided that: 
(a)  D is not too large. 
(b)  SS o ˆ> . 
An analogous steady state in which only population 2x  is 
present is given by 
 

( ), , , ,2 1 2 2E 0 y x y S= %% % %  

 
Where 
 

( )2 2y Dµ =% , 
 

( )2y
2 2e S D yθ ρ− =% % % , (2.5) 

 
0

2
2

S S
x

y
−=

%
%

%
, 
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( ) ( )1y
1 1 1e S y yθ ρ µ− =% % % %  

 

2E exists iff 
 

(i) ( )2 2y Dµ =%   has a solution  2 2y y= %   ,  and 

(ii) ( )2y
2 2e S D yθ ρ− >% % %  (2.6) 

 
A steady state of (2.1) is called nondegenerate provided 
the Jacobian matrix of the vector field determined by (2.1) 
at the steady state in nonsingular. 

It is possible, but highly unlikely, that there exist steady 
states with both 1x  and 2x present. This can happen iff 
both (2.4), (2.6) are satisfied and 
 

ˆS S=%                   (2.7) 
 
In order to simplify the statement of the main result, it will 
be assumed that if both (2.4), (2.6) hold, then 
 

ˆS S<%                  (2.8) 
 
 
Theorem 2.1 
 
Assume that the steady states of (2.1) are 
nondegenerate, then the following assertion hold 
If (2.4) and (2.6) do not hold, then Eo is the only steady 
state and every solution of (2.1) satisfies  
 

( ) ( ) ( ) ( ) ( )( ), , , ,1 1 2 2 ox t y t x t y t S t E as t→ → ∞   

  
If (2.4) holds and (2.6) does not hold then Eo and E1 are 
the only steady states and every solution which x1(0) > 0, 
satisfies 
 

( ) ( ) ( ) ( ) ( )( ), , , ,1 1 2 2 1x t y t x t y t S t E as t→ → ∞
 
 
If (2.6) holds and (2.4) does not hold, then Eo and E2 are 
the only steady states and every solution for which x0(0) 
> 0, satisfies  
 

( ) ( ) ( ) ( ) ( )( ), , , ,1 1 2 2 2x t y t x t y t S t E as t→ → ∞  

 
If (2.4) and (2.6) hold, then Eo, E1 and E2 exist and if (2.8) 
holds, then every solution for which x2(0) > 0, satisfies  
 

( ) ( ) ( ) ( ) ( )( ), , , ,1 1 2 2 2x t y t x t y t S t E as t→ → ∞  

 
Proof:  For the First assertion of the  Theorem,  nondege- 

 
 
 
 
neracy holds for Eo iff 
 

( ) , ,o
i iy 0 i 1 2µ ≠ =  

 
For the second (Third) assertion, only the single 

condition, ( ) ( )( )0 0
2 2 1 1y D y Dµ µ≠ ≠  is needed to 

insure that the nondegeneracy assumption hold for both 
steady states. 

Consider the case that both E1 and E2 exist. Drop from 
(2.1) the equations for 2,1, =iyi  and substitute 

 
( ) ( )Seyy y

1
ˆ1

111
1ˆ ρµ θ−−= . 

 
( ) ( )Seyy y

2
ˆ1

222
2ˆ ρµ θ−−=  

 
in the equations for 2,1, =ixi . Replace iy  by the 

equilibrium values 1ŷ and 2ŷ in the equation for S. This 
results the system 
 

( )( )DSeyxx y −=′ −−
1

ˆ1
111

1ˆ ρθ , 
 

( )( )DSeyxx y −=′ −−
2

ˆ1
222

2ˆ ρθ , (2.9) 
 

( ) ( ) ( )ˆ1 2y yo
1 1 2 2S D S S x e S x e Sθ θρ ρ− −′ = − − − %  

 
Which can be viewed as the constant yield model 
corresponding to (2.1)? 
The system (2.1) becomes 
 

( )( )1−=′ iiii yxx µ , 
 

( ) ( )iiii
y

i yySey i µρθ −=′ −  (2.10) 
 

( )�
=

−−−=′
2

1

1
i

i
y

i SexSS i ρθ  

 

With *
*

*0 ,,,, io
ii

i
i

i
i y

S
yxx

y
yy

S
SSDtt ====  are 

arbitrarily chosen representative values of the variables yi 
and 
 

( ) ( )iiiii yyDy *1µµ −= , 
 

( ) ( ) ( )ii
o

iiii yySSyDyS *1* ,, ρρ −≡  
 

Let 2211 xyxyS ++=Σ , � consists of unbounded free 
nutrient plus stored nutrient and it satisfies: 



 
 
 
 

Σ−=Σ′ 1   (2.11) 
 
Therefore, all solutions of (2.10) asymptotically approach 
the surface 
 

12211 =++ xyxyS   (2.12) 
 
i.e. ( ) ∞→→Σ tast 1  
 
Consequently as a first step in the analysis of (2.10), we 
consider the restriction of (2.10) to the exponentially 
attracting invariant subset given by (2.12). Dropping S 
from (2.10), we obtain the system. 
 

( )( )11111 −=′ yxx µ , 
 

( ) ( )111221111 11 yyyxxyey y µρθ −−−=′ − , (2.13) 
 

( )( )12222 −=′ yxx µ , 
 

( ) ( )222221122 12 yyyxxyey y µρθ −−−=′ −  
 
The biologically relevant domain for (2.13) is 
 

( ){ }, , , ; , , ,4
1 1 2 2 1 1 2 2 1 ix y x y R x y x y 1 y p i 1 2Γ += ∈ + ≤ ≥ =  

 
 
The equilibria  
 
Consider the system (2.13) in the region �.  The steady 
state Eo is given by 

( )0
2

0
10 ,0,,0 yyE =  

 
Where 0

iy  are uniquely determined 

by ( ) ( ) 2,1,1 000

==− iyye iiii
yi µρθ . 

 
The steady state E1 is given by 
 

( )2111 ˆ,0,ˆ,ˆ yyxE =  
 
provided that ( ) 111 =yµ  has a solution 0ˆ1 >y  and 

( ) 11
ˆ ˆ11 ye y >− ρθ . 

 
We say that 1E  exists if these two conditions are 
satisfied. Then 
 

( )ˆ1 1y 1µ = , 

 

( )ˆ ˆ ˆ ˆ1y
1 1 1 1e 1 y x yθ ρ− − = , (3.1) 
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( ) ( )ˆ ˆ ˆ ˆ ˆ2y
2 1 1 2 2 2e 1 y x y yθ ρ µ− − = . 

 
The first equation determines 1ŷ  uniquely, the second 

equation determines 1x̂  uniquely, and the third determ-

ines 2ŷ  uniquely, by the monotonicity properties (2.2) 
and (2.3). 
Similarly, the steady state E2 is given by 
 

( ), , ,2 1 2 2E 0 y x y= % % %  
 

provided that ( ) 122 =yµ  has a solution 2y 0>%  and 

( )2y
2e 1 yθ ρ− >% % . 

 
We say that E2 exists if these two conditions are satisfied.  
Then 
 

( )2 2y 1µ =% , 
 

( )2y
2 2 2 2e 1 x y yθ ρ− − =% % % % ,            (3.2) 

 

( ) ( )1y
1 2 2 1 1 1e 1 x y y yθ ρ µ− − =% % % % %  

 
We assume that if both E1 and E2 exist then 
 

ˆˆ ˆ2 2 1 1S 1 x y 1 x y S= − < − =% % %             (3.3) 
 

(3.3) can be assumed without loss of generality if SS ˆ~ ≠ .  
If (3.3) holds, then Eo, E1 and E2 are the only possible 
steady state of (2.13). 

The stability of the rest points is determined by the 
linearization at these points. The variational matrix for 
(2.13) takes the form. 
 

( ) ( )
( )1 1 1 1 1

2

2 2 2 2

1 1 1 1 1
y y y y y

1 1 1 1 2 2 1 1 1 1 1 1 2 1 2 1

2 2 2

y
2 2

y y y y
1 2 1 2 2 2 2 2

2 2

y 1 x y 0 0

y e 1 x y x y x e e y y e x e

0 0 1 x
J

x e

y e x e y e e

y

θ θ θ θ θ

θ

θ θ θ θ

µ µ
ρ ρ θρ µ µ ρ ρ

µ µ
ρ

ρ ρ ρ ρ θ µ
µ

− − − − −

−

− − − −

′� �−
� �′ ′ ′ ′ ′− − − − − − − − −� �
� �′−
� �=

� �′− −� �
� 	� �′ ′− − − −� 	� �
� 	� �� 	′−� �
 �� 

                                                                    (3.4) 
 
The local stability of Eo is determined by the Jacobian 
matrix ( ), , ,1 1 2 2J x y x y  at ( ), , ,o o

0 1 2E 0 y 0 y  provided that 

( ) ( ) ( ), , ,
o
1yo o o

i i i i 1 iy 0 e 1 y y i 1 2θµ ρ µ−≠ = = . 

 

( )

( )
( ) ( ) ( )( ) ( )( )

( )( )
( ) ( ) ( )

, , ,

o o 0
1 1 1

o o
0 1 2

o
2

o 0
2 2

o
1 1

y y yo o o o o
1 1 1 1 1 1 1 2 1

0
0 2 2E 0 y 0 y

y
0 2y yo o

2 1 2 2 o o o
2 2 2

y 1 0 0 0

e 1 y e 1 y y y e 1 0

J 0 0 y 1 0

1 e
e 1 y 0 y 1 e

y

J

θ θ θ

θ
θ θ

µ

ρ θ ρ µ µ ρ

µ

θ ρ
ρ ρ

µ µ

− − −

−
− −

� �−
� �
� �′ ′ ′ ′− − − − −
� �
� �= −� �
� �

� �−� �′ ′ � 	−� �� 	′− −� �
 �� 

                             

(3.5) 
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It is easy that J0 has eigen values as the form 
 

, , ,, , ,o o o o o o
1 2 i 3 4 i i i i i1 y y i 1 2λ µ λ θµ µ µ′= − = − − − =    

(3.6) 
 

With ( )o o
i i iyµ µ= . 

 

4,3λ  are negative and the sign of 2,1, =iiλ  

determines the stability of Eo and then Eo is locally 
asymptotically stable if o

i 1 0µ − < ,  i  = 1,2. 
The local stability of E1 determined by the Jacobian 
matrix J at ( )2111 ˆ,0,ˆ,ˆ yyxE  provided that ( ) 1ˆ11 =yµ  has 

a solution  0ˆ1 >y  and ( ) 11
ˆ ˆ11 ye y >− ρθ . We say that E1 

exists if these two conditions are satisfied.  Then 
 

( ) 1ˆ11 =yµ , 
 

( )ˆ ˆ ˆ ˆ1y
1 1 1 1e 1 x y yθ ρ− − = , (3.7) 

 

( ) ( )ˆ ˆ ˆ ˆ ˆ2y
2 1 1 2 2 2e 1 x y y yθ ρ µ− − =  

 
The first equation determines 1ŷ uniquely, the second 

determines 1x̂  uniquely, and the third determines 

2ŷ uniquely, by the monotonicity properties (2.2) and 
(2.3). 
The Jacobian matrix J at E1 is  
 

( )

( ) ( )
( )

( )( )

( )

( ) ( )

ˆ ˆ ˆ, , ,

ˆ
ˆ

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

1 1 1 2

1

1 1

2

2 2 2

1 E x y 0 y

y
1 1 1 1y y

1 1 1 1 2 1 1 1

1 1 1

2 2

y
y y y 2 2

2 2 1 1 1 2 1 1 2 2
2 2

J J

0 0 0 0

x e 1 x y
y e 1 x y y 1 x y e 0

1 x y 1

0 0 y 1 0

e
y e 1 x y x 1 x y e y e

y

θ
θ θ

θ
θ θ θ

ρ
ρ ρ

θρ
µ

ρ θ µ
ρ ρ ρ

µ

−
− −

−
− − −

=

� �′− −
′ ′− − − −� �

− − −� �� =
−

� �− −′ ′ ′− − − − − � �′− −� 

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� 

 (3.8) 
 
J1 has eigen values as the form  
 

ˆˆ ˆˆ ˆ, 1y
1 2 1 1 1 3 20 1 x e 1θλ λ θρ ρ λ µ− ′= = − − − = −            

and 
ˆˆˆ ˆ ˆ 2y

4 2 2 2 2y e θλ µ µ ρ θ −′= − − − −       (3.9) 
 
With  ( ) ( ) 2,1,ˆˆ,ˆˆ1ˆ 1111 ==−= iyyx iii µµρρ  
 

It is easy to see that ,2 4λ λ  are negative real parts and 

01 =λ is zero; then the sign of 1ˆ 23 −= µλ  determines 

the stability of 1Ê and it is stable if 01ˆ2 <−µ . A parallel 
analysis shows that the stability of E2, if it exists, is 
determine by the eigen value ( )2 1 1y 1λ µ= −%   of  the  Jaco-  

 
 
 
 
bian J at ( ), , ,2 1 2 2E 0 y x y% % %  with the following equations 

uniquely 
( ) , ,1 1 1y 1 0 x 0µ − ≠ =% %  

 

( )2 2y 1µ =% ,                        (3.10) 

 
( )1y

1 2 2 1e 1 x y yθ ρ µ−
1− =% % % %% , 

 
( )2y

2 2 2 2e 1 x y yθ ρ− − =% % % %  

 
The Jacobian J at E2 as the form 
 

( )

( )
( )

( )

, , ,

ˆ

2 1 2 2

1 1 1 1

2 2 2 2

2 E 0 y x y

1 1
y y y y

1 1 2 2 1 1 1 2 1 2 1

y y y y
1 2 2 2 2 2 2 2 2

J J

y 1 0 0 0

y e 1 x y e y y e x e

0 0 0 0

y e 1 x y 0 y e x e 1 e

θ θ θ θ

θ θ θ θ

µ
ρ θ ρ µ µ ρ ρ

ρ ρ ρ ρ θ

− − − −

− − − −

=

� �−
� �′ ′ ′− − − − − − −� �=
� �
� �′ ′ ′− − − − − −� �� 

% % %

% % %

% % % %

%
% % %% % % % % % % %

% % %% % % % %

 (3.11) 
 
Let ( ) ( ),i 2 2 i i i i1 x y yρ ρ µ µ′ ′− = =%% % % % 

 
J2 has eigen values 
 

,1 1 21 0λ µ λ= − =%  
 

1y
3 1 1 1 1e y 0θλ θρ µ µ− ′= − − − <%% % % %                (3.12) 

 
2 2y y

4 2 2 2x e e 1 0θ θλ ρ ρ θ− −′= − − − <% %% %%  
 
and the sign of �i determines the stability of E2. 
 
 
Theorem 3.1 
 
Eo is locally asymptotically stable if 
both ( ) 2,1,1 =< iyo

iiµ , and unstable if ( ) 1>o
ii yµ  for 

some i. Furthermore, ( ) 0>o
ii yµ  iff Ei exists. 

Proof:  The first assertion has already been noted. If 
( ) 111 >oyµ  then, by our assumptions about 1ˆ, yiµ  exists 

that ( ) 1ˆ11 =yµ  and oyy 11ˆ < . Therefore 
 

( ) ( ) 111111 ˆ1 1 yyyye oooyo

>>=− µρ θ  
 
This implies that E1 exists. Conversely if E1 exists, then 
 

( ) ( )ˆ ˆ ˆ ˆ1y
1 1 1 1 1e 1 y y yθ ρ µ− > =  ,          so 

 

( ) ( ) ( ) ( )ˆˆ ˆ
0
1yo 0 y

1 1 1 1 1 1 1 1y y e 1 0 y y e 1θ θµ ρ µ ρ− −− = > −  



 
 
 
 
Therefore 1

0
1 ŷy >  by monotonically if ( ) ( )111 ρµ θ yeyy −− , 

and consequently 
 

( ) ( ) 1ˆ11
0
11 => yy µµ  

 
 
Theorem 3.2 
 
If E1 exists and E2 does not exist, then �1 < 0 and E1 is 
locally asymptotically stable. Similarly, if E2 and E1 does 
not exist, then �2 < 0 and E2 is locally asymptotically 
stable. If E1 and E2 exist and 

ˆ
2 2 1 1S 1 x y 1 x y S= − < − =% % % % %  hold, then �1 > 0 and 

�2 < 0, so E1 is unstable and E2 is locally asymptotically 
stable. 
Proof:  Suppose E1 exists and E2 does not and �1 � 0. 

Then ( )ˆ2 2y 1µ ≥ , so there exists a unique solution   

( )of2 2 2y y 1µ =% . By monotonicity of �2 it follows 

that 22
~ˆ yy ≥ . 

Since 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ2 2y y
2 2 1 1 2 2 2 2 2e 1 e 1 x y y y y yθ θρ ρ µ− −> − = ≥ ≥% %

 we conclude that E2 exists, contradicting our hypothesis. 
Therefore, 01 <λ  if E1 exists and E2 does not. 
Suppose that E1 and E2 exists and 

ˆˆ ˆ2 2 1 1S 1 x y 1 x y S= − < − =% % % , (2.13) holds. 
Then 
 

( ) ( ) ( )
( ) ( ) ( ) ( )ˆˆˆ ˆ ˆ ˆ

2 2

2 2

y y
2 2 2 2 2 2

y y
2 2 2 2 2 2 2 2

y y e S y e S 0

y y e S y y e S

θ θ

θ θ

µ ρ ρ

µ ρ µ ρ

− −

− −

− = − =

= − < −

% %

%

% %% % %

%

 

 
implying the ˆ2 2y y<% . Similar reasoning gives ˆ1 1y y<% . 
Therefore 
 

( ) ( )ˆ2 1 1 1 1y 1 y 1 0λ µ µ= − < − =%  

 
and 
 ( ) ( )ˆ1 2 2 2 2y 1 y 1 0λ µ µ= − > − =% . 

 
In the next part, these local stability considerations will be 
shown to lead to corresponding global results. For this 
analysis, it will be important to approximate the one - 
dimensional unstable manifold of E1 when both E1 and E2 
exist and (2.13) holds. To this end, we provide 
information below on an eigenvector corresponding to the 
eigen value �2 of J1. 
 
Let  ( )

2211 ,,, yxyxV =  denote such an eigenvector. We 

find that: 
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( )1111
1

11 ˆˆ yyxx µλ−=  

 

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2

1

y x y x 1 y y y y
s s y s
ρ ρ ρ ρλ µ λ µ−� �∂ ∂ ∂ ∂′ ′+ + + + − = −� �∂ ∂ ∂ ∂� 

 

 

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2
2 2 2 2 2 1 1 22 1

2

2

y y y y y x x y y
y s s s

x 1

ρ ρ ρ ρµ µ
� �∂ ∂ ∂ ∂′− + + = − − −� �∂ ∂ ∂ ∂� 

=
 
 
Where the argument of the partial derivatives of �i is 
( )11 ˆˆ1 yx− . If 01 >λ , then 
 

, ,i 21
x 0 y 0 x 1< < = . 

 
 
Theorem 3.3 
 
If Eo is the only steady state, then all solutions tend to Eo 
as t � �. 
If Eo and E1 are the only steady states, then all solutions 
with  x1(0) > 0 approach E1 as t � �. 
(iii) If Eo and E2 are the only steady states, then all 
solutions with  x2(0) > 0 approach E2 as t � �. 
(iv) If Eo, E1 and E2 exists and (2.13) holds, then all 
solutions with  x2(0) > 0 approach E2 as t � �. 
Proof:  Let ,1 1 1 2 2 2u x y u x y= = . 
 
In the new variables ( )2211 ,,, µµ xx , system (2.13) taken 
the form 
 

	
	
�

�
�
�



�
−		
�

�
��



�
=′ 1

1

1
111 x

u
xx µ , 

 

( )
1

1

u
x

1 1 1 2 1 1u e 1 u u x u
θ

ρ
−

′ = − − − , (3.13) 

 

2
2 2 2

2

u
x x 1

x
µ
� �� �′ = −� 	� 	� 	


 �
 �
, 

 

( )
2

2x
2 2 1 2 2 2u e 1 u u x u

µθ
ρ

−
′ = − − −  

 
With xi > 0 and 
 

( ){ }, , , | ,4
1 1 2 2 i 1 2x u x u R x 0 u u 1ζ += ∈ > + ≤  (3.14) 

 
Which is positively invariant for (2.13), 
We can see Eo = (0, 0, 0, 0),  ( )ˆ ˆ, , ,1 1 1E x u 0 0= and  
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( ), , ,2 2 2E 0 0 x u= % %  as steady states of (3.13), where 

ˆ ˆ ˆ1 1 1u x y=  and 2 2 2u y x=% % % , provided, of course, that 
they exist for (3.13). 
By comparison result we obtain bounds on solutions of 
(3.13). If ( )2211 ,,, µµ xx is a solution of (2.13) in � then 
 

i
i i i

i

u
x x 1

x
µ
� �� �′ = −� 	� 	� 	


 �
 �
,      (3.15) 

 

( ) , ,
i

i

u
x

i i i i iu e 1 u x u i 1 2
θ

ρ
−

′ ≤ − − =  

 
Can be compared to the solutions ( ),i ix u  of 

 

i
i i i

i

u
x x 1

x
µ
� �� �′ = −� 	� 	� 	


 �
 �

 

 

( ) , ,
i

i

u
x

1 i i i iu e 1 u x u i 1 2
θ

ρ
−

′′ = − − =  

 
With ( ) ( )( ) ( ) ( )( ), ,i i i ix 0 u 0 x 0 u 0= , also 

 
( ) ( )
( ) ( ) 2,1,0, =≥≤

≤
ittutu

txtx

ii

ii  

 
We know that 

( ) ( )( )
( )
( )
( )

,
ˆ ˆlim , , ,

,

1

i i 1 1 1t

2 2 2

0 0 if E does not exists

x t u t x u if i 1 E exists

x u if i 2 and E exists
→∞

�
�= =�
� =� % %

 

 
The last two equations imply the boundedness of 
solutions of (3.13) and imply the assertion of the theorem. 
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